/*
 * common defines for all CPUs
 *
 * Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */
#ifndef CPU_DEFS_H
#define CPU_DEFS_H

#ifndef NEED_CPU_H
#error cpu.h included from common code
#endif

#include "qemu/host-utils.h"
#include "qemu/thread.h"
#include "qemu/queue.h"
#ifdef CONFIG_TCG
#include "tcg-target.h"
#endif
#ifndef CONFIG_USER_ONLY
#include "exec/hwaddr.h"
#endif
#include "exec/memattrs.h"

#ifndef TARGET_LONG_BITS
#error TARGET_LONG_BITS must be defined before including this header
#endif

#define TARGET_LONG_SIZE (TARGET_LONG_BITS / 8)

/* target_ulong is the type of a virtual address */
#if TARGET_LONG_SIZE == 4
typedef int32_t target_long;
typedef uint32_t target_ulong;
#define TARGET_FMT_lx "%08x"
#define TARGET_FMT_ld "%d"
#define TARGET_FMT_lu "%u"
#elif TARGET_LONG_SIZE == 8
typedef int64_t target_long;
typedef uint64_t target_ulong;
#define TARGET_FMT_lx "%016" PRIx64
#define TARGET_FMT_ld "%" PRId64
#define TARGET_FMT_lu "%" PRIu64
#else
#error TARGET_LONG_SIZE undefined
#endif

#if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
/* use a fully associative victim tlb of 8 entries */
#define CPU_VTLB_SIZE 8

#if HOST_LONG_BITS == 32 && TARGET_LONG_BITS == 32
#define CPU_TLB_ENTRY_BITS 4
#else
#define CPU_TLB_ENTRY_BITS 5
#endif

#define CPU_TLB_DYN_MIN_BITS 6
#define CPU_TLB_DYN_DEFAULT_BITS 8

# if HOST_LONG_BITS == 32
/* Make sure we do not require a double-word shift for the TLB load */
#  define CPU_TLB_DYN_MAX_BITS (32 - TARGET_PAGE_BITS)
# else /* HOST_LONG_BITS == 64 */
/*
 * Assuming TARGET_PAGE_BITS==12, with 2**22 entries we can cover 2**(22+12) ==
 * 2**34 == 16G of address space. This is roughly what one would expect a
 * TLB to cover in a modern (as of 2018) x86_64 CPU. For instance, Intel
 * Skylake's Level-2 STLB has 16 1G entries.
 * Also, make sure we do not size the TLB past the guest's address space.
 */
#  define CPU_TLB_DYN_MAX_BITS                                  \
    MIN(22, TARGET_VIRT_ADDR_SPACE_BITS - TARGET_PAGE_BITS)
# endif

typedef struct CPUTLBEntry {
    /* bit TARGET_LONG_BITS to TARGET_PAGE_BITS : virtual address
       bit TARGET_PAGE_BITS-1..4  : Nonzero for accesses that should not
                                    go directly to ram.
       bit 3                      : indicates that the entry is invalid
       bit 2..0                   : zero
    */
    union {
        struct {
            target_ulong addr_read;
            target_ulong addr_write;
            target_ulong addr_code;
            /* Addend to virtual address to get host address.  IO accesses
               use the corresponding iotlb value.  */
            uintptr_t addend;
        };
        /* padding to get a power of two size */
        uint8_t dummy[1 << CPU_TLB_ENTRY_BITS];
    };
} CPUTLBEntry;

QEMU_BUILD_BUG_ON(sizeof(CPUTLBEntry) != (1 << CPU_TLB_ENTRY_BITS));

/* The IOTLB is not accessed directly inline by generated TCG code,
 * so the CPUIOTLBEntry layout is not as critical as that of the
 * CPUTLBEntry. (This is also why we don't want to combine the two
 * structs into one.)
 */
typedef struct CPUIOTLBEntry {
    /*
     * @addr contains:
     *  - in the lower TARGET_PAGE_BITS, a physical section number
     *  - with the lower TARGET_PAGE_BITS masked off, an offset which
     *    must be added to the virtual address to obtain:
     *     + the ram_addr_t of the target RAM (if the physical section
     *       number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM)
     *     + the offset within the target MemoryRegion (otherwise)
     */
    hwaddr addr;
    MemTxAttrs attrs;
} CPUIOTLBEntry;

/**
 * struct CPUTLBWindow
 * @begin_ns: host time (in ns) at the beginning of the time window
 * @max_entries: maximum number of entries observed in the window
 *
 * See also: tlb_mmu_resize_locked()
 */
typedef struct CPUTLBWindow {
    int64_t begin_ns;
    size_t max_entries;
} CPUTLBWindow;

typedef struct CPUTLBDesc {
    /*
     * Describe a region covering all of the large pages allocated
     * into the tlb.  When any page within this region is flushed,
     * we must flush the entire tlb.  The region is matched if
     * (addr & large_page_mask) == large_page_addr.
     */
    target_ulong large_page_addr;
    target_ulong large_page_mask;
    /* The next index to use in the tlb victim table.  */
    size_t vindex;
    CPUTLBWindow window;
    size_t n_used_entries;
} CPUTLBDesc;

/*
 * Data elements that are shared between all MMU modes.
 */
typedef struct CPUTLBCommon {
    /* Serialize updates to tlb_table and tlb_v_table, and others as noted. */
    QemuSpin lock;
    /*
     * Within dirty, for each bit N, modifications have been made to
     * mmu_idx N since the last time that mmu_idx was flushed.
     * Protected by tlb_c.lock.
     */
    uint16_t dirty;
    /*
     * Statistics.  These are not lock protected, but are read and
     * written atomically.  This allows the monitor to print a snapshot
     * of the stats without interfering with the cpu.
     */
    size_t full_flush_count;
    size_t part_flush_count;
    size_t elide_flush_count;
} CPUTLBCommon;

# define CPU_TLB                                                        \
    /* tlb_mask[i] contains (n_entries - 1) << CPU_TLB_ENTRY_BITS */    \
    uintptr_t tlb_mask[NB_MMU_MODES];                                   \
    CPUTLBEntry *tlb_table[NB_MMU_MODES];
# define CPU_IOTLB                              \
    CPUIOTLBEntry *iotlb[NB_MMU_MODES];

/*
 * The meaning of each of the MMU modes is defined in the target code.
 * Note that NB_MMU_MODES is not yet defined; we can only reference it
 * within preprocessor defines that will be expanded later.
 */
#define CPU_COMMON_TLB \
    CPUTLBCommon tlb_c;                                                 \
    CPUTLBDesc tlb_d[NB_MMU_MODES];                                     \
    CPU_TLB                                                             \
    CPUTLBEntry tlb_v_table[NB_MMU_MODES][CPU_VTLB_SIZE];               \
    CPU_IOTLB                                                           \
    CPUIOTLBEntry iotlb_v[NB_MMU_MODES][CPU_VTLB_SIZE];

#else

#define CPU_COMMON_TLB

#endif


#define CPU_COMMON                                                      \
    /* soft mmu support */                                              \
    CPU_COMMON_TLB                                                      \

#endif