#ifndef CPU_COMMON_H #define CPU_COMMON_H /* CPU interfaces that are target independent. */ #ifndef CONFIG_USER_ONLY #include "exec/hwaddr.h" #endif #include "qemu/bswap.h" #include "qemu/queue.h" #include "qemu/fprintf-fn.h" /** * CPUListState: * @cpu_fprintf: Print function. * @file: File to print to using @cpu_fprint. * * State commonly used for iterating over CPU models. */ typedef struct CPUListState { fprintf_function cpu_fprintf; FILE *file; } CPUListState; /* The CPU list lock nests outside page_(un)lock or mmap_(un)lock */ void qemu_init_cpu_list(void); void cpu_list_lock(void); void cpu_list_unlock(void); void tcg_flush_softmmu_tlb(CPUState *cs); #if !defined(CONFIG_USER_ONLY) enum device_endian { DEVICE_NATIVE_ENDIAN, DEVICE_BIG_ENDIAN, DEVICE_LITTLE_ENDIAN, }; #if defined(HOST_WORDS_BIGENDIAN) #define DEVICE_HOST_ENDIAN DEVICE_BIG_ENDIAN #else #define DEVICE_HOST_ENDIAN DEVICE_LITTLE_ENDIAN #endif /* address in the RAM (different from a physical address) */ #if defined(CONFIG_XEN_BACKEND) typedef uint64_t ram_addr_t; # define RAM_ADDR_MAX UINT64_MAX # define RAM_ADDR_FMT "%" PRIx64 #else typedef uintptr_t ram_addr_t; # define RAM_ADDR_MAX UINTPTR_MAX # define RAM_ADDR_FMT "%" PRIxPTR #endif extern ram_addr_t ram_size; /* memory API */ typedef void CPUWriteMemoryFunc(void *opaque, hwaddr addr, uint32_t value); typedef uint32_t CPUReadMemoryFunc(void *opaque, hwaddr addr); void qemu_ram_remap(ram_addr_t addr, ram_addr_t length); /* This should not be used by devices. */ ram_addr_t qemu_ram_addr_from_host(void *ptr); RAMBlock *qemu_ram_block_by_name(const char *name); RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, ram_addr_t *offset); ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host); void qemu_ram_set_idstr(RAMBlock *block, const char *name, DeviceState *dev); void qemu_ram_unset_idstr(RAMBlock *block); const char *qemu_ram_get_idstr(RAMBlock *rb); bool qemu_ram_is_shared(RAMBlock *rb); bool qemu_ram_is_uf_zeroable(RAMBlock *rb); void qemu_ram_set_uf_zeroable(RAMBlock *rb); bool qemu_ram_is_migratable(RAMBlock *rb); void qemu_ram_set_migratable(RAMBlock *rb); void qemu_ram_unset_migratable(RAMBlock *rb); size_t qemu_ram_pagesize(RAMBlock *block); size_t qemu_ram_pagesize_largest(void); void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, hwaddr len, int is_write); static inline void cpu_physical_memory_read(hwaddr addr, void *buf, hwaddr len) { cpu_physical_memory_rw(addr, buf, len, 0); } static inline void cpu_physical_memory_write(hwaddr addr, const void *buf, hwaddr len) { cpu_physical_memory_rw(addr, (void *)buf, len, 1); } void *cpu_physical_memory_map(hwaddr addr, hwaddr *plen, int is_write); void cpu_physical_memory_unmap(void *buffer, hwaddr len, int is_write, hwaddr access_len); void cpu_register_map_client(QEMUBH *bh); void cpu_unregister_map_client(QEMUBH *bh); bool cpu_physical_memory_is_io(hwaddr phys_addr); /* Coalesced MMIO regions are areas where write operations can be reordered. * This usually implies that write operations are side-effect free. This allows * batching which can make a major impact on performance when using * virtualization. */ void qemu_flush_coalesced_mmio_buffer(void); void cpu_flush_icache_range(hwaddr start, hwaddr len); extern struct MemoryRegion io_mem_rom; extern struct MemoryRegion io_mem_notdirty; typedef int (RAMBlockIterFunc)(const char *block_name, void *host_addr, ram_addr_t offset, ram_addr_t length, void *opaque); int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque); int qemu_ram_foreach_migratable_block(RAMBlockIterFunc func, void *opaque); int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length); #endif #endif /* CPU_COMMON_H */