/* * CPU interfaces that are target independent. * * Copyright (c) 2003 Fabrice Bellard * * SPDX-License-Identifier: LGPL-2.1+ */ #ifndef CPU_COMMON_H #define CPU_COMMON_H #include "exec/vaddr.h" #ifndef CONFIG_USER_ONLY #include "exec/hwaddr.h" #endif #include "hw/core/cpu.h" #include "tcg/debug-assert.h" #include "exec/page-protection.h" #define EXCP_INTERRUPT 0x10000 /* async interruption */ #define EXCP_HLT 0x10001 /* hlt instruction reached */ #define EXCP_DEBUG 0x10002 /* cpu stopped after a breakpoint or singlestep */ #define EXCP_HALTED 0x10003 /* cpu is halted (waiting for external event) */ #define EXCP_YIELD 0x10004 /* cpu wants to yield timeslice to another */ #define EXCP_ATOMIC 0x10005 /* stop-the-world and emulate atomic */ void cpu_exec_init_all(void); void cpu_exec_step_atomic(CPUState *cpu); #define REAL_HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_real_host_page_size()) /* The CPU list lock nests outside page_(un)lock or mmap_(un)lock */ extern QemuMutex qemu_cpu_list_lock; void qemu_init_cpu_list(void); void cpu_list_lock(void); void cpu_list_unlock(void); unsigned int cpu_list_generation_id_get(void); void tcg_iommu_init_notifier_list(CPUState *cpu); void tcg_iommu_free_notifier_list(CPUState *cpu); #if !defined(CONFIG_USER_ONLY) enum device_endian { DEVICE_NATIVE_ENDIAN, DEVICE_BIG_ENDIAN, DEVICE_LITTLE_ENDIAN, }; #if HOST_BIG_ENDIAN #define DEVICE_HOST_ENDIAN DEVICE_BIG_ENDIAN #else #define DEVICE_HOST_ENDIAN DEVICE_LITTLE_ENDIAN #endif /* address in the RAM (different from a physical address) */ #if defined(CONFIG_XEN_BACKEND) typedef uint64_t ram_addr_t; # define RAM_ADDR_MAX UINT64_MAX # define RAM_ADDR_FMT "%" PRIx64 #else typedef uintptr_t ram_addr_t; # define RAM_ADDR_MAX UINTPTR_MAX # define RAM_ADDR_FMT "%" PRIxPTR #endif /* memory API */ void qemu_ram_remap(ram_addr_t addr, ram_addr_t length); /* This should not be used by devices. */ ram_addr_t qemu_ram_addr_from_host(void *ptr); ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr); RAMBlock *qemu_ram_block_by_name(const char *name); /* * Translates a host ptr back to a RAMBlock and an offset in that RAMBlock. * * @ptr: The host pointer to translate. * @round_offset: Whether to round the result offset down to a target page * @offset: Will be set to the offset within the returned RAMBlock. * * Returns: RAMBlock (or NULL if not found) * * By the time this function returns, the returned pointer is not protected * by RCU anymore. If the caller is not within an RCU critical section and * does not hold the BQL, it must have other means of protecting the * pointer, such as a reference to the memory region that owns the RAMBlock. */ RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, ram_addr_t *offset); ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host); void qemu_ram_set_idstr(RAMBlock *block, const char *name, DeviceState *dev); void qemu_ram_unset_idstr(RAMBlock *block); const char *qemu_ram_get_idstr(RAMBlock *rb); void *qemu_ram_get_host_addr(RAMBlock *rb); ram_addr_t qemu_ram_get_offset(RAMBlock *rb); ram_addr_t qemu_ram_get_used_length(RAMBlock *rb); ram_addr_t qemu_ram_get_max_length(RAMBlock *rb); bool qemu_ram_is_shared(RAMBlock *rb); bool qemu_ram_is_noreserve(RAMBlock *rb); bool qemu_ram_is_uf_zeroable(RAMBlock *rb); void qemu_ram_set_uf_zeroable(RAMBlock *rb); bool qemu_ram_is_migratable(RAMBlock *rb); void qemu_ram_set_migratable(RAMBlock *rb); void qemu_ram_unset_migratable(RAMBlock *rb); bool qemu_ram_is_named_file(RAMBlock *rb); int qemu_ram_get_fd(RAMBlock *rb); size_t qemu_ram_pagesize(RAMBlock *block); size_t qemu_ram_pagesize_largest(void); /** * cpu_address_space_init: * @cpu: CPU to add this address space to * @asidx: integer index of this address space * @prefix: prefix to be used as name of address space * @mr: the root memory region of address space * * Add the specified address space to the CPU's cpu_ases list. * The address space added with @asidx 0 is the one used for the * convenience pointer cpu->as. * The target-specific code which registers ASes is responsible * for defining what semantics address space 0, 1, 2, etc have. * * Before the first call to this function, the caller must set * cpu->num_ases to the total number of address spaces it needs * to support. * * Note that with KVM only one address space is supported. */ void cpu_address_space_init(CPUState *cpu, int asidx, const char *prefix, MemoryRegion *mr); void cpu_physical_memory_rw(hwaddr addr, void *buf, hwaddr len, bool is_write); static inline void cpu_physical_memory_read(hwaddr addr, void *buf, hwaddr len) { cpu_physical_memory_rw(addr, buf, len, false); } static inline void cpu_physical_memory_write(hwaddr addr, const void *buf, hwaddr len) { cpu_physical_memory_rw(addr, (void *)buf, len, true); } void *cpu_physical_memory_map(hwaddr addr, hwaddr *plen, bool is_write); void cpu_physical_memory_unmap(void *buffer, hwaddr len, bool is_write, hwaddr access_len); bool cpu_physical_memory_is_io(hwaddr phys_addr); /* Coalesced MMIO regions are areas where write operations can be reordered. * This usually implies that write operations are side-effect free. This allows * batching which can make a major impact on performance when using * virtualization. */ void qemu_flush_coalesced_mmio_buffer(void); void cpu_flush_icache_range(hwaddr start, hwaddr len); typedef int (RAMBlockIterFunc)(RAMBlock *rb, void *opaque); int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque); int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length); int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start, size_t length); #endif /* Returns: 0 on success, -1 on error */ int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, void *ptr, size_t len, bool is_write); /* vl.c */ void list_cpus(void); #ifdef CONFIG_TCG bool tcg_cflags_has(CPUState *cpu, uint32_t flags); void tcg_cflags_set(CPUState *cpu, uint32_t flags); /* current cflags for hashing/comparison */ uint32_t curr_cflags(CPUState *cpu); /** * cpu_unwind_state_data: * @cpu: the cpu context * @host_pc: the host pc within the translation * @data: output data * * Attempt to load the the unwind state for a host pc occurring in * translated code. If @host_pc is not in translated code, the * function returns false; otherwise @data is loaded. * This is the same unwind info as given to restore_state_to_opc. */ bool cpu_unwind_state_data(CPUState *cpu, uintptr_t host_pc, uint64_t *data); /** * cpu_restore_state: * @cpu: the cpu context * @host_pc: the host pc within the translation * @return: true if state was restored, false otherwise * * Attempt to restore the state for a fault occurring in translated * code. If @host_pc is not in translated code no state is * restored and the function returns false. */ bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc); G_NORETURN void cpu_loop_exit_noexc(CPUState *cpu); G_NORETURN void cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc); #endif /* CONFIG_TCG */ G_NORETURN void cpu_loop_exit(CPUState *cpu); G_NORETURN void cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc); /* accel/tcg/cpu-exec.c */ int cpu_exec(CPUState *cpu); /** * env_archcpu(env) * @env: The architecture environment * * Return the ArchCPU associated with the environment. */ static inline ArchCPU *env_archcpu(CPUArchState *env) { return (void *)env - sizeof(CPUState); } /** * env_cpu(env) * @env: The architecture environment * * Return the CPUState associated with the environment. */ static inline CPUState *env_cpu(CPUArchState *env) { return (void *)env - sizeof(CPUState); } #ifndef CONFIG_USER_ONLY /** * cpu_mmu_index: * @env: The cpu environment * @ifetch: True for code access, false for data access. * * Return the core mmu index for the current translation regime. * This function is used by generic TCG code paths. * * The user-only version of this function is inline in cpu-all.h, * where it always returns MMU_USER_IDX. */ static inline int cpu_mmu_index(CPUState *cs, bool ifetch) { int ret = cs->cc->mmu_index(cs, ifetch); tcg_debug_assert(ret >= 0 && ret < NB_MMU_MODES); return ret; } #endif /* !CONFIG_USER_ONLY */ #endif /* CPU_COMMON_H */