#include "qemu/osdep.h" #include "qemu/units.h" #include "qapi/error.h" #include "exec/target_page.h" #include "trace.h" #include "hw/pci/pci_host.h" #include "hw/xen/xen-hvm-common.h" #include "hw/xen/xen-bus.h" #include "hw/boards.h" #include "hw/xen/arch_hvm.h" MemoryRegion xen_memory, xen_grants; /* Check for any kind of xen memory, foreign mappings or grants. */ bool xen_mr_is_memory(MemoryRegion *mr) { return mr == &xen_memory || mr == &xen_grants; } /* Check specifically for grants. */ bool xen_mr_is_grants(MemoryRegion *mr) { return mr == &xen_grants; } void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr, Error **errp) { unsigned target_page_bits = qemu_target_page_bits(); unsigned long nr_pfn; xen_pfn_t *pfn_list; int i; if (runstate_check(RUN_STATE_INMIGRATE)) { /* RAM already populated in Xen */ warn_report("%s: do not alloc "RAM_ADDR_FMT " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE", __func__, size, ram_addr); return; } if (xen_mr_is_memory(mr)) { return; } trace_xen_ram_alloc(ram_addr, size); nr_pfn = size >> target_page_bits; pfn_list = g_new(xen_pfn_t, nr_pfn); for (i = 0; i < nr_pfn; i++) { pfn_list[i] = (ram_addr >> target_page_bits) + i; } if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) { error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT, ram_addr); } g_free(pfn_list); } static void xen_set_memory(struct MemoryListener *listener, MemoryRegionSection *section, bool add) { XenIOState *state = container_of(listener, XenIOState, memory_listener); if (xen_mr_is_memory(section->mr)) { return; } else { if (add) { xen_map_memory_section(xen_domid, state->ioservid, section); } else { xen_unmap_memory_section(xen_domid, state->ioservid, section); } } arch_xen_set_memory(state, section, add); } void xen_region_add(MemoryListener *listener, MemoryRegionSection *section) { memory_region_ref(section->mr); xen_set_memory(listener, section, true); } void xen_region_del(MemoryListener *listener, MemoryRegionSection *section) { xen_set_memory(listener, section, false); memory_region_unref(section->mr); } void xen_io_add(MemoryListener *listener, MemoryRegionSection *section) { XenIOState *state = container_of(listener, XenIOState, io_listener); MemoryRegion *mr = section->mr; if (mr->ops == &unassigned_io_ops) { return; } memory_region_ref(mr); xen_map_io_section(xen_domid, state->ioservid, section); } void xen_io_del(MemoryListener *listener, MemoryRegionSection *section) { XenIOState *state = container_of(listener, XenIOState, io_listener); MemoryRegion *mr = section->mr; if (mr->ops == &unassigned_io_ops) { return; } xen_unmap_io_section(xen_domid, state->ioservid, section); memory_region_unref(mr); } void xen_device_realize(DeviceListener *listener, DeviceState *dev) { XenIOState *state = container_of(listener, XenIOState, device_listener); if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { PCIDevice *pci_dev = PCI_DEVICE(dev); XenPciDevice *xendev = g_new(XenPciDevice, 1); xendev->pci_dev = pci_dev; xendev->sbdf = PCI_BUILD_BDF(pci_dev_bus_num(pci_dev), pci_dev->devfn); QLIST_INSERT_HEAD(&state->dev_list, xendev, entry); xen_map_pcidev(xen_domid, state->ioservid, pci_dev); } } void xen_device_unrealize(DeviceListener *listener, DeviceState *dev) { XenIOState *state = container_of(listener, XenIOState, device_listener); if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { PCIDevice *pci_dev = PCI_DEVICE(dev); XenPciDevice *xendev, *next; xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev); QLIST_FOREACH_SAFE(xendev, &state->dev_list, entry, next) { if (xendev->pci_dev == pci_dev) { QLIST_REMOVE(xendev, entry); g_free(xendev); break; } } } } MemoryListener xen_io_listener = { .name = "xen-io", .region_add = xen_io_add, .region_del = xen_io_del, .priority = MEMORY_LISTENER_PRIORITY_ACCEL, }; DeviceListener xen_device_listener = { .realize = xen_device_realize, .unrealize = xen_device_unrealize, }; /* get the ioreq packets from share mem */ static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu) { ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu); if (req->state != STATE_IOREQ_READY) { trace_cpu_get_ioreq_from_shared_memory_req_not_ready(req->state, req->data_is_ptr, req->addr, req->data, req->count, req->size); return NULL; } xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */ req->state = STATE_IOREQ_INPROCESS; return req; } /* use poll to get the port notification */ /* ioreq_vec--out,the */ /* retval--the number of ioreq packet */ static ioreq_t *cpu_get_ioreq(XenIOState *state) { MachineState *ms = MACHINE(qdev_get_machine()); unsigned int max_cpus = ms->smp.max_cpus; int i; evtchn_port_t port; port = qemu_xen_evtchn_pending(state->xce_handle); if (port == state->bufioreq_local_port) { timer_mod(state->buffered_io_timer, BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); return NULL; } if (port != -1) { for (i = 0; i < max_cpus; i++) { if (state->ioreq_local_port[i] == port) { break; } } if (i == max_cpus) { hw_error("Fatal error while trying to get io event!\n"); } /* unmask the wanted port again */ qemu_xen_evtchn_unmask(state->xce_handle, port); /* get the io packet from shared memory */ state->send_vcpu = i; return cpu_get_ioreq_from_shared_memory(state, i); } /* read error or read nothing */ return NULL; } static uint32_t do_inp(uint32_t addr, unsigned long size) { switch (size) { case 1: return cpu_inb(addr); case 2: return cpu_inw(addr); case 4: return cpu_inl(addr); default: hw_error("inp: bad size: %04x %lx", addr, size); } } static void do_outp(uint32_t addr, unsigned long size, uint32_t val) { switch (size) { case 1: return cpu_outb(addr, val); case 2: return cpu_outw(addr, val); case 4: return cpu_outl(addr, val); default: hw_error("outp: bad size: %04x %lx", addr, size); } } /* * Helper functions which read/write an object from/to physical guest * memory, as part of the implementation of an ioreq. * * Equivalent to * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i, * val, req->size, 0/1) * except without the integer overflow problems. */ static void rw_phys_req_item(hwaddr addr, ioreq_t *req, uint32_t i, void *val, int rw) { /* Do everything unsigned so overflow just results in a truncated result * and accesses to undesired parts of guest memory, which is up * to the guest */ hwaddr offset = (hwaddr)req->size * i; if (req->df) { addr -= offset; } else { addr += offset; } cpu_physical_memory_rw(addr, val, req->size, rw); } static inline void read_phys_req_item(hwaddr addr, ioreq_t *req, uint32_t i, void *val) { rw_phys_req_item(addr, req, i, val, 0); } static inline void write_phys_req_item(hwaddr addr, ioreq_t *req, uint32_t i, void *val) { rw_phys_req_item(addr, req, i, val, 1); } void cpu_ioreq_pio(ioreq_t *req) { uint32_t i; trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr, req->data, req->count, req->size); if (req->size > sizeof(uint32_t)) { hw_error("PIO: bad size (%u)", req->size); } if (req->dir == IOREQ_READ) { if (!req->data_is_ptr) { req->data = do_inp(req->addr, req->size); trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr, req->size); } else { uint32_t tmp; for (i = 0; i < req->count; i++) { tmp = do_inp(req->addr, req->size); write_phys_req_item(req->data, req, i, &tmp); } } } else if (req->dir == IOREQ_WRITE) { if (!req->data_is_ptr) { trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr, req->size); do_outp(req->addr, req->size, req->data); } else { for (i = 0; i < req->count; i++) { uint32_t tmp = 0; read_phys_req_item(req->data, req, i, &tmp); do_outp(req->addr, req->size, tmp); } } } } static void cpu_ioreq_move(ioreq_t *req) { uint32_t i; trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr, req->data, req->count, req->size); if (req->size > sizeof(req->data)) { hw_error("MMIO: bad size (%u)", req->size); } if (!req->data_is_ptr) { if (req->dir == IOREQ_READ) { for (i = 0; i < req->count; i++) { read_phys_req_item(req->addr, req, i, &req->data); } } else if (req->dir == IOREQ_WRITE) { for (i = 0; i < req->count; i++) { write_phys_req_item(req->addr, req, i, &req->data); } } } else { uint64_t tmp; if (req->dir == IOREQ_READ) { for (i = 0; i < req->count; i++) { read_phys_req_item(req->addr, req, i, &tmp); write_phys_req_item(req->data, req, i, &tmp); } } else if (req->dir == IOREQ_WRITE) { for (i = 0; i < req->count; i++) { read_phys_req_item(req->data, req, i, &tmp); write_phys_req_item(req->addr, req, i, &tmp); } } } } static void cpu_ioreq_config(XenIOState *state, ioreq_t *req) { uint32_t sbdf = req->addr >> 32; uint32_t reg = req->addr; XenPciDevice *xendev; if (req->size != sizeof(uint8_t) && req->size != sizeof(uint16_t) && req->size != sizeof(uint32_t)) { hw_error("PCI config access: bad size (%u)", req->size); } if (req->count != 1) { hw_error("PCI config access: bad count (%u)", req->count); } QLIST_FOREACH(xendev, &state->dev_list, entry) { if (xendev->sbdf != sbdf) { continue; } if (!req->data_is_ptr) { if (req->dir == IOREQ_READ) { req->data = pci_host_config_read_common( xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, req->size); trace_cpu_ioreq_config_read(req, xendev->sbdf, reg, req->size, req->data); } else if (req->dir == IOREQ_WRITE) { trace_cpu_ioreq_config_write(req, xendev->sbdf, reg, req->size, req->data); pci_host_config_write_common( xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, req->data, req->size); } } else { uint32_t tmp; if (req->dir == IOREQ_READ) { tmp = pci_host_config_read_common( xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, req->size); trace_cpu_ioreq_config_read(req, xendev->sbdf, reg, req->size, tmp); write_phys_req_item(req->data, req, 0, &tmp); } else if (req->dir == IOREQ_WRITE) { read_phys_req_item(req->data, req, 0, &tmp); trace_cpu_ioreq_config_write(req, xendev->sbdf, reg, req->size, tmp); pci_host_config_write_common( xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE, tmp, req->size); } } } } static void handle_ioreq(XenIOState *state, ioreq_t *req) { trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr, req->addr, req->data, req->count, req->size); if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) && (req->size < sizeof (target_ulong))) { req->data &= ((target_ulong) 1 << (8 * req->size)) - 1; } if (req->dir == IOREQ_WRITE) trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr, req->addr, req->data, req->count, req->size); switch (req->type) { case IOREQ_TYPE_PIO: cpu_ioreq_pio(req); break; case IOREQ_TYPE_COPY: cpu_ioreq_move(req); break; case IOREQ_TYPE_TIMEOFFSET: break; case IOREQ_TYPE_INVALIDATE: xen_invalidate_map_cache(); break; case IOREQ_TYPE_PCI_CONFIG: cpu_ioreq_config(state, req); break; default: arch_handle_ioreq(state, req); } if (req->dir == IOREQ_READ) { trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr, req->addr, req->data, req->count, req->size); } } static unsigned int handle_buffered_iopage(XenIOState *state) { buffered_iopage_t *buf_page = state->buffered_io_page; buf_ioreq_t *buf_req = NULL; unsigned int handled = 0; ioreq_t req; int qw; if (!buf_page) { return 0; } memset(&req, 0x00, sizeof(req)); req.state = STATE_IOREQ_READY; req.count = 1; req.dir = IOREQ_WRITE; do { uint32_t rdptr = buf_page->read_pointer, wrptr; xen_rmb(); wrptr = buf_page->write_pointer; xen_rmb(); if (rdptr != buf_page->read_pointer) { continue; } if (rdptr == wrptr) { break; } buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM]; req.size = 1U << buf_req->size; req.addr = buf_req->addr; req.data = buf_req->data; req.type = buf_req->type; xen_rmb(); qw = (req.size == 8); if (qw) { if (rdptr + 1 == wrptr) { hw_error("Incomplete quad word buffered ioreq"); } buf_req = &buf_page->buf_ioreq[(rdptr + 1) % IOREQ_BUFFER_SLOT_NUM]; req.data |= ((uint64_t)buf_req->data) << 32; xen_rmb(); } handle_ioreq(state, &req); /* Only req.data may get updated by handle_ioreq(), albeit even that * should not happen as such data would never make it to the guest (we * can only usefully see writes here after all). */ assert(req.state == STATE_IOREQ_READY); assert(req.count == 1); assert(req.dir == IOREQ_WRITE); assert(!req.data_is_ptr); qatomic_add(&buf_page->read_pointer, qw + 1); handled += qw + 1; } while (handled < IOREQ_BUFFER_SLOT_NUM); return handled; } static void handle_buffered_io(void *opaque) { unsigned int handled; XenIOState *state = opaque; handled = handle_buffered_iopage(state); if (handled >= IOREQ_BUFFER_SLOT_NUM) { /* We handled a full page of ioreqs. Schedule a timer to continue * processing while giving other stuff a chance to run. */ timer_mod(state->buffered_io_timer, qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); } else if (handled == 0) { timer_del(state->buffered_io_timer); qemu_xen_evtchn_unmask(state->xce_handle, state->bufioreq_local_port); } else { timer_mod(state->buffered_io_timer, BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); } } static void cpu_handle_ioreq(void *opaque) { XenIOState *state = opaque; ioreq_t *req = cpu_get_ioreq(state); handle_buffered_iopage(state); if (req) { ioreq_t copy = *req; xen_rmb(); handle_ioreq(state, ©); req->data = copy.data; if (req->state != STATE_IOREQ_INPROCESS) { warn_report("Badness in I/O request ... not in service?!: " "%x, ptr: %x, port: %"PRIx64", " "data: %"PRIx64", count: %u, size: %u, type: %u", req->state, req->data_is_ptr, req->addr, req->data, req->count, req->size, req->type); destroy_hvm_domain(false); return; } xen_wmb(); /* Update ioreq contents /then/ update state. */ /* * We do this before we send the response so that the tools * have the opportunity to pick up on the reset before the * guest resumes and does a hlt with interrupts disabled which * causes Xen to powerdown the domain. */ if (runstate_is_running()) { ShutdownCause request; if (qemu_shutdown_requested_get()) { destroy_hvm_domain(false); } request = qemu_reset_requested_get(); if (request) { qemu_system_reset(request); destroy_hvm_domain(true); } } req->state = STATE_IORESP_READY; qemu_xen_evtchn_notify(state->xce_handle, state->ioreq_local_port[state->send_vcpu]); } } static void xen_main_loop_prepare(XenIOState *state) { int evtchn_fd = -1; if (state->xce_handle != NULL) { evtchn_fd = qemu_xen_evtchn_fd(state->xce_handle); } state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io, state); if (evtchn_fd != -1) { CPUState *cpu_state; CPU_FOREACH(cpu_state) { trace_xen_main_loop_prepare_init_cpu(cpu_state->cpu_index, cpu_state); state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state; } qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state); } } void xen_hvm_change_state_handler(void *opaque, bool running, RunState rstate) { XenIOState *state = opaque; if (running) { xen_main_loop_prepare(state); } xen_set_ioreq_server_state(xen_domid, state->ioservid, running); } void xen_exit_notifier(Notifier *n, void *data) { XenIOState *state = container_of(n, XenIOState, exit); xen_destroy_ioreq_server(xen_domid, state->ioservid); if (state->fres != NULL) { xenforeignmemory_unmap_resource(xen_fmem, state->fres); } qemu_xen_evtchn_close(state->xce_handle); xs_daemon_close(state->xenstore); } static int xen_map_ioreq_server(XenIOState *state) { void *addr = NULL; xen_pfn_t ioreq_pfn; xen_pfn_t bufioreq_pfn; evtchn_port_t bufioreq_evtchn; unsigned long num_frames = 1; unsigned long frame = 1; int rc; /* * Attempt to map using the resource API and fall back to normal * foreign mapping if this is not supported. */ QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_bufioreq != 0); QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_ioreq(0) != 1); if (state->has_bufioreq) { frame = 0; num_frames = 2; } state->fres = xenforeignmemory_map_resource(xen_fmem, xen_domid, XENMEM_resource_ioreq_server, state->ioservid, frame, num_frames, &addr, PROT_READ | PROT_WRITE, 0); if (state->fres != NULL) { trace_xen_map_resource_ioreq(state->ioservid, addr); state->shared_page = addr; if (state->has_bufioreq) { state->buffered_io_page = addr; state->shared_page = addr + XC_PAGE_SIZE; } } else if (errno != EOPNOTSUPP) { error_report("failed to map ioreq server resources: error %d handle=%p", errno, xen_xc); return -1; } /* * If we fail to map the shared page with xenforeignmemory_map_resource() * or if we're using buffered ioreqs, we need xen_get_ioreq_server_info() * to provide the the addresses to map the shared page and/or to get the * event-channel port for buffered ioreqs. */ if (state->shared_page == NULL || state->has_bufioreq) { rc = xen_get_ioreq_server_info(xen_domid, state->ioservid, (state->shared_page == NULL) ? &ioreq_pfn : NULL, (state->has_bufioreq && state->buffered_io_page == NULL) ? &bufioreq_pfn : NULL, &bufioreq_evtchn); if (rc < 0) { error_report("failed to get ioreq server info: error %d handle=%p", errno, xen_xc); return rc; } if (state->shared_page == NULL) { trace_xen_map_ioreq_server_shared_page(ioreq_pfn); state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ | PROT_WRITE, 1, &ioreq_pfn, NULL); } if (state->shared_page == NULL) { error_report("map shared IO page returned error %d handle=%p", errno, xen_xc); } if (state->has_bufioreq && state->buffered_io_page == NULL) { trace_xen_map_ioreq_server_buffered_io_page(bufioreq_pfn); state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ | PROT_WRITE, 1, &bufioreq_pfn, NULL); if (state->buffered_io_page == NULL) { error_report("map buffered IO page returned error %d", errno); return -1; } } } if (state->shared_page == NULL || (state->has_bufioreq && state->buffered_io_page == NULL)) { return -1; } trace_xen_map_ioreq_server_buffered_io_evtchn(bufioreq_evtchn); state->bufioreq_remote_port = bufioreq_evtchn; return 0; } void destroy_hvm_domain(bool reboot) { xc_interface *xc_handle; int sts; int rc; unsigned int reason = reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff; if (xen_dmod) { rc = xendevicemodel_shutdown(xen_dmod, xen_domid, reason); if (!rc) { return; } if (errno != ENOTTY /* old Xen */) { error_report("xendevicemodel_shutdown failed with error %d", errno); } /* well, try the old thing then */ } xc_handle = xc_interface_open(0, 0, 0); if (xc_handle == NULL) { trace_destroy_hvm_domain_cannot_acquire_handle(); } else { sts = xc_domain_shutdown(xc_handle, xen_domid, reason); if (sts != 0) { trace_destroy_hvm_domain_failed_action( reboot ? "reboot" : "poweroff", sts, strerror(errno) ); } else { trace_destroy_hvm_domain_action( xen_domid, reboot ? "reboot" : "poweroff" ); } xc_interface_close(xc_handle); } } void xen_shutdown_fatal_error(const char *fmt, ...) { va_list ap; va_start(ap, fmt); error_vreport(fmt, ap); va_end(ap); error_report("Will destroy the domain."); /* destroy the domain */ qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR); } static void xen_do_ioreq_register(XenIOState *state, unsigned int max_cpus, const MemoryListener *xen_memory_listener) { int i, rc; state->exit.notify = xen_exit_notifier; qemu_add_exit_notifier(&state->exit); /* * Register wake-up support in QMP query-current-machine API */ qemu_register_wakeup_support(); rc = xen_map_ioreq_server(state); if (rc < 0) { goto err; } /* Note: cpus is empty at this point in init */ state->cpu_by_vcpu_id = g_new0(CPUState *, max_cpus); rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true); if (rc < 0) { error_report("failed to enable ioreq server info: error %d handle=%p", errno, xen_xc); goto err; } state->ioreq_local_port = g_new0(evtchn_port_t, max_cpus); /* FIXME: how about if we overflow the page here? */ for (i = 0; i < max_cpus; i++) { rc = qemu_xen_evtchn_bind_interdomain(state->xce_handle, xen_domid, xen_vcpu_eport(state->shared_page, i)); if (rc == -1) { error_report("shared evtchn %d bind error %d", i, errno); goto err; } state->ioreq_local_port[i] = rc; } if (state->has_bufioreq) { rc = qemu_xen_evtchn_bind_interdomain(state->xce_handle, xen_domid, state->bufioreq_remote_port); if (rc == -1) { error_report("buffered evtchn bind error %d", errno); goto err; } state->bufioreq_local_port = rc; } /* Init RAM management */ #ifdef XEN_COMPAT_PHYSMAP xen_map_cache_init(xen_phys_offset_to_gaddr, state); #else xen_map_cache_init(NULL, state); #endif qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state); state->memory_listener = *xen_memory_listener; memory_listener_register(&state->memory_listener, &address_space_memory); state->io_listener = xen_io_listener; memory_listener_register(&state->io_listener, &address_space_io); state->device_listener = xen_device_listener; QLIST_INIT(&state->dev_list); device_listener_register(&state->device_listener); return; err: error_report("xen hardware virtual machine initialisation failed"); exit(1); } void xen_register_ioreq(XenIOState *state, unsigned int max_cpus, uint8_t handle_bufioreq, const MemoryListener *xen_memory_listener) { int rc; setup_xen_backend_ops(); state->xce_handle = qemu_xen_evtchn_open(); if (state->xce_handle == NULL) { error_report("xen: event channel open failed with error %d", errno); goto err; } state->xenstore = xs_daemon_open(); if (state->xenstore == NULL) { error_report("xen: xenstore open failed with error %d", errno); goto err; } state->has_bufioreq = handle_bufioreq != HVM_IOREQSRV_BUFIOREQ_OFF; rc = xen_create_ioreq_server(xen_domid, handle_bufioreq, &state->ioservid); if (!rc) { xen_do_ioreq_register(state, max_cpus, xen_memory_listener); } else { warn_report("xen: failed to create ioreq server"); } xen_bus_init(); return; err: error_report("xen hardware virtual machine backend registration failed"); exit(1); }