/* * Virtio Support * * Copyright IBM, Corp. 2007 * * Authors: * Anthony Liguori * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include "qapi/error.h" #include "qemu-common.h" #include "cpu.h" #include "trace.h" #include "exec/address-spaces.h" #include "qemu/error-report.h" #include "hw/virtio/virtio.h" #include "qemu/atomic.h" #include "hw/virtio/virtio-bus.h" #include "hw/virtio/virtio-access.h" #include "sysemu/dma.h" /* * The alignment to use between consumer and producer parts of vring. * x86 pagesize again. This is the default, used by transports like PCI * which don't provide a means for the guest to tell the host the alignment. */ #define VIRTIO_PCI_VRING_ALIGN 4096 typedef struct VRingDesc { uint64_t addr; uint32_t len; uint16_t flags; uint16_t next; } VRingDesc; typedef struct VRingAvail { uint16_t flags; uint16_t idx; uint16_t ring[0]; } VRingAvail; typedef struct VRingUsedElem { uint32_t id; uint32_t len; } VRingUsedElem; typedef struct VRingUsed { uint16_t flags; uint16_t idx; VRingUsedElem ring[0]; } VRingUsed; typedef struct VRingMemoryRegionCaches { struct rcu_head rcu; MemoryRegionCache desc; MemoryRegionCache avail; MemoryRegionCache used; } VRingMemoryRegionCaches; typedef struct VRing { unsigned int num; unsigned int num_default; unsigned int align; hwaddr desc; hwaddr avail; hwaddr used; VRingMemoryRegionCaches *caches; } VRing; struct VirtQueue { VRing vring; /* Next head to pop */ uint16_t last_avail_idx; /* Last avail_idx read from VQ. */ uint16_t shadow_avail_idx; uint16_t used_idx; /* Last used index value we have signalled on */ uint16_t signalled_used; /* Last used index value we have signalled on */ bool signalled_used_valid; /* Notification enabled? */ bool notification; uint16_t queue_index; unsigned int inuse; uint16_t vector; VirtIOHandleOutput handle_output; VirtIOHandleAIOOutput handle_aio_output; VirtIODevice *vdev; EventNotifier guest_notifier; EventNotifier host_notifier; QLIST_ENTRY(VirtQueue) node; }; static void virtio_free_region_cache(VRingMemoryRegionCaches *caches) { if (!caches) { return; } address_space_cache_destroy(&caches->desc); address_space_cache_destroy(&caches->avail); address_space_cache_destroy(&caches->used); g_free(caches); } static void virtio_init_region_cache(VirtIODevice *vdev, int n) { VirtQueue *vq = &vdev->vq[n]; VRingMemoryRegionCaches *old = vq->vring.caches; VRingMemoryRegionCaches *new; hwaddr addr, size; int event_size; int64_t len; event_size = virtio_vdev_has_feature(vq->vdev, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0; addr = vq->vring.desc; if (!addr) { return; } new = g_new0(VRingMemoryRegionCaches, 1); size = virtio_queue_get_desc_size(vdev, n); len = address_space_cache_init(&new->desc, vdev->dma_as, addr, size, false); if (len < size) { virtio_error(vdev, "Cannot map desc"); goto err_desc; } size = virtio_queue_get_used_size(vdev, n) + event_size; len = address_space_cache_init(&new->used, vdev->dma_as, vq->vring.used, size, true); if (len < size) { virtio_error(vdev, "Cannot map used"); goto err_used; } size = virtio_queue_get_avail_size(vdev, n) + event_size; len = address_space_cache_init(&new->avail, vdev->dma_as, vq->vring.avail, size, false); if (len < size) { virtio_error(vdev, "Cannot map avail"); goto err_avail; } atomic_rcu_set(&vq->vring.caches, new); if (old) { call_rcu(old, virtio_free_region_cache, rcu); } return; err_avail: address_space_cache_destroy(&new->used); err_used: address_space_cache_destroy(&new->desc); err_desc: g_free(new); } /* virt queue functions */ void virtio_queue_update_rings(VirtIODevice *vdev, int n) { VRing *vring = &vdev->vq[n].vring; if (!vring->num || !vring->desc || !vring->align) { /* not yet setup -> nothing to do */ return; } vring->avail = vring->desc + vring->num * sizeof(VRingDesc); vring->used = vring_align(vring->avail + offsetof(VRingAvail, ring[vring->num]), vring->align); virtio_init_region_cache(vdev, n); } /* Called within rcu_read_lock(). */ static void vring_desc_read(VirtIODevice *vdev, VRingDesc *desc, MemoryRegionCache *cache, int i) { address_space_read_cached(cache, i * sizeof(VRingDesc), desc, sizeof(VRingDesc)); virtio_tswap64s(vdev, &desc->addr); virtio_tswap32s(vdev, &desc->len); virtio_tswap16s(vdev, &desc->flags); virtio_tswap16s(vdev, &desc->next); } static VRingMemoryRegionCaches *vring_get_region_caches(struct VirtQueue *vq) { VRingMemoryRegionCaches *caches = atomic_rcu_read(&vq->vring.caches); assert(caches != NULL); return caches; } /* Called within rcu_read_lock(). */ static inline uint16_t vring_avail_flags(VirtQueue *vq) { VRingMemoryRegionCaches *caches = vring_get_region_caches(vq); hwaddr pa = offsetof(VRingAvail, flags); return virtio_lduw_phys_cached(vq->vdev, &caches->avail, pa); } /* Called within rcu_read_lock(). */ static inline uint16_t vring_avail_idx(VirtQueue *vq) { VRingMemoryRegionCaches *caches = vring_get_region_caches(vq); hwaddr pa = offsetof(VRingAvail, idx); vq->shadow_avail_idx = virtio_lduw_phys_cached(vq->vdev, &caches->avail, pa); return vq->shadow_avail_idx; } /* Called within rcu_read_lock(). */ static inline uint16_t vring_avail_ring(VirtQueue *vq, int i) { VRingMemoryRegionCaches *caches = vring_get_region_caches(vq); hwaddr pa = offsetof(VRingAvail, ring[i]); return virtio_lduw_phys_cached(vq->vdev, &caches->avail, pa); } /* Called within rcu_read_lock(). */ static inline uint16_t vring_get_used_event(VirtQueue *vq) { return vring_avail_ring(vq, vq->vring.num); } /* Called within rcu_read_lock(). */ static inline void vring_used_write(VirtQueue *vq, VRingUsedElem *uelem, int i) { VRingMemoryRegionCaches *caches = vring_get_region_caches(vq); hwaddr pa = offsetof(VRingUsed, ring[i]); virtio_tswap32s(vq->vdev, &uelem->id); virtio_tswap32s(vq->vdev, &uelem->len); address_space_write_cached(&caches->used, pa, uelem, sizeof(VRingUsedElem)); address_space_cache_invalidate(&caches->used, pa, sizeof(VRingUsedElem)); } /* Called within rcu_read_lock(). */ static uint16_t vring_used_idx(VirtQueue *vq) { VRingMemoryRegionCaches *caches = vring_get_region_caches(vq); hwaddr pa = offsetof(VRingUsed, idx); return virtio_lduw_phys_cached(vq->vdev, &caches->used, pa); } /* Called within rcu_read_lock(). */ static inline void vring_used_idx_set(VirtQueue *vq, uint16_t val) { VRingMemoryRegionCaches *caches = vring_get_region_caches(vq); hwaddr pa = offsetof(VRingUsed, idx); virtio_stw_phys_cached(vq->vdev, &caches->used, pa, val); address_space_cache_invalidate(&caches->used, pa, sizeof(val)); vq->used_idx = val; } /* Called within rcu_read_lock(). */ static inline void vring_used_flags_set_bit(VirtQueue *vq, int mask) { VRingMemoryRegionCaches *caches = vring_get_region_caches(vq); VirtIODevice *vdev = vq->vdev; hwaddr pa = offsetof(VRingUsed, flags); uint16_t flags = virtio_lduw_phys_cached(vq->vdev, &caches->used, pa); virtio_stw_phys_cached(vdev, &caches->used, pa, flags | mask); address_space_cache_invalidate(&caches->used, pa, sizeof(flags)); } /* Called within rcu_read_lock(). */ static inline void vring_used_flags_unset_bit(VirtQueue *vq, int mask) { VRingMemoryRegionCaches *caches = vring_get_region_caches(vq); VirtIODevice *vdev = vq->vdev; hwaddr pa = offsetof(VRingUsed, flags); uint16_t flags = virtio_lduw_phys_cached(vq->vdev, &caches->used, pa); virtio_stw_phys_cached(vdev, &caches->used, pa, flags & ~mask); address_space_cache_invalidate(&caches->used, pa, sizeof(flags)); } /* Called within rcu_read_lock(). */ static inline void vring_set_avail_event(VirtQueue *vq, uint16_t val) { VRingMemoryRegionCaches *caches; hwaddr pa; if (!vq->notification) { return; } caches = vring_get_region_caches(vq); pa = offsetof(VRingUsed, ring[vq->vring.num]); virtio_stw_phys_cached(vq->vdev, &caches->used, pa, val); address_space_cache_invalidate(&caches->used, pa, sizeof(val)); } void virtio_queue_set_notification(VirtQueue *vq, int enable) { vq->notification = enable; if (!vq->vring.desc) { return; } rcu_read_lock(); if (virtio_vdev_has_feature(vq->vdev, VIRTIO_RING_F_EVENT_IDX)) { vring_set_avail_event(vq, vring_avail_idx(vq)); } else if (enable) { vring_used_flags_unset_bit(vq, VRING_USED_F_NO_NOTIFY); } else { vring_used_flags_set_bit(vq, VRING_USED_F_NO_NOTIFY); } if (enable) { /* Expose avail event/used flags before caller checks the avail idx. */ smp_mb(); } rcu_read_unlock(); } int virtio_queue_ready(VirtQueue *vq) { return vq->vring.avail != 0; } /* Fetch avail_idx from VQ memory only when we really need to know if * guest has added some buffers. * Called within rcu_read_lock(). */ static int virtio_queue_empty_rcu(VirtQueue *vq) { if (unlikely(!vq->vring.avail)) { return 1; } if (vq->shadow_avail_idx != vq->last_avail_idx) { return 0; } return vring_avail_idx(vq) == vq->last_avail_idx; } int virtio_queue_empty(VirtQueue *vq) { bool empty; if (unlikely(!vq->vring.avail)) { return 1; } if (vq->shadow_avail_idx != vq->last_avail_idx) { return 0; } rcu_read_lock(); empty = vring_avail_idx(vq) == vq->last_avail_idx; rcu_read_unlock(); return empty; } static void virtqueue_unmap_sg(VirtQueue *vq, const VirtQueueElement *elem, unsigned int len) { AddressSpace *dma_as = vq->vdev->dma_as; unsigned int offset; int i; offset = 0; for (i = 0; i < elem->in_num; i++) { size_t size = MIN(len - offset, elem->in_sg[i].iov_len); dma_memory_unmap(dma_as, elem->in_sg[i].iov_base, elem->in_sg[i].iov_len, DMA_DIRECTION_FROM_DEVICE, size); offset += size; } for (i = 0; i < elem->out_num; i++) dma_memory_unmap(dma_as, elem->out_sg[i].iov_base, elem->out_sg[i].iov_len, DMA_DIRECTION_TO_DEVICE, elem->out_sg[i].iov_len); } /* virtqueue_detach_element: * @vq: The #VirtQueue * @elem: The #VirtQueueElement * @len: number of bytes written * * Detach the element from the virtqueue. This function is suitable for device * reset or other situations where a #VirtQueueElement is simply freed and will * not be pushed or discarded. */ void virtqueue_detach_element(VirtQueue *vq, const VirtQueueElement *elem, unsigned int len) { vq->inuse--; virtqueue_unmap_sg(vq, elem, len); } /* virtqueue_unpop: * @vq: The #VirtQueue * @elem: The #VirtQueueElement * @len: number of bytes written * * Pretend the most recent element wasn't popped from the virtqueue. The next * call to virtqueue_pop() will refetch the element. */ void virtqueue_unpop(VirtQueue *vq, const VirtQueueElement *elem, unsigned int len) { vq->last_avail_idx--; virtqueue_detach_element(vq, elem, len); } /* virtqueue_rewind: * @vq: The #VirtQueue * @num: Number of elements to push back * * Pretend that elements weren't popped from the virtqueue. The next * virtqueue_pop() will refetch the oldest element. * * Use virtqueue_unpop() instead if you have a VirtQueueElement. * * Returns: true on success, false if @num is greater than the number of in use * elements. */ bool virtqueue_rewind(VirtQueue *vq, unsigned int num) { if (num > vq->inuse) { return false; } vq->last_avail_idx -= num; vq->inuse -= num; return true; } /* Called within rcu_read_lock(). */ void virtqueue_fill(VirtQueue *vq, const VirtQueueElement *elem, unsigned int len, unsigned int idx) { VRingUsedElem uelem; trace_virtqueue_fill(vq, elem, len, idx); virtqueue_unmap_sg(vq, elem, len); if (unlikely(vq->vdev->broken)) { return; } if (unlikely(!vq->vring.used)) { return; } idx = (idx + vq->used_idx) % vq->vring.num; uelem.id = elem->index; uelem.len = len; vring_used_write(vq, &uelem, idx); } /* Called within rcu_read_lock(). */ void virtqueue_flush(VirtQueue *vq, unsigned int count) { uint16_t old, new; if (unlikely(vq->vdev->broken)) { vq->inuse -= count; return; } if (unlikely(!vq->vring.used)) { return; } /* Make sure buffer is written before we update index. */ smp_wmb(); trace_virtqueue_flush(vq, count); old = vq->used_idx; new = old + count; vring_used_idx_set(vq, new); vq->inuse -= count; if (unlikely((int16_t)(new - vq->signalled_used) < (uint16_t)(new - old))) vq->signalled_used_valid = false; } void virtqueue_push(VirtQueue *vq, const VirtQueueElement *elem, unsigned int len) { rcu_read_lock(); virtqueue_fill(vq, elem, len, 0); virtqueue_flush(vq, 1); rcu_read_unlock(); } /* Called within rcu_read_lock(). */ static int virtqueue_num_heads(VirtQueue *vq, unsigned int idx) { uint16_t num_heads = vring_avail_idx(vq) - idx; /* Check it isn't doing very strange things with descriptor numbers. */ if (num_heads > vq->vring.num) { virtio_error(vq->vdev, "Guest moved used index from %u to %u", idx, vq->shadow_avail_idx); return -EINVAL; } /* On success, callers read a descriptor at vq->last_avail_idx. * Make sure descriptor read does not bypass avail index read. */ if (num_heads) { smp_rmb(); } return num_heads; } /* Called within rcu_read_lock(). */ static bool virtqueue_get_head(VirtQueue *vq, unsigned int idx, unsigned int *head) { /* Grab the next descriptor number they're advertising, and increment * the index we've seen. */ *head = vring_avail_ring(vq, idx % vq->vring.num); /* If their number is silly, that's a fatal mistake. */ if (*head >= vq->vring.num) { virtio_error(vq->vdev, "Guest says index %u is available", *head); return false; } return true; } enum { VIRTQUEUE_READ_DESC_ERROR = -1, VIRTQUEUE_READ_DESC_DONE = 0, /* end of chain */ VIRTQUEUE_READ_DESC_MORE = 1, /* more buffers in chain */ }; static int virtqueue_read_next_desc(VirtIODevice *vdev, VRingDesc *desc, MemoryRegionCache *desc_cache, unsigned int max, unsigned int *next) { /* If this descriptor says it doesn't chain, we're done. */ if (!(desc->flags & VRING_DESC_F_NEXT)) { return VIRTQUEUE_READ_DESC_DONE; } /* Check they're not leading us off end of descriptors. */ *next = desc->next; /* Make sure compiler knows to grab that: we don't want it changing! */ smp_wmb(); if (*next >= max) { virtio_error(vdev, "Desc next is %u", *next); return VIRTQUEUE_READ_DESC_ERROR; } vring_desc_read(vdev, desc, desc_cache, *next); return VIRTQUEUE_READ_DESC_MORE; } void virtqueue_get_avail_bytes(VirtQueue *vq, unsigned int *in_bytes, unsigned int *out_bytes, unsigned max_in_bytes, unsigned max_out_bytes) { VirtIODevice *vdev = vq->vdev; unsigned int max, idx; unsigned int total_bufs, in_total, out_total; VRingMemoryRegionCaches *caches; MemoryRegionCache indirect_desc_cache = MEMORY_REGION_CACHE_INVALID; int64_t len = 0; int rc; if (unlikely(!vq->vring.desc)) { if (in_bytes) { *in_bytes = 0; } if (out_bytes) { *out_bytes = 0; } return; } rcu_read_lock(); idx = vq->last_avail_idx; total_bufs = in_total = out_total = 0; max = vq->vring.num; caches = vring_get_region_caches(vq); if (caches->desc.len < max * sizeof(VRingDesc)) { virtio_error(vdev, "Cannot map descriptor ring"); goto err; } while ((rc = virtqueue_num_heads(vq, idx)) > 0) { MemoryRegionCache *desc_cache = &caches->desc; unsigned int num_bufs; VRingDesc desc; unsigned int i; num_bufs = total_bufs; if (!virtqueue_get_head(vq, idx++, &i)) { goto err; } vring_desc_read(vdev, &desc, desc_cache, i); if (desc.flags & VRING_DESC_F_INDIRECT) { if (desc.len % sizeof(VRingDesc)) { virtio_error(vdev, "Invalid size for indirect buffer table"); goto err; } /* If we've got too many, that implies a descriptor loop. */ if (num_bufs >= max) { virtio_error(vdev, "Looped descriptor"); goto err; } /* loop over the indirect descriptor table */ len = address_space_cache_init(&indirect_desc_cache, vdev->dma_as, desc.addr, desc.len, false); desc_cache = &indirect_desc_cache; if (len < desc.len) { virtio_error(vdev, "Cannot map indirect buffer"); goto err; } max = desc.len / sizeof(VRingDesc); num_bufs = i = 0; vring_desc_read(vdev, &desc, desc_cache, i); } do { /* If we've got too many, that implies a descriptor loop. */ if (++num_bufs > max) { virtio_error(vdev, "Looped descriptor"); goto err; } if (desc.flags & VRING_DESC_F_WRITE) { in_total += desc.len; } else { out_total += desc.len; } if (in_total >= max_in_bytes && out_total >= max_out_bytes) { goto done; } rc = virtqueue_read_next_desc(vdev, &desc, desc_cache, max, &i); } while (rc == VIRTQUEUE_READ_DESC_MORE); if (rc == VIRTQUEUE_READ_DESC_ERROR) { goto err; } if (desc_cache == &indirect_desc_cache) { address_space_cache_destroy(&indirect_desc_cache); total_bufs++; } else { total_bufs = num_bufs; } } if (rc < 0) { goto err; } done: address_space_cache_destroy(&indirect_desc_cache); if (in_bytes) { *in_bytes = in_total; } if (out_bytes) { *out_bytes = out_total; } rcu_read_unlock(); return; err: in_total = out_total = 0; goto done; } int virtqueue_avail_bytes(VirtQueue *vq, unsigned int in_bytes, unsigned int out_bytes) { unsigned int in_total, out_total; virtqueue_get_avail_bytes(vq, &in_total, &out_total, in_bytes, out_bytes); return in_bytes <= in_total && out_bytes <= out_total; } static bool virtqueue_map_desc(VirtIODevice *vdev, unsigned int *p_num_sg, hwaddr *addr, struct iovec *iov, unsigned int max_num_sg, bool is_write, hwaddr pa, size_t sz) { bool ok = false; unsigned num_sg = *p_num_sg; assert(num_sg <= max_num_sg); if (!sz) { virtio_error(vdev, "virtio: zero sized buffers are not allowed"); goto out; } while (sz) { hwaddr len = sz; if (num_sg == max_num_sg) { virtio_error(vdev, "virtio: too many write descriptors in " "indirect table"); goto out; } iov[num_sg].iov_base = dma_memory_map(vdev->dma_as, pa, &len, is_write ? DMA_DIRECTION_FROM_DEVICE : DMA_DIRECTION_TO_DEVICE); if (!iov[num_sg].iov_base) { virtio_error(vdev, "virtio: bogus descriptor or out of resources"); goto out; } iov[num_sg].iov_len = len; addr[num_sg] = pa; sz -= len; pa += len; num_sg++; } ok = true; out: *p_num_sg = num_sg; return ok; } /* Only used by error code paths before we have a VirtQueueElement (therefore * virtqueue_unmap_sg() can't be used). Assumes buffers weren't written to * yet. */ static void virtqueue_undo_map_desc(unsigned int out_num, unsigned int in_num, struct iovec *iov) { unsigned int i; for (i = 0; i < out_num + in_num; i++) { int is_write = i >= out_num; cpu_physical_memory_unmap(iov->iov_base, iov->iov_len, is_write, 0); iov++; } } static void virtqueue_map_iovec(VirtIODevice *vdev, struct iovec *sg, hwaddr *addr, unsigned int *num_sg, int is_write) { unsigned int i; hwaddr len; for (i = 0; i < *num_sg; i++) { len = sg[i].iov_len; sg[i].iov_base = dma_memory_map(vdev->dma_as, addr[i], &len, is_write ? DMA_DIRECTION_FROM_DEVICE : DMA_DIRECTION_TO_DEVICE); if (!sg[i].iov_base) { error_report("virtio: error trying to map MMIO memory"); exit(1); } if (len != sg[i].iov_len) { error_report("virtio: unexpected memory split"); exit(1); } } } void virtqueue_map(VirtIODevice *vdev, VirtQueueElement *elem) { virtqueue_map_iovec(vdev, elem->in_sg, elem->in_addr, &elem->in_num, 1); virtqueue_map_iovec(vdev, elem->out_sg, elem->out_addr, &elem->out_num, 0); } static void *virtqueue_alloc_element(size_t sz, unsigned out_num, unsigned in_num) { VirtQueueElement *elem; size_t in_addr_ofs = QEMU_ALIGN_UP(sz, __alignof__(elem->in_addr[0])); size_t out_addr_ofs = in_addr_ofs + in_num * sizeof(elem->in_addr[0]); size_t out_addr_end = out_addr_ofs + out_num * sizeof(elem->out_addr[0]); size_t in_sg_ofs = QEMU_ALIGN_UP(out_addr_end, __alignof__(elem->in_sg[0])); size_t out_sg_ofs = in_sg_ofs + in_num * sizeof(elem->in_sg[0]); size_t out_sg_end = out_sg_ofs + out_num * sizeof(elem->out_sg[0]); assert(sz >= sizeof(VirtQueueElement)); elem = g_malloc(out_sg_end); trace_virtqueue_alloc_element(elem, sz, in_num, out_num); elem->out_num = out_num; elem->in_num = in_num; elem->in_addr = (void *)elem + in_addr_ofs; elem->out_addr = (void *)elem + out_addr_ofs; elem->in_sg = (void *)elem + in_sg_ofs; elem->out_sg = (void *)elem + out_sg_ofs; return elem; } void *virtqueue_pop(VirtQueue *vq, size_t sz) { unsigned int i, head, max; VRingMemoryRegionCaches *caches; MemoryRegionCache indirect_desc_cache = MEMORY_REGION_CACHE_INVALID; MemoryRegionCache *desc_cache; int64_t len; VirtIODevice *vdev = vq->vdev; VirtQueueElement *elem = NULL; unsigned out_num, in_num, elem_entries; hwaddr addr[VIRTQUEUE_MAX_SIZE]; struct iovec iov[VIRTQUEUE_MAX_SIZE]; VRingDesc desc; int rc; if (unlikely(vdev->broken)) { return NULL; } rcu_read_lock(); if (virtio_queue_empty_rcu(vq)) { goto done; } /* Needed after virtio_queue_empty(), see comment in * virtqueue_num_heads(). */ smp_rmb(); /* When we start there are none of either input nor output. */ out_num = in_num = elem_entries = 0; max = vq->vring.num; if (vq->inuse >= vq->vring.num) { virtio_error(vdev, "Virtqueue size exceeded"); goto done; } if (!virtqueue_get_head(vq, vq->last_avail_idx++, &head)) { goto done; } if (virtio_vdev_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX)) { vring_set_avail_event(vq, vq->last_avail_idx); } i = head; caches = vring_get_region_caches(vq); if (caches->desc.len < max * sizeof(VRingDesc)) { virtio_error(vdev, "Cannot map descriptor ring"); goto done; } desc_cache = &caches->desc; vring_desc_read(vdev, &desc, desc_cache, i); if (desc.flags & VRING_DESC_F_INDIRECT) { if (desc.len % sizeof(VRingDesc)) { virtio_error(vdev, "Invalid size for indirect buffer table"); goto done; } /* loop over the indirect descriptor table */ len = address_space_cache_init(&indirect_desc_cache, vdev->dma_as, desc.addr, desc.len, false); desc_cache = &indirect_desc_cache; if (len < desc.len) { virtio_error(vdev, "Cannot map indirect buffer"); goto done; } max = desc.len / sizeof(VRingDesc); i = 0; vring_desc_read(vdev, &desc, desc_cache, i); } /* Collect all the descriptors */ do { bool map_ok; if (desc.flags & VRING_DESC_F_WRITE) { map_ok = virtqueue_map_desc(vdev, &in_num, addr + out_num, iov + out_num, VIRTQUEUE_MAX_SIZE - out_num, true, desc.addr, desc.len); } else { if (in_num) { virtio_error(vdev, "Incorrect order for descriptors"); goto err_undo_map; } map_ok = virtqueue_map_desc(vdev, &out_num, addr, iov, VIRTQUEUE_MAX_SIZE, false, desc.addr, desc.len); } if (!map_ok) { goto err_undo_map; } /* If we've got too many, that implies a descriptor loop. */ if (++elem_entries > max) { virtio_error(vdev, "Looped descriptor"); goto err_undo_map; } rc = virtqueue_read_next_desc(vdev, &desc, desc_cache, max, &i); } while (rc == VIRTQUEUE_READ_DESC_MORE); if (rc == VIRTQUEUE_READ_DESC_ERROR) { goto err_undo_map; } /* Now copy what we have collected and mapped */ elem = virtqueue_alloc_element(sz, out_num, in_num); elem->index = head; for (i = 0; i < out_num; i++) { elem->out_addr[i] = addr[i]; elem->out_sg[i] = iov[i]; } for (i = 0; i < in_num; i++) { elem->in_addr[i] = addr[out_num + i]; elem->in_sg[i] = iov[out_num + i]; } vq->inuse++; trace_virtqueue_pop(vq, elem, elem->in_num, elem->out_num); done: address_space_cache_destroy(&indirect_desc_cache); rcu_read_unlock(); return elem; err_undo_map: virtqueue_undo_map_desc(out_num, in_num, iov); goto done; } /* virtqueue_drop_all: * @vq: The #VirtQueue * Drops all queued buffers and indicates them to the guest * as if they are done. Useful when buffers can not be * processed but must be returned to the guest. */ unsigned int virtqueue_drop_all(VirtQueue *vq) { unsigned int dropped = 0; VirtQueueElement elem = {}; VirtIODevice *vdev = vq->vdev; bool fEventIdx = virtio_vdev_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX); if (unlikely(vdev->broken)) { return 0; } while (!virtio_queue_empty(vq) && vq->inuse < vq->vring.num) { /* works similar to virtqueue_pop but does not map buffers * and does not allocate any memory */ smp_rmb(); if (!virtqueue_get_head(vq, vq->last_avail_idx, &elem.index)) { break; } vq->inuse++; vq->last_avail_idx++; if (fEventIdx) { vring_set_avail_event(vq, vq->last_avail_idx); } /* immediately push the element, nothing to unmap * as both in_num and out_num are set to 0 */ virtqueue_push(vq, &elem, 0); dropped++; } return dropped; } /* Reading and writing a structure directly to QEMUFile is *awful*, but * it is what QEMU has always done by mistake. We can change it sooner * or later by bumping the version number of the affected vm states. * In the meanwhile, since the in-memory layout of VirtQueueElement * has changed, we need to marshal to and from the layout that was * used before the change. */ typedef struct VirtQueueElementOld { unsigned int index; unsigned int out_num; unsigned int in_num; hwaddr in_addr[VIRTQUEUE_MAX_SIZE]; hwaddr out_addr[VIRTQUEUE_MAX_SIZE]; struct iovec in_sg[VIRTQUEUE_MAX_SIZE]; struct iovec out_sg[VIRTQUEUE_MAX_SIZE]; } VirtQueueElementOld; void *qemu_get_virtqueue_element(VirtIODevice *vdev, QEMUFile *f, size_t sz) { VirtQueueElement *elem; VirtQueueElementOld data; int i; qemu_get_buffer(f, (uint8_t *)&data, sizeof(VirtQueueElementOld)); /* TODO: teach all callers that this can fail, and return failure instead * of asserting here. * This is just one thing (there are probably more) that must be * fixed before we can allow NDEBUG compilation. */ assert(ARRAY_SIZE(data.in_addr) >= data.in_num); assert(ARRAY_SIZE(data.out_addr) >= data.out_num); elem = virtqueue_alloc_element(sz, data.out_num, data.in_num); elem->index = data.index; for (i = 0; i < elem->in_num; i++) { elem->in_addr[i] = data.in_addr[i]; } for (i = 0; i < elem->out_num; i++) { elem->out_addr[i] = data.out_addr[i]; } for (i = 0; i < elem->in_num; i++) { /* Base is overwritten by virtqueue_map. */ elem->in_sg[i].iov_base = 0; elem->in_sg[i].iov_len = data.in_sg[i].iov_len; } for (i = 0; i < elem->out_num; i++) { /* Base is overwritten by virtqueue_map. */ elem->out_sg[i].iov_base = 0; elem->out_sg[i].iov_len = data.out_sg[i].iov_len; } virtqueue_map(vdev, elem); return elem; } void qemu_put_virtqueue_element(QEMUFile *f, VirtQueueElement *elem) { VirtQueueElementOld data; int i; memset(&data, 0, sizeof(data)); data.index = elem->index; data.in_num = elem->in_num; data.out_num = elem->out_num; for (i = 0; i < elem->in_num; i++) { data.in_addr[i] = elem->in_addr[i]; } for (i = 0; i < elem->out_num; i++) { data.out_addr[i] = elem->out_addr[i]; } for (i = 0; i < elem->in_num; i++) { /* Base is overwritten by virtqueue_map when loading. Do not * save it, as it would leak the QEMU address space layout. */ data.in_sg[i].iov_len = elem->in_sg[i].iov_len; } for (i = 0; i < elem->out_num; i++) { /* Do not save iov_base as above. */ data.out_sg[i].iov_len = elem->out_sg[i].iov_len; } qemu_put_buffer(f, (uint8_t *)&data, sizeof(VirtQueueElementOld)); } /* virtio device */ static void virtio_notify_vector(VirtIODevice *vdev, uint16_t vector) { BusState *qbus = qdev_get_parent_bus(DEVICE(vdev)); VirtioBusClass *k = VIRTIO_BUS_GET_CLASS(qbus); if (unlikely(vdev->broken)) { return; } if (k->notify) { k->notify(qbus->parent, vector); } } void virtio_update_irq(VirtIODevice *vdev) { virtio_notify_vector(vdev, VIRTIO_NO_VECTOR); } static int virtio_validate_features(VirtIODevice *vdev) { VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev); if (virtio_host_has_feature(vdev, VIRTIO_F_IOMMU_PLATFORM) && !virtio_vdev_has_feature(vdev, VIRTIO_F_IOMMU_PLATFORM)) { return -EFAULT; } if (k->validate_features) { return k->validate_features(vdev); } else { return 0; } } int virtio_set_status(VirtIODevice *vdev, uint8_t val) { VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev); trace_virtio_set_status(vdev, val); if (virtio_vdev_has_feature(vdev, VIRTIO_F_VERSION_1)) { if (!(vdev->status & VIRTIO_CONFIG_S_FEATURES_OK) && val & VIRTIO_CONFIG_S_FEATURES_OK) { int ret = virtio_validate_features(vdev); if (ret) { return ret; } } } if (k->set_status) { k->set_status(vdev, val); } vdev->status = val; return 0; } bool target_words_bigendian(void); static enum virtio_device_endian virtio_default_endian(void) { if (target_words_bigendian()) { return VIRTIO_DEVICE_ENDIAN_BIG; } else { return VIRTIO_DEVICE_ENDIAN_LITTLE; } } static enum virtio_device_endian virtio_current_cpu_endian(void) { CPUClass *cc = CPU_GET_CLASS(current_cpu); if (cc->virtio_is_big_endian(current_cpu)) { return VIRTIO_DEVICE_ENDIAN_BIG; } else { return VIRTIO_DEVICE_ENDIAN_LITTLE; } } static void virtio_virtqueue_reset_region_cache(struct VirtQueue *vq) { VRingMemoryRegionCaches *caches; caches = atomic_read(&vq->vring.caches); atomic_rcu_set(&vq->vring.caches, NULL); if (caches) { call_rcu(caches, virtio_free_region_cache, rcu); } } void virtio_reset(void *opaque) { VirtIODevice *vdev = opaque; VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev); int i; virtio_set_status(vdev, 0); if (current_cpu) { /* Guest initiated reset */ vdev->device_endian = virtio_current_cpu_endian(); } else { /* System reset */ vdev->device_endian = virtio_default_endian(); } if (k->reset) { k->reset(vdev); } vdev->broken = false; vdev->guest_features = 0; vdev->queue_sel = 0; vdev->status = 0; atomic_set(&vdev->isr, 0); vdev->config_vector = VIRTIO_NO_VECTOR; virtio_notify_vector(vdev, vdev->config_vector); for(i = 0; i < VIRTIO_QUEUE_MAX; i++) { vdev->vq[i].vring.desc = 0; vdev->vq[i].vring.avail = 0; vdev->vq[i].vring.used = 0; vdev->vq[i].last_avail_idx = 0; vdev->vq[i].shadow_avail_idx = 0; vdev->vq[i].used_idx = 0; virtio_queue_set_vector(vdev, i, VIRTIO_NO_VECTOR); vdev->vq[i].signalled_used = 0; vdev->vq[i].signalled_used_valid = false; vdev->vq[i].notification = true; vdev->vq[i].vring.num = vdev->vq[i].vring.num_default; vdev->vq[i].inuse = 0; virtio_virtqueue_reset_region_cache(&vdev->vq[i]); } } uint32_t virtio_config_readb(VirtIODevice *vdev, uint32_t addr) { VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev); uint8_t val; if (addr + sizeof(val) > vdev->config_len) { return (uint32_t)-1; } k->get_config(vdev, vdev->config); val = ldub_p(vdev->config + addr); return val; } uint32_t virtio_config_readw(VirtIODevice *vdev, uint32_t addr) { VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev); uint16_t val; if (addr + sizeof(val) > vdev->config_len) { return (uint32_t)-1; } k->get_config(vdev, vdev->config); val = lduw_p(vdev->config + addr); return val; } uint32_t virtio_config_readl(VirtIODevice *vdev, uint32_t addr) { VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev); uint32_t val; if (addr + sizeof(val) > vdev->config_len) { return (uint32_t)-1; } k->get_config(vdev, vdev->config); val = ldl_p(vdev->config + addr); return val; } void virtio_config_writeb(VirtIODevice *vdev, uint32_t addr, uint32_t data) { VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev); uint8_t val = data; if (addr + sizeof(val) > vdev->config_len) { return; } stb_p(vdev->config + addr, val); if (k->set_config) { k->set_config(vdev, vdev->config); } } void virtio_config_writew(VirtIODevice *vdev, uint32_t addr, uint32_t data) { VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev); uint16_t val = data; if (addr + sizeof(val) > vdev->config_len) { return; } stw_p(vdev->config + addr, val); if (k->set_config) { k->set_config(vdev, vdev->config); } } void virtio_config_writel(VirtIODevice *vdev, uint32_t addr, uint32_t data) { VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev); uint32_t val = data; if (addr + sizeof(val) > vdev->config_len) { return; } stl_p(vdev->config + addr, val); if (k->set_config) { k->set_config(vdev, vdev->config); } } uint32_t virtio_config_modern_readb(VirtIODevice *vdev, uint32_t addr) { VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev); uint8_t val; if (addr + sizeof(val) > vdev->config_len) { return (uint32_t)-1; } k->get_config(vdev, vdev->config); val = ldub_p(vdev->config + addr); return val; } uint32_t virtio_config_modern_readw(VirtIODevice *vdev, uint32_t addr) { VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev); uint16_t val; if (addr + sizeof(val) > vdev->config_len) { return (uint32_t)-1; } k->get_config(vdev, vdev->config); val = lduw_le_p(vdev->config + addr); return val; } uint32_t virtio_config_modern_readl(VirtIODevice *vdev, uint32_t addr) { VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev); uint32_t val; if (addr + sizeof(val) > vdev->config_len) { return (uint32_t)-1; } k->get_config(vdev, vdev->config); val = ldl_le_p(vdev->config + addr); return val; } void virtio_config_modern_writeb(VirtIODevice *vdev, uint32_t addr, uint32_t data) { VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev); uint8_t val = data; if (addr + sizeof(val) > vdev->config_len) { return; } stb_p(vdev->config + addr, val); if (k->set_config) { k->set_config(vdev, vdev->config); } } void virtio_config_modern_writew(VirtIODevice *vdev, uint32_t addr, uint32_t data) { VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev); uint16_t val = data; if (addr + sizeof(val) > vdev->config_len) { return; } stw_le_p(vdev->config + addr, val); if (k->set_config) { k->set_config(vdev, vdev->config); } } void virtio_config_modern_writel(VirtIODevice *vdev, uint32_t addr, uint32_t data) { VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev); uint32_t val = data; if (addr + sizeof(val) > vdev->config_len) { return; } stl_le_p(vdev->config + addr, val); if (k->set_config) { k->set_config(vdev, vdev->config); } } void virtio_queue_set_addr(VirtIODevice *vdev, int n, hwaddr addr) { if (!vdev->vq[n].vring.num) { return; } vdev->vq[n].vring.desc = addr; virtio_queue_update_rings(vdev, n); } hwaddr virtio_queue_get_addr(VirtIODevice *vdev, int n) { return vdev->vq[n].vring.desc; } void virtio_queue_set_rings(VirtIODevice *vdev, int n, hwaddr desc, hwaddr avail, hwaddr used) { if (!vdev->vq[n].vring.num) { return; } vdev->vq[n].vring.desc = desc; vdev->vq[n].vring.avail = avail; vdev->vq[n].vring.used = used; virtio_init_region_cache(vdev, n); } void virtio_queue_set_num(VirtIODevice *vdev, int n, int num) { /* Don't allow guest to flip queue between existent and * nonexistent states, or to set it to an invalid size. */ if (!!num != !!vdev->vq[n].vring.num || num > VIRTQUEUE_MAX_SIZE || num < 0) { return; } vdev->vq[n].vring.num = num; } VirtQueue *virtio_vector_first_queue(VirtIODevice *vdev, uint16_t vector) { return QLIST_FIRST(&vdev->vector_queues[vector]); } VirtQueue *virtio_vector_next_queue(VirtQueue *vq) { return QLIST_NEXT(vq, node); } int virtio_queue_get_num(VirtIODevice *vdev, int n) { return vdev->vq[n].vring.num; } int virtio_queue_get_max_num(VirtIODevice *vdev, int n) { return vdev->vq[n].vring.num_default; } int virtio_get_num_queues(VirtIODevice *vdev) { int i; for (i = 0; i < VIRTIO_QUEUE_MAX; i++) { if (!virtio_queue_get_num(vdev, i)) { break; } } return i; } void virtio_queue_set_align(VirtIODevice *vdev, int n, int align) { BusState *qbus = qdev_get_parent_bus(DEVICE(vdev)); VirtioBusClass *k = VIRTIO_BUS_GET_CLASS(qbus); /* virtio-1 compliant devices cannot change the alignment */ if (virtio_vdev_has_feature(vdev, VIRTIO_F_VERSION_1)) { error_report("tried to modify queue alignment for virtio-1 device"); return; } /* Check that the transport told us it was going to do this * (so a buggy transport will immediately assert rather than * silently failing to migrate this state) */ assert(k->has_variable_vring_alignment); if (align) { vdev->vq[n].vring.align = align; virtio_queue_update_rings(vdev, n); } } static bool virtio_queue_notify_aio_vq(VirtQueue *vq) { if (vq->vring.desc && vq->handle_aio_output) { VirtIODevice *vdev = vq->vdev; trace_virtio_queue_notify(vdev, vq - vdev->vq, vq); return vq->handle_aio_output(vdev, vq); } return false; } static void virtio_queue_notify_vq(VirtQueue *vq) { if (vq->vring.desc && vq->handle_output) { VirtIODevice *vdev = vq->vdev; if (unlikely(vdev->broken)) { return; } trace_virtio_queue_notify(vdev, vq - vdev->vq, vq); vq->handle_output(vdev, vq); } } void virtio_queue_notify(VirtIODevice *vdev, int n) { VirtQueue *vq = &vdev->vq[n]; if (unlikely(!vq->vring.desc || vdev->broken)) { return; } trace_virtio_queue_notify(vdev, vq - vdev->vq, vq); if (vq->handle_aio_output) { event_notifier_set(&vq->host_notifier); } else if (vq->handle_output) { vq->handle_output(vdev, vq); } } uint16_t virtio_queue_vector(VirtIODevice *vdev, int n) { return n < VIRTIO_QUEUE_MAX ? vdev->vq[n].vector : VIRTIO_NO_VECTOR; } void virtio_queue_set_vector(VirtIODevice *vdev, int n, uint16_t vector) { VirtQueue *vq = &vdev->vq[n]; if (n < VIRTIO_QUEUE_MAX) { if (vdev->vector_queues && vdev->vq[n].vector != VIRTIO_NO_VECTOR) { QLIST_REMOVE(vq, node); } vdev->vq[n].vector = vector; if (vdev->vector_queues && vector != VIRTIO_NO_VECTOR) { QLIST_INSERT_HEAD(&vdev->vector_queues[vector], vq, node); } } } VirtQueue *virtio_add_queue(VirtIODevice *vdev, int queue_size, VirtIOHandleOutput handle_output) { int i; for (i = 0; i < VIRTIO_QUEUE_MAX; i++) { if (vdev->vq[i].vring.num == 0) break; } if (i == VIRTIO_QUEUE_MAX || queue_size > VIRTQUEUE_MAX_SIZE) abort(); vdev->vq[i].vring.num = queue_size; vdev->vq[i].vring.num_default = queue_size; vdev->vq[i].vring.align = VIRTIO_PCI_VRING_ALIGN; vdev->vq[i].handle_output = handle_output; vdev->vq[i].handle_aio_output = NULL; return &vdev->vq[i]; } void virtio_del_queue(VirtIODevice *vdev, int n) { if (n < 0 || n >= VIRTIO_QUEUE_MAX) { abort(); } vdev->vq[n].vring.num = 0; vdev->vq[n].vring.num_default = 0; } static void virtio_set_isr(VirtIODevice *vdev, int value) { uint8_t old = atomic_read(&vdev->isr); /* Do not write ISR if it does not change, so that its cacheline remains * shared in the common case where the guest does not read it. */ if ((old & value) != value) { atomic_or(&vdev->isr, value); } } /* Called within rcu_read_lock(). */ static bool virtio_should_notify(VirtIODevice *vdev, VirtQueue *vq) { uint16_t old, new; bool v; /* We need to expose used array entries before checking used event. */ smp_mb(); /* Always notify when queue is empty (when feature acknowledge) */ if (virtio_vdev_has_feature(vdev, VIRTIO_F_NOTIFY_ON_EMPTY) && !vq->inuse && virtio_queue_empty(vq)) { return true; } if (!virtio_vdev_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX)) { return !(vring_avail_flags(vq) & VRING_AVAIL_F_NO_INTERRUPT); } v = vq->signalled_used_valid; vq->signalled_used_valid = true; old = vq->signalled_used; new = vq->signalled_used = vq->used_idx; return !v || vring_need_event(vring_get_used_event(vq), new, old); } void virtio_notify_irqfd(VirtIODevice *vdev, VirtQueue *vq) { bool should_notify; rcu_read_lock(); should_notify = virtio_should_notify(vdev, vq); rcu_read_unlock(); if (!should_notify) { return; } trace_virtio_notify_irqfd(vdev, vq); /* * virtio spec 1.0 says ISR bit 0 should be ignored with MSI, but * windows drivers included in virtio-win 1.8.0 (circa 2015) are * incorrectly polling this bit during crashdump and hibernation * in MSI mode, causing a hang if this bit is never updated. * Recent releases of Windows do not really shut down, but rather * log out and hibernate to make the next startup faster. Hence, * this manifested as a more serious hang during shutdown with * * Next driver release from 2016 fixed this problem, so working around it * is not a must, but it's easy to do so let's do it here. * * Note: it's safe to update ISR from any thread as it was switched * to an atomic operation. */ virtio_set_isr(vq->vdev, 0x1); event_notifier_set(&vq->guest_notifier); } static void virtio_irq(VirtQueue *vq) { virtio_set_isr(vq->vdev, 0x1); virtio_notify_vector(vq->vdev, vq->vector); } void virtio_notify(VirtIODevice *vdev, VirtQueue *vq) { bool should_notify; rcu_read_lock(); should_notify = virtio_should_notify(vdev, vq); rcu_read_unlock(); if (!should_notify) { return; } trace_virtio_notify(vdev, vq); virtio_irq(vq); } void virtio_notify_config(VirtIODevice *vdev) { if (!(vdev->status & VIRTIO_CONFIG_S_DRIVER_OK)) return; virtio_set_isr(vdev, 0x3); vdev->generation++; virtio_notify_vector(vdev, vdev->config_vector); } static bool virtio_device_endian_needed(void *opaque) { VirtIODevice *vdev = opaque; assert(vdev->device_endian != VIRTIO_DEVICE_ENDIAN_UNKNOWN); if (!virtio_vdev_has_feature(vdev, VIRTIO_F_VERSION_1)) { return vdev->device_endian != virtio_default_endian(); } /* Devices conforming to VIRTIO 1.0 or later are always LE. */ return vdev->device_endian != VIRTIO_DEVICE_ENDIAN_LITTLE; } static bool virtio_64bit_features_needed(void *opaque) { VirtIODevice *vdev = opaque; return (vdev->host_features >> 32) != 0; } static bool virtio_virtqueue_needed(void *opaque) { VirtIODevice *vdev = opaque; return virtio_host_has_feature(vdev, VIRTIO_F_VERSION_1); } static bool virtio_ringsize_needed(void *opaque) { VirtIODevice *vdev = opaque; int i; for (i = 0; i < VIRTIO_QUEUE_MAX; i++) { if (vdev->vq[i].vring.num != vdev->vq[i].vring.num_default) { return true; } } return false; } static bool virtio_extra_state_needed(void *opaque) { VirtIODevice *vdev = opaque; BusState *qbus = qdev_get_parent_bus(DEVICE(vdev)); VirtioBusClass *k = VIRTIO_BUS_GET_CLASS(qbus); return k->has_extra_state && k->has_extra_state(qbus->parent); } static bool virtio_broken_needed(void *opaque) { VirtIODevice *vdev = opaque; return vdev->broken; } static const VMStateDescription vmstate_virtqueue = { .name = "virtqueue_state", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT64(vring.avail, struct VirtQueue), VMSTATE_UINT64(vring.used, struct VirtQueue), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_virtio_virtqueues = { .name = "virtio/virtqueues", .version_id = 1, .minimum_version_id = 1, .needed = &virtio_virtqueue_needed, .fields = (VMStateField[]) { VMSTATE_STRUCT_VARRAY_POINTER_KNOWN(vq, struct VirtIODevice, VIRTIO_QUEUE_MAX, 0, vmstate_virtqueue, VirtQueue), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_ringsize = { .name = "ringsize_state", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(vring.num_default, struct VirtQueue), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_virtio_ringsize = { .name = "virtio/ringsize", .version_id = 1, .minimum_version_id = 1, .needed = &virtio_ringsize_needed, .fields = (VMStateField[]) { VMSTATE_STRUCT_VARRAY_POINTER_KNOWN(vq, struct VirtIODevice, VIRTIO_QUEUE_MAX, 0, vmstate_ringsize, VirtQueue), VMSTATE_END_OF_LIST() } }; static int get_extra_state(QEMUFile *f, void *pv, size_t size, VMStateField *field) { VirtIODevice *vdev = pv; BusState *qbus = qdev_get_parent_bus(DEVICE(vdev)); VirtioBusClass *k = VIRTIO_BUS_GET_CLASS(qbus); if (!k->load_extra_state) { return -1; } else { return k->load_extra_state(qbus->parent, f); } } static int put_extra_state(QEMUFile *f, void *pv, size_t size, VMStateField *field, QJSON *vmdesc) { VirtIODevice *vdev = pv; BusState *qbus = qdev_get_parent_bus(DEVICE(vdev)); VirtioBusClass *k = VIRTIO_BUS_GET_CLASS(qbus); k->save_extra_state(qbus->parent, f); return 0; } static const VMStateInfo vmstate_info_extra_state = { .name = "virtqueue_extra_state", .get = get_extra_state, .put = put_extra_state, }; static const VMStateDescription vmstate_virtio_extra_state = { .name = "virtio/extra_state", .version_id = 1, .minimum_version_id = 1, .needed = &virtio_extra_state_needed, .fields = (VMStateField[]) { { .name = "extra_state", .version_id = 0, .field_exists = NULL, .size = 0, .info = &vmstate_info_extra_state, .flags = VMS_SINGLE, .offset = 0, }, VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_virtio_device_endian = { .name = "virtio/device_endian", .version_id = 1, .minimum_version_id = 1, .needed = &virtio_device_endian_needed, .fields = (VMStateField[]) { VMSTATE_UINT8(device_endian, VirtIODevice), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_virtio_64bit_features = { .name = "virtio/64bit_features", .version_id = 1, .minimum_version_id = 1, .needed = &virtio_64bit_features_needed, .fields = (VMStateField[]) { VMSTATE_UINT64(guest_features, VirtIODevice), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_virtio_broken = { .name = "virtio/broken", .version_id = 1, .minimum_version_id = 1, .needed = &virtio_broken_needed, .fields = (VMStateField[]) { VMSTATE_BOOL(broken, VirtIODevice), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_virtio = { .name = "virtio", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .fields = (VMStateField[]) { VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription*[]) { &vmstate_virtio_device_endian, &vmstate_virtio_64bit_features, &vmstate_virtio_virtqueues, &vmstate_virtio_ringsize, &vmstate_virtio_broken, &vmstate_virtio_extra_state, NULL } }; int virtio_save(VirtIODevice *vdev, QEMUFile *f) { BusState *qbus = qdev_get_parent_bus(DEVICE(vdev)); VirtioBusClass *k = VIRTIO_BUS_GET_CLASS(qbus); VirtioDeviceClass *vdc = VIRTIO_DEVICE_GET_CLASS(vdev); uint32_t guest_features_lo = (vdev->guest_features & 0xffffffff); int i; if (k->save_config) { k->save_config(qbus->parent, f); } qemu_put_8s(f, &vdev->status); qemu_put_8s(f, &vdev->isr); qemu_put_be16s(f, &vdev->queue_sel); qemu_put_be32s(f, &guest_features_lo); qemu_put_be32(f, vdev->config_len); qemu_put_buffer(f, vdev->config, vdev->config_len); for (i = 0; i < VIRTIO_QUEUE_MAX; i++) { if (vdev->vq[i].vring.num == 0) break; } qemu_put_be32(f, i); for (i = 0; i < VIRTIO_QUEUE_MAX; i++) { if (vdev->vq[i].vring.num == 0) break; qemu_put_be32(f, vdev->vq[i].vring.num); if (k->has_variable_vring_alignment) { qemu_put_be32(f, vdev->vq[i].vring.align); } /* * Save desc now, the rest of the ring addresses are saved in * subsections for VIRTIO-1 devices. */ qemu_put_be64(f, vdev->vq[i].vring.desc); qemu_put_be16s(f, &vdev->vq[i].last_avail_idx); if (k->save_queue) { k->save_queue(qbus->parent, i, f); } } if (vdc->save != NULL) { vdc->save(vdev, f); } if (vdc->vmsd) { int ret = vmstate_save_state(f, vdc->vmsd, vdev, NULL); if (ret) { return ret; } } /* Subsections */ return vmstate_save_state(f, &vmstate_virtio, vdev, NULL); } /* A wrapper for use as a VMState .put function */ static int virtio_device_put(QEMUFile *f, void *opaque, size_t size, VMStateField *field, QJSON *vmdesc) { return virtio_save(VIRTIO_DEVICE(opaque), f); } /* A wrapper for use as a VMState .get function */ static int virtio_device_get(QEMUFile *f, void *opaque, size_t size, VMStateField *field) { VirtIODevice *vdev = VIRTIO_DEVICE(opaque); DeviceClass *dc = DEVICE_CLASS(VIRTIO_DEVICE_GET_CLASS(vdev)); return virtio_load(vdev, f, dc->vmsd->version_id); } const VMStateInfo virtio_vmstate_info = { .name = "virtio", .get = virtio_device_get, .put = virtio_device_put, }; static int virtio_set_features_nocheck(VirtIODevice *vdev, uint64_t val) { VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev); bool bad = (val & ~(vdev->host_features)) != 0; val &= vdev->host_features; if (k->set_features) { k->set_features(vdev, val); } vdev->guest_features = val; return bad ? -1 : 0; } int virtio_set_features(VirtIODevice *vdev, uint64_t val) { /* * The driver must not attempt to set features after feature negotiation * has finished. */ if (vdev->status & VIRTIO_CONFIG_S_FEATURES_OK) { return -EINVAL; } return virtio_set_features_nocheck(vdev, val); } int virtio_load(VirtIODevice *vdev, QEMUFile *f, int version_id) { int i, ret; int32_t config_len; uint32_t num; uint32_t features; BusState *qbus = qdev_get_parent_bus(DEVICE(vdev)); VirtioBusClass *k = VIRTIO_BUS_GET_CLASS(qbus); VirtioDeviceClass *vdc = VIRTIO_DEVICE_GET_CLASS(vdev); /* * We poison the endianness to ensure it does not get used before * subsections have been loaded. */ vdev->device_endian = VIRTIO_DEVICE_ENDIAN_UNKNOWN; if (k->load_config) { ret = k->load_config(qbus->parent, f); if (ret) return ret; } qemu_get_8s(f, &vdev->status); qemu_get_8s(f, &vdev->isr); qemu_get_be16s(f, &vdev->queue_sel); if (vdev->queue_sel >= VIRTIO_QUEUE_MAX) { return -1; } qemu_get_be32s(f, &features); /* * Temporarily set guest_features low bits - needed by * virtio net load code testing for VIRTIO_NET_F_CTRL_GUEST_OFFLOADS * VIRTIO_NET_F_GUEST_ANNOUNCE and VIRTIO_NET_F_CTRL_VQ. * * Note: devices should always test host features in future - don't create * new dependencies like this. */ vdev->guest_features = features; config_len = qemu_get_be32(f); /* * There are cases where the incoming config can be bigger or smaller * than what we have; so load what we have space for, and skip * any excess that's in the stream. */ qemu_get_buffer(f, vdev->config, MIN(config_len, vdev->config_len)); while (config_len > vdev->config_len) { qemu_get_byte(f); config_len--; } num = qemu_get_be32(f); if (num > VIRTIO_QUEUE_MAX) { error_report("Invalid number of virtqueues: 0x%x", num); return -1; } for (i = 0; i < num; i++) { vdev->vq[i].vring.num = qemu_get_be32(f); if (k->has_variable_vring_alignment) { vdev->vq[i].vring.align = qemu_get_be32(f); } vdev->vq[i].vring.desc = qemu_get_be64(f); qemu_get_be16s(f, &vdev->vq[i].last_avail_idx); vdev->vq[i].signalled_used_valid = false; vdev->vq[i].notification = true; if (!vdev->vq[i].vring.desc && vdev->vq[i].last_avail_idx) { error_report("VQ %d address 0x0 " "inconsistent with Host index 0x%x", i, vdev->vq[i].last_avail_idx); return -1; } if (k->load_queue) { ret = k->load_queue(qbus->parent, i, f); if (ret) return ret; } } virtio_notify_vector(vdev, VIRTIO_NO_VECTOR); if (vdc->load != NULL) { ret = vdc->load(vdev, f, version_id); if (ret) { return ret; } } if (vdc->vmsd) { ret = vmstate_load_state(f, vdc->vmsd, vdev, version_id); if (ret) { return ret; } } /* Subsections */ ret = vmstate_load_state(f, &vmstate_virtio, vdev, 1); if (ret) { return ret; } if (vdev->device_endian == VIRTIO_DEVICE_ENDIAN_UNKNOWN) { vdev->device_endian = virtio_default_endian(); } if (virtio_64bit_features_needed(vdev)) { /* * Subsection load filled vdev->guest_features. Run them * through virtio_set_features to sanity-check them against * host_features. */ uint64_t features64 = vdev->guest_features; if (virtio_set_features_nocheck(vdev, features64) < 0) { error_report("Features 0x%" PRIx64 " unsupported. " "Allowed features: 0x%" PRIx64, features64, vdev->host_features); return -1; } } else { if (virtio_set_features_nocheck(vdev, features) < 0) { error_report("Features 0x%x unsupported. " "Allowed features: 0x%" PRIx64, features, vdev->host_features); return -1; } } rcu_read_lock(); for (i = 0; i < num; i++) { if (vdev->vq[i].vring.desc) { uint16_t nheads; /* * VIRTIO-1 devices migrate desc, used, and avail ring addresses so * only the region cache needs to be set up. Legacy devices need * to calculate used and avail ring addresses based on the desc * address. */ if (virtio_vdev_has_feature(vdev, VIRTIO_F_VERSION_1)) { virtio_init_region_cache(vdev, i); } else { virtio_queue_update_rings(vdev, i); } nheads = vring_avail_idx(&vdev->vq[i]) - vdev->vq[i].last_avail_idx; /* Check it isn't doing strange things with descriptor numbers. */ if (nheads > vdev->vq[i].vring.num) { error_report("VQ %d size 0x%x Guest index 0x%x " "inconsistent with Host index 0x%x: delta 0x%x", i, vdev->vq[i].vring.num, vring_avail_idx(&vdev->vq[i]), vdev->vq[i].last_avail_idx, nheads); return -1; } vdev->vq[i].used_idx = vring_used_idx(&vdev->vq[i]); vdev->vq[i].shadow_avail_idx = vring_avail_idx(&vdev->vq[i]); /* * Some devices migrate VirtQueueElements that have been popped * from the avail ring but not yet returned to the used ring. * Since max ring size < UINT16_MAX it's safe to use modulo * UINT16_MAX + 1 subtraction. */ vdev->vq[i].inuse = (uint16_t)(vdev->vq[i].last_avail_idx - vdev->vq[i].used_idx); if (vdev->vq[i].inuse > vdev->vq[i].vring.num) { error_report("VQ %d size 0x%x < last_avail_idx 0x%x - " "used_idx 0x%x", i, vdev->vq[i].vring.num, vdev->vq[i].last_avail_idx, vdev->vq[i].used_idx); return -1; } } } rcu_read_unlock(); return 0; } void virtio_cleanup(VirtIODevice *vdev) { qemu_del_vm_change_state_handler(vdev->vmstate); } static void virtio_vmstate_change(void *opaque, int running, RunState state) { VirtIODevice *vdev = opaque; BusState *qbus = qdev_get_parent_bus(DEVICE(vdev)); VirtioBusClass *k = VIRTIO_BUS_GET_CLASS(qbus); bool backend_run = running && (vdev->status & VIRTIO_CONFIG_S_DRIVER_OK); vdev->vm_running = running; if (backend_run) { virtio_set_status(vdev, vdev->status); } if (k->vmstate_change) { k->vmstate_change(qbus->parent, backend_run); } if (!backend_run) { virtio_set_status(vdev, vdev->status); } } void virtio_instance_init_common(Object *proxy_obj, void *data, size_t vdev_size, const char *vdev_name) { DeviceState *vdev = data; object_initialize(vdev, vdev_size, vdev_name); object_property_add_child(proxy_obj, "virtio-backend", OBJECT(vdev), NULL); object_unref(OBJECT(vdev)); qdev_alias_all_properties(vdev, proxy_obj); } void virtio_init(VirtIODevice *vdev, const char *name, uint16_t device_id, size_t config_size) { BusState *qbus = qdev_get_parent_bus(DEVICE(vdev)); VirtioBusClass *k = VIRTIO_BUS_GET_CLASS(qbus); int i; int nvectors = k->query_nvectors ? k->query_nvectors(qbus->parent) : 0; if (nvectors) { vdev->vector_queues = g_malloc0(sizeof(*vdev->vector_queues) * nvectors); } vdev->device_id = device_id; vdev->status = 0; atomic_set(&vdev->isr, 0); vdev->queue_sel = 0; vdev->config_vector = VIRTIO_NO_VECTOR; vdev->vq = g_malloc0(sizeof(VirtQueue) * VIRTIO_QUEUE_MAX); vdev->vm_running = runstate_is_running(); vdev->broken = false; for (i = 0; i < VIRTIO_QUEUE_MAX; i++) { vdev->vq[i].vector = VIRTIO_NO_VECTOR; vdev->vq[i].vdev = vdev; vdev->vq[i].queue_index = i; } vdev->name = name; vdev->config_len = config_size; if (vdev->config_len) { vdev->config = g_malloc0(config_size); } else { vdev->config = NULL; } vdev->vmstate = qemu_add_vm_change_state_handler(virtio_vmstate_change, vdev); vdev->device_endian = virtio_default_endian(); vdev->use_guest_notifier_mask = true; } hwaddr virtio_queue_get_desc_addr(VirtIODevice *vdev, int n) { return vdev->vq[n].vring.desc; } hwaddr virtio_queue_get_avail_addr(VirtIODevice *vdev, int n) { return vdev->vq[n].vring.avail; } hwaddr virtio_queue_get_used_addr(VirtIODevice *vdev, int n) { return vdev->vq[n].vring.used; } hwaddr virtio_queue_get_desc_size(VirtIODevice *vdev, int n) { return sizeof(VRingDesc) * vdev->vq[n].vring.num; } hwaddr virtio_queue_get_avail_size(VirtIODevice *vdev, int n) { return offsetof(VRingAvail, ring) + sizeof(uint16_t) * vdev->vq[n].vring.num; } hwaddr virtio_queue_get_used_size(VirtIODevice *vdev, int n) { return offsetof(VRingUsed, ring) + sizeof(VRingUsedElem) * vdev->vq[n].vring.num; } uint16_t virtio_queue_get_last_avail_idx(VirtIODevice *vdev, int n) { return vdev->vq[n].last_avail_idx; } void virtio_queue_set_last_avail_idx(VirtIODevice *vdev, int n, uint16_t idx) { vdev->vq[n].last_avail_idx = idx; vdev->vq[n].shadow_avail_idx = idx; } void virtio_queue_restore_last_avail_idx(VirtIODevice *vdev, int n) { rcu_read_lock(); if (vdev->vq[n].vring.desc) { vdev->vq[n].last_avail_idx = vring_used_idx(&vdev->vq[n]); vdev->vq[n].shadow_avail_idx = vdev->vq[n].last_avail_idx; } rcu_read_unlock(); } void virtio_queue_update_used_idx(VirtIODevice *vdev, int n) { rcu_read_lock(); if (vdev->vq[n].vring.desc) { vdev->vq[n].used_idx = vring_used_idx(&vdev->vq[n]); } rcu_read_unlock(); } void virtio_queue_invalidate_signalled_used(VirtIODevice *vdev, int n) { vdev->vq[n].signalled_used_valid = false; } VirtQueue *virtio_get_queue(VirtIODevice *vdev, int n) { return vdev->vq + n; } uint16_t virtio_get_queue_index(VirtQueue *vq) { return vq->queue_index; } static void virtio_queue_guest_notifier_read(EventNotifier *n) { VirtQueue *vq = container_of(n, VirtQueue, guest_notifier); if (event_notifier_test_and_clear(n)) { virtio_irq(vq); } } void virtio_queue_set_guest_notifier_fd_handler(VirtQueue *vq, bool assign, bool with_irqfd) { if (assign && !with_irqfd) { event_notifier_set_handler(&vq->guest_notifier, virtio_queue_guest_notifier_read); } else { event_notifier_set_handler(&vq->guest_notifier, NULL); } if (!assign) { /* Test and clear notifier before closing it, * in case poll callback didn't have time to run. */ virtio_queue_guest_notifier_read(&vq->guest_notifier); } } EventNotifier *virtio_queue_get_guest_notifier(VirtQueue *vq) { return &vq->guest_notifier; } static void virtio_queue_host_notifier_aio_read(EventNotifier *n) { VirtQueue *vq = container_of(n, VirtQueue, host_notifier); if (event_notifier_test_and_clear(n)) { virtio_queue_notify_aio_vq(vq); } } static void virtio_queue_host_notifier_aio_poll_begin(EventNotifier *n) { VirtQueue *vq = container_of(n, VirtQueue, host_notifier); virtio_queue_set_notification(vq, 0); } static bool virtio_queue_host_notifier_aio_poll(void *opaque) { EventNotifier *n = opaque; VirtQueue *vq = container_of(n, VirtQueue, host_notifier); bool progress; if (!vq->vring.desc || virtio_queue_empty(vq)) { return false; } progress = virtio_queue_notify_aio_vq(vq); /* In case the handler function re-enabled notifications */ virtio_queue_set_notification(vq, 0); return progress; } static void virtio_queue_host_notifier_aio_poll_end(EventNotifier *n) { VirtQueue *vq = container_of(n, VirtQueue, host_notifier); /* Caller polls once more after this to catch requests that race with us */ virtio_queue_set_notification(vq, 1); } void virtio_queue_aio_set_host_notifier_handler(VirtQueue *vq, AioContext *ctx, VirtIOHandleAIOOutput handle_output) { if (handle_output) { vq->handle_aio_output = handle_output; aio_set_event_notifier(ctx, &vq->host_notifier, true, virtio_queue_host_notifier_aio_read, virtio_queue_host_notifier_aio_poll); aio_set_event_notifier_poll(ctx, &vq->host_notifier, virtio_queue_host_notifier_aio_poll_begin, virtio_queue_host_notifier_aio_poll_end); } else { aio_set_event_notifier(ctx, &vq->host_notifier, true, NULL, NULL); /* Test and clear notifier before after disabling event, * in case poll callback didn't have time to run. */ virtio_queue_host_notifier_aio_read(&vq->host_notifier); vq->handle_aio_output = NULL; } } void virtio_queue_host_notifier_read(EventNotifier *n) { VirtQueue *vq = container_of(n, VirtQueue, host_notifier); if (event_notifier_test_and_clear(n)) { virtio_queue_notify_vq(vq); } } EventNotifier *virtio_queue_get_host_notifier(VirtQueue *vq) { return &vq->host_notifier; } void virtio_device_set_child_bus_name(VirtIODevice *vdev, char *bus_name) { g_free(vdev->bus_name); vdev->bus_name = g_strdup(bus_name); } void GCC_FMT_ATTR(2, 3) virtio_error(VirtIODevice *vdev, const char *fmt, ...) { va_list ap; va_start(ap, fmt); error_vreport(fmt, ap); va_end(ap); if (virtio_vdev_has_feature(vdev, VIRTIO_F_VERSION_1)) { vdev->status = vdev->status | VIRTIO_CONFIG_S_NEEDS_RESET; virtio_notify_config(vdev); } vdev->broken = true; } static void virtio_memory_listener_commit(MemoryListener *listener) { VirtIODevice *vdev = container_of(listener, VirtIODevice, listener); int i; for (i = 0; i < VIRTIO_QUEUE_MAX; i++) { if (vdev->vq[i].vring.num == 0) { break; } virtio_init_region_cache(vdev, i); } } static void virtio_device_realize(DeviceState *dev, Error **errp) { VirtIODevice *vdev = VIRTIO_DEVICE(dev); VirtioDeviceClass *vdc = VIRTIO_DEVICE_GET_CLASS(dev); Error *err = NULL; /* Devices should either use vmsd or the load/save methods */ assert(!vdc->vmsd || !vdc->load); if (vdc->realize != NULL) { vdc->realize(dev, &err); if (err != NULL) { error_propagate(errp, err); return; } } virtio_bus_device_plugged(vdev, &err); if (err != NULL) { error_propagate(errp, err); vdc->unrealize(dev, NULL); return; } vdev->listener.commit = virtio_memory_listener_commit; memory_listener_register(&vdev->listener, vdev->dma_as); } static void virtio_device_unrealize(DeviceState *dev, Error **errp) { VirtIODevice *vdev = VIRTIO_DEVICE(dev); VirtioDeviceClass *vdc = VIRTIO_DEVICE_GET_CLASS(dev); Error *err = NULL; virtio_bus_device_unplugged(vdev); if (vdc->unrealize != NULL) { vdc->unrealize(dev, &err); if (err != NULL) { error_propagate(errp, err); return; } } g_free(vdev->bus_name); vdev->bus_name = NULL; } static void virtio_device_free_virtqueues(VirtIODevice *vdev) { int i; if (!vdev->vq) { return; } for (i = 0; i < VIRTIO_QUEUE_MAX; i++) { if (vdev->vq[i].vring.num == 0) { break; } virtio_virtqueue_reset_region_cache(&vdev->vq[i]); } g_free(vdev->vq); } static void virtio_device_instance_finalize(Object *obj) { VirtIODevice *vdev = VIRTIO_DEVICE(obj); memory_listener_unregister(&vdev->listener); virtio_device_free_virtqueues(vdev); g_free(vdev->config); g_free(vdev->vector_queues); } static Property virtio_properties[] = { DEFINE_VIRTIO_COMMON_FEATURES(VirtIODevice, host_features), DEFINE_PROP_END_OF_LIST(), }; static int virtio_device_start_ioeventfd_impl(VirtIODevice *vdev) { VirtioBusState *qbus = VIRTIO_BUS(qdev_get_parent_bus(DEVICE(vdev))); int n, r, err; for (n = 0; n < VIRTIO_QUEUE_MAX; n++) { VirtQueue *vq = &vdev->vq[n]; if (!virtio_queue_get_num(vdev, n)) { continue; } r = virtio_bus_set_host_notifier(qbus, n, true); if (r < 0) { err = r; goto assign_error; } event_notifier_set_handler(&vq->host_notifier, virtio_queue_host_notifier_read); } for (n = 0; n < VIRTIO_QUEUE_MAX; n++) { /* Kick right away to begin processing requests already in vring */ VirtQueue *vq = &vdev->vq[n]; if (!vq->vring.num) { continue; } event_notifier_set(&vq->host_notifier); } return 0; assign_error: while (--n >= 0) { VirtQueue *vq = &vdev->vq[n]; if (!virtio_queue_get_num(vdev, n)) { continue; } event_notifier_set_handler(&vq->host_notifier, NULL); r = virtio_bus_set_host_notifier(qbus, n, false); assert(r >= 0); } return err; } int virtio_device_start_ioeventfd(VirtIODevice *vdev) { BusState *qbus = qdev_get_parent_bus(DEVICE(vdev)); VirtioBusState *vbus = VIRTIO_BUS(qbus); return virtio_bus_start_ioeventfd(vbus); } static void virtio_device_stop_ioeventfd_impl(VirtIODevice *vdev) { VirtioBusState *qbus = VIRTIO_BUS(qdev_get_parent_bus(DEVICE(vdev))); int n, r; for (n = 0; n < VIRTIO_QUEUE_MAX; n++) { VirtQueue *vq = &vdev->vq[n]; if (!virtio_queue_get_num(vdev, n)) { continue; } event_notifier_set_handler(&vq->host_notifier, NULL); r = virtio_bus_set_host_notifier(qbus, n, false); assert(r >= 0); } } void virtio_device_stop_ioeventfd(VirtIODevice *vdev) { BusState *qbus = qdev_get_parent_bus(DEVICE(vdev)); VirtioBusState *vbus = VIRTIO_BUS(qbus); virtio_bus_stop_ioeventfd(vbus); } int virtio_device_grab_ioeventfd(VirtIODevice *vdev) { BusState *qbus = qdev_get_parent_bus(DEVICE(vdev)); VirtioBusState *vbus = VIRTIO_BUS(qbus); return virtio_bus_grab_ioeventfd(vbus); } void virtio_device_release_ioeventfd(VirtIODevice *vdev) { BusState *qbus = qdev_get_parent_bus(DEVICE(vdev)); VirtioBusState *vbus = VIRTIO_BUS(qbus); virtio_bus_release_ioeventfd(vbus); } static void virtio_device_class_init(ObjectClass *klass, void *data) { /* Set the default value here. */ VirtioDeviceClass *vdc = VIRTIO_DEVICE_CLASS(klass); DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = virtio_device_realize; dc->unrealize = virtio_device_unrealize; dc->bus_type = TYPE_VIRTIO_BUS; dc->props = virtio_properties; vdc->start_ioeventfd = virtio_device_start_ioeventfd_impl; vdc->stop_ioeventfd = virtio_device_stop_ioeventfd_impl; vdc->legacy_features |= VIRTIO_LEGACY_FEATURES; } bool virtio_device_ioeventfd_enabled(VirtIODevice *vdev) { BusState *qbus = qdev_get_parent_bus(DEVICE(vdev)); VirtioBusState *vbus = VIRTIO_BUS(qbus); return virtio_bus_ioeventfd_enabled(vbus); } static const TypeInfo virtio_device_info = { .name = TYPE_VIRTIO_DEVICE, .parent = TYPE_DEVICE, .instance_size = sizeof(VirtIODevice), .class_init = virtio_device_class_init, .instance_finalize = virtio_device_instance_finalize, .abstract = true, .class_size = sizeof(VirtioDeviceClass), }; static void virtio_register_types(void) { type_register_static(&virtio_device_info); } type_init(virtio_register_types)