/* * USB xHCI controller emulation * * Copyright (c) 2011 Securiforest * Date: 2011-05-11 ; Author: Hector Martin * Based on usb-ohci.c, emulates Renesas NEC USB 3.0 * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "hw/hw.h" #include "qemu/timer.h" #include "hw/usb.h" #include "hw/pci/pci.h" #include "hw/pci/msi.h" #include "hw/pci/msix.h" #include "trace.h" //#define DEBUG_XHCI //#define DEBUG_DATA #ifdef DEBUG_XHCI #define DPRINTF(...) fprintf(stderr, __VA_ARGS__) #else #define DPRINTF(...) do {} while (0) #endif #define FIXME(_msg) do { fprintf(stderr, "FIXME %s:%d %s\n", \ __func__, __LINE__, _msg); abort(); } while (0) #define MAXPORTS_2 15 #define MAXPORTS_3 15 #define MAXPORTS (MAXPORTS_2+MAXPORTS_3) #define MAXSLOTS 64 #define MAXINTRS 16 #define TD_QUEUE 24 /* Very pessimistic, let's hope it's enough for all cases */ #define EV_QUEUE (((3*TD_QUEUE)+16)*MAXSLOTS) /* Do not deliver ER Full events. NEC's driver does some things not bound * to the specs when it gets them */ #define ER_FULL_HACK #define LEN_CAP 0x40 #define LEN_OPER (0x400 + 0x10 * MAXPORTS) #define LEN_RUNTIME ((MAXINTRS + 1) * 0x20) #define LEN_DOORBELL ((MAXSLOTS + 1) * 0x20) #define OFF_OPER LEN_CAP #define OFF_RUNTIME 0x1000 #define OFF_DOORBELL 0x2000 #define OFF_MSIX_TABLE 0x3000 #define OFF_MSIX_PBA 0x3800 /* must be power of 2 */ #define LEN_REGS 0x4000 #if (OFF_OPER + LEN_OPER) > OFF_RUNTIME #error Increase OFF_RUNTIME #endif #if (OFF_RUNTIME + LEN_RUNTIME) > OFF_DOORBELL #error Increase OFF_DOORBELL #endif #if (OFF_DOORBELL + LEN_DOORBELL) > LEN_REGS # error Increase LEN_REGS #endif /* bit definitions */ #define USBCMD_RS (1<<0) #define USBCMD_HCRST (1<<1) #define USBCMD_INTE (1<<2) #define USBCMD_HSEE (1<<3) #define USBCMD_LHCRST (1<<7) #define USBCMD_CSS (1<<8) #define USBCMD_CRS (1<<9) #define USBCMD_EWE (1<<10) #define USBCMD_EU3S (1<<11) #define USBSTS_HCH (1<<0) #define USBSTS_HSE (1<<2) #define USBSTS_EINT (1<<3) #define USBSTS_PCD (1<<4) #define USBSTS_SSS (1<<8) #define USBSTS_RSS (1<<9) #define USBSTS_SRE (1<<10) #define USBSTS_CNR (1<<11) #define USBSTS_HCE (1<<12) #define PORTSC_CCS (1<<0) #define PORTSC_PED (1<<1) #define PORTSC_OCA (1<<3) #define PORTSC_PR (1<<4) #define PORTSC_PLS_SHIFT 5 #define PORTSC_PLS_MASK 0xf #define PORTSC_PP (1<<9) #define PORTSC_SPEED_SHIFT 10 #define PORTSC_SPEED_MASK 0xf #define PORTSC_SPEED_FULL (1<<10) #define PORTSC_SPEED_LOW (2<<10) #define PORTSC_SPEED_HIGH (3<<10) #define PORTSC_SPEED_SUPER (4<<10) #define PORTSC_PIC_SHIFT 14 #define PORTSC_PIC_MASK 0x3 #define PORTSC_LWS (1<<16) #define PORTSC_CSC (1<<17) #define PORTSC_PEC (1<<18) #define PORTSC_WRC (1<<19) #define PORTSC_OCC (1<<20) #define PORTSC_PRC (1<<21) #define PORTSC_PLC (1<<22) #define PORTSC_CEC (1<<23) #define PORTSC_CAS (1<<24) #define PORTSC_WCE (1<<25) #define PORTSC_WDE (1<<26) #define PORTSC_WOE (1<<27) #define PORTSC_DR (1<<30) #define PORTSC_WPR (1<<31) #define CRCR_RCS (1<<0) #define CRCR_CS (1<<1) #define CRCR_CA (1<<2) #define CRCR_CRR (1<<3) #define IMAN_IP (1<<0) #define IMAN_IE (1<<1) #define ERDP_EHB (1<<3) #define TRB_SIZE 16 typedef struct XHCITRB { uint64_t parameter; uint32_t status; uint32_t control; dma_addr_t addr; bool ccs; } XHCITRB; enum { PLS_U0 = 0, PLS_U1 = 1, PLS_U2 = 2, PLS_U3 = 3, PLS_DISABLED = 4, PLS_RX_DETECT = 5, PLS_INACTIVE = 6, PLS_POLLING = 7, PLS_RECOVERY = 8, PLS_HOT_RESET = 9, PLS_COMPILANCE_MODE = 10, PLS_TEST_MODE = 11, PLS_RESUME = 15, }; typedef enum TRBType { TRB_RESERVED = 0, TR_NORMAL, TR_SETUP, TR_DATA, TR_STATUS, TR_ISOCH, TR_LINK, TR_EVDATA, TR_NOOP, CR_ENABLE_SLOT, CR_DISABLE_SLOT, CR_ADDRESS_DEVICE, CR_CONFIGURE_ENDPOINT, CR_EVALUATE_CONTEXT, CR_RESET_ENDPOINT, CR_STOP_ENDPOINT, CR_SET_TR_DEQUEUE, CR_RESET_DEVICE, CR_FORCE_EVENT, CR_NEGOTIATE_BW, CR_SET_LATENCY_TOLERANCE, CR_GET_PORT_BANDWIDTH, CR_FORCE_HEADER, CR_NOOP, ER_TRANSFER = 32, ER_COMMAND_COMPLETE, ER_PORT_STATUS_CHANGE, ER_BANDWIDTH_REQUEST, ER_DOORBELL, ER_HOST_CONTROLLER, ER_DEVICE_NOTIFICATION, ER_MFINDEX_WRAP, /* vendor specific bits */ CR_VENDOR_VIA_CHALLENGE_RESPONSE = 48, CR_VENDOR_NEC_FIRMWARE_REVISION = 49, CR_VENDOR_NEC_CHALLENGE_RESPONSE = 50, } TRBType; #define CR_LINK TR_LINK typedef enum TRBCCode { CC_INVALID = 0, CC_SUCCESS, CC_DATA_BUFFER_ERROR, CC_BABBLE_DETECTED, CC_USB_TRANSACTION_ERROR, CC_TRB_ERROR, CC_STALL_ERROR, CC_RESOURCE_ERROR, CC_BANDWIDTH_ERROR, CC_NO_SLOTS_ERROR, CC_INVALID_STREAM_TYPE_ERROR, CC_SLOT_NOT_ENABLED_ERROR, CC_EP_NOT_ENABLED_ERROR, CC_SHORT_PACKET, CC_RING_UNDERRUN, CC_RING_OVERRUN, CC_VF_ER_FULL, CC_PARAMETER_ERROR, CC_BANDWIDTH_OVERRUN, CC_CONTEXT_STATE_ERROR, CC_NO_PING_RESPONSE_ERROR, CC_EVENT_RING_FULL_ERROR, CC_INCOMPATIBLE_DEVICE_ERROR, CC_MISSED_SERVICE_ERROR, CC_COMMAND_RING_STOPPED, CC_COMMAND_ABORTED, CC_STOPPED, CC_STOPPED_LENGTH_INVALID, CC_MAX_EXIT_LATENCY_TOO_LARGE_ERROR = 29, CC_ISOCH_BUFFER_OVERRUN = 31, CC_EVENT_LOST_ERROR, CC_UNDEFINED_ERROR, CC_INVALID_STREAM_ID_ERROR, CC_SECONDARY_BANDWIDTH_ERROR, CC_SPLIT_TRANSACTION_ERROR } TRBCCode; #define TRB_C (1<<0) #define TRB_TYPE_SHIFT 10 #define TRB_TYPE_MASK 0x3f #define TRB_TYPE(t) (((t).control >> TRB_TYPE_SHIFT) & TRB_TYPE_MASK) #define TRB_EV_ED (1<<2) #define TRB_TR_ENT (1<<1) #define TRB_TR_ISP (1<<2) #define TRB_TR_NS (1<<3) #define TRB_TR_CH (1<<4) #define TRB_TR_IOC (1<<5) #define TRB_TR_IDT (1<<6) #define TRB_TR_TBC_SHIFT 7 #define TRB_TR_TBC_MASK 0x3 #define TRB_TR_BEI (1<<9) #define TRB_TR_TLBPC_SHIFT 16 #define TRB_TR_TLBPC_MASK 0xf #define TRB_TR_FRAMEID_SHIFT 20 #define TRB_TR_FRAMEID_MASK 0x7ff #define TRB_TR_SIA (1<<31) #define TRB_TR_DIR (1<<16) #define TRB_CR_SLOTID_SHIFT 24 #define TRB_CR_SLOTID_MASK 0xff #define TRB_CR_EPID_SHIFT 16 #define TRB_CR_EPID_MASK 0x1f #define TRB_CR_BSR (1<<9) #define TRB_CR_DC (1<<9) #define TRB_LK_TC (1<<1) #define TRB_INTR_SHIFT 22 #define TRB_INTR_MASK 0x3ff #define TRB_INTR(t) (((t).status >> TRB_INTR_SHIFT) & TRB_INTR_MASK) #define EP_TYPE_MASK 0x7 #define EP_TYPE_SHIFT 3 #define EP_STATE_MASK 0x7 #define EP_DISABLED (0<<0) #define EP_RUNNING (1<<0) #define EP_HALTED (2<<0) #define EP_STOPPED (3<<0) #define EP_ERROR (4<<0) #define SLOT_STATE_MASK 0x1f #define SLOT_STATE_SHIFT 27 #define SLOT_STATE(s) (((s)>>SLOT_STATE_SHIFT)&SLOT_STATE_MASK) #define SLOT_ENABLED 0 #define SLOT_DEFAULT 1 #define SLOT_ADDRESSED 2 #define SLOT_CONFIGURED 3 #define SLOT_CONTEXT_ENTRIES_MASK 0x1f #define SLOT_CONTEXT_ENTRIES_SHIFT 27 typedef struct XHCIState XHCIState; typedef struct XHCIStreamContext XHCIStreamContext; typedef struct XHCIEPContext XHCIEPContext; #define get_field(data, field) \ (((data) >> field##_SHIFT) & field##_MASK) #define set_field(data, newval, field) do { \ uint32_t val = *data; \ val &= ~(field##_MASK << field##_SHIFT); \ val |= ((newval) & field##_MASK) << field##_SHIFT; \ *data = val; \ } while (0) typedef enum EPType { ET_INVALID = 0, ET_ISO_OUT, ET_BULK_OUT, ET_INTR_OUT, ET_CONTROL, ET_ISO_IN, ET_BULK_IN, ET_INTR_IN, } EPType; typedef struct XHCIRing { dma_addr_t dequeue; bool ccs; } XHCIRing; typedef struct XHCIPort { XHCIState *xhci; uint32_t portsc; uint32_t portnr; USBPort *uport; uint32_t speedmask; char name[16]; MemoryRegion mem; } XHCIPort; typedef struct XHCITransfer { XHCIState *xhci; USBPacket packet; QEMUSGList sgl; bool running_async; bool running_retry; bool complete; bool int_req; unsigned int iso_pkts; unsigned int slotid; unsigned int epid; unsigned int streamid; bool in_xfer; bool iso_xfer; bool timed_xfer; unsigned int trb_count; unsigned int trb_alloced; XHCITRB *trbs; TRBCCode status; unsigned int pkts; unsigned int pktsize; unsigned int cur_pkt; uint64_t mfindex_kick; } XHCITransfer; struct XHCIStreamContext { dma_addr_t pctx; unsigned int sct; XHCIRing ring; }; struct XHCIEPContext { XHCIState *xhci; unsigned int slotid; unsigned int epid; XHCIRing ring; unsigned int next_xfer; unsigned int comp_xfer; XHCITransfer transfers[TD_QUEUE]; XHCITransfer *retry; EPType type; dma_addr_t pctx; unsigned int max_psize; uint32_t state; /* streams */ unsigned int max_pstreams; bool lsa; unsigned int nr_pstreams; XHCIStreamContext *pstreams; /* iso xfer scheduling */ unsigned int interval; int64_t mfindex_last; QEMUTimer *kick_timer; }; typedef struct XHCISlot { bool enabled; bool addressed; dma_addr_t ctx; USBPort *uport; XHCIEPContext * eps[31]; } XHCISlot; typedef struct XHCIEvent { TRBType type; TRBCCode ccode; uint64_t ptr; uint32_t length; uint32_t flags; uint8_t slotid; uint8_t epid; } XHCIEvent; typedef struct XHCIInterrupter { uint32_t iman; uint32_t imod; uint32_t erstsz; uint32_t erstba_low; uint32_t erstba_high; uint32_t erdp_low; uint32_t erdp_high; bool msix_used, er_pcs, er_full; dma_addr_t er_start; uint32_t er_size; unsigned int er_ep_idx; XHCIEvent ev_buffer[EV_QUEUE]; unsigned int ev_buffer_put; unsigned int ev_buffer_get; } XHCIInterrupter; struct XHCIState { /*< private >*/ PCIDevice parent_obj; /*< public >*/ USBBus bus; MemoryRegion mem; MemoryRegion mem_cap; MemoryRegion mem_oper; MemoryRegion mem_runtime; MemoryRegion mem_doorbell; /* properties */ uint32_t numports_2; uint32_t numports_3; uint32_t numintrs; uint32_t numslots; uint32_t flags; uint32_t max_pstreams_mask; /* Operational Registers */ uint32_t usbcmd; uint32_t usbsts; uint32_t dnctrl; uint32_t crcr_low; uint32_t crcr_high; uint32_t dcbaap_low; uint32_t dcbaap_high; uint32_t config; USBPort uports[MAX(MAXPORTS_2, MAXPORTS_3)]; XHCIPort ports[MAXPORTS]; XHCISlot slots[MAXSLOTS]; uint32_t numports; /* Runtime Registers */ int64_t mfindex_start; QEMUTimer *mfwrap_timer; XHCIInterrupter intr[MAXINTRS]; XHCIRing cmd_ring; }; #define TYPE_XHCI "nec-usb-xhci" #define XHCI(obj) \ OBJECT_CHECK(XHCIState, (obj), TYPE_XHCI) typedef struct XHCIEvRingSeg { uint32_t addr_low; uint32_t addr_high; uint32_t size; uint32_t rsvd; } XHCIEvRingSeg; enum xhci_flags { XHCI_FLAG_USE_MSI = 1, XHCI_FLAG_USE_MSI_X, XHCI_FLAG_SS_FIRST, XHCI_FLAG_FORCE_PCIE_ENDCAP, XHCI_FLAG_ENABLE_STREAMS, }; static void xhci_kick_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid, unsigned int streamid); static TRBCCode xhci_disable_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid); static void xhci_xfer_report(XHCITransfer *xfer); static void xhci_event(XHCIState *xhci, XHCIEvent *event, int v); static void xhci_write_event(XHCIState *xhci, XHCIEvent *event, int v); static USBEndpoint *xhci_epid_to_usbep(XHCIState *xhci, unsigned int slotid, unsigned int epid); static const char *TRBType_names[] = { [TRB_RESERVED] = "TRB_RESERVED", [TR_NORMAL] = "TR_NORMAL", [TR_SETUP] = "TR_SETUP", [TR_DATA] = "TR_DATA", [TR_STATUS] = "TR_STATUS", [TR_ISOCH] = "TR_ISOCH", [TR_LINK] = "TR_LINK", [TR_EVDATA] = "TR_EVDATA", [TR_NOOP] = "TR_NOOP", [CR_ENABLE_SLOT] = "CR_ENABLE_SLOT", [CR_DISABLE_SLOT] = "CR_DISABLE_SLOT", [CR_ADDRESS_DEVICE] = "CR_ADDRESS_DEVICE", [CR_CONFIGURE_ENDPOINT] = "CR_CONFIGURE_ENDPOINT", [CR_EVALUATE_CONTEXT] = "CR_EVALUATE_CONTEXT", [CR_RESET_ENDPOINT] = "CR_RESET_ENDPOINT", [CR_STOP_ENDPOINT] = "CR_STOP_ENDPOINT", [CR_SET_TR_DEQUEUE] = "CR_SET_TR_DEQUEUE", [CR_RESET_DEVICE] = "CR_RESET_DEVICE", [CR_FORCE_EVENT] = "CR_FORCE_EVENT", [CR_NEGOTIATE_BW] = "CR_NEGOTIATE_BW", [CR_SET_LATENCY_TOLERANCE] = "CR_SET_LATENCY_TOLERANCE", [CR_GET_PORT_BANDWIDTH] = "CR_GET_PORT_BANDWIDTH", [CR_FORCE_HEADER] = "CR_FORCE_HEADER", [CR_NOOP] = "CR_NOOP", [ER_TRANSFER] = "ER_TRANSFER", [ER_COMMAND_COMPLETE] = "ER_COMMAND_COMPLETE", [ER_PORT_STATUS_CHANGE] = "ER_PORT_STATUS_CHANGE", [ER_BANDWIDTH_REQUEST] = "ER_BANDWIDTH_REQUEST", [ER_DOORBELL] = "ER_DOORBELL", [ER_HOST_CONTROLLER] = "ER_HOST_CONTROLLER", [ER_DEVICE_NOTIFICATION] = "ER_DEVICE_NOTIFICATION", [ER_MFINDEX_WRAP] = "ER_MFINDEX_WRAP", [CR_VENDOR_VIA_CHALLENGE_RESPONSE] = "CR_VENDOR_VIA_CHALLENGE_RESPONSE", [CR_VENDOR_NEC_FIRMWARE_REVISION] = "CR_VENDOR_NEC_FIRMWARE_REVISION", [CR_VENDOR_NEC_CHALLENGE_RESPONSE] = "CR_VENDOR_NEC_CHALLENGE_RESPONSE", }; static const char *TRBCCode_names[] = { [CC_INVALID] = "CC_INVALID", [CC_SUCCESS] = "CC_SUCCESS", [CC_DATA_BUFFER_ERROR] = "CC_DATA_BUFFER_ERROR", [CC_BABBLE_DETECTED] = "CC_BABBLE_DETECTED", [CC_USB_TRANSACTION_ERROR] = "CC_USB_TRANSACTION_ERROR", [CC_TRB_ERROR] = "CC_TRB_ERROR", [CC_STALL_ERROR] = "CC_STALL_ERROR", [CC_RESOURCE_ERROR] = "CC_RESOURCE_ERROR", [CC_BANDWIDTH_ERROR] = "CC_BANDWIDTH_ERROR", [CC_NO_SLOTS_ERROR] = "CC_NO_SLOTS_ERROR", [CC_INVALID_STREAM_TYPE_ERROR] = "CC_INVALID_STREAM_TYPE_ERROR", [CC_SLOT_NOT_ENABLED_ERROR] = "CC_SLOT_NOT_ENABLED_ERROR", [CC_EP_NOT_ENABLED_ERROR] = "CC_EP_NOT_ENABLED_ERROR", [CC_SHORT_PACKET] = "CC_SHORT_PACKET", [CC_RING_UNDERRUN] = "CC_RING_UNDERRUN", [CC_RING_OVERRUN] = "CC_RING_OVERRUN", [CC_VF_ER_FULL] = "CC_VF_ER_FULL", [CC_PARAMETER_ERROR] = "CC_PARAMETER_ERROR", [CC_BANDWIDTH_OVERRUN] = "CC_BANDWIDTH_OVERRUN", [CC_CONTEXT_STATE_ERROR] = "CC_CONTEXT_STATE_ERROR", [CC_NO_PING_RESPONSE_ERROR] = "CC_NO_PING_RESPONSE_ERROR", [CC_EVENT_RING_FULL_ERROR] = "CC_EVENT_RING_FULL_ERROR", [CC_INCOMPATIBLE_DEVICE_ERROR] = "CC_INCOMPATIBLE_DEVICE_ERROR", [CC_MISSED_SERVICE_ERROR] = "CC_MISSED_SERVICE_ERROR", [CC_COMMAND_RING_STOPPED] = "CC_COMMAND_RING_STOPPED", [CC_COMMAND_ABORTED] = "CC_COMMAND_ABORTED", [CC_STOPPED] = "CC_STOPPED", [CC_STOPPED_LENGTH_INVALID] = "CC_STOPPED_LENGTH_INVALID", [CC_MAX_EXIT_LATENCY_TOO_LARGE_ERROR] = "CC_MAX_EXIT_LATENCY_TOO_LARGE_ERROR", [CC_ISOCH_BUFFER_OVERRUN] = "CC_ISOCH_BUFFER_OVERRUN", [CC_EVENT_LOST_ERROR] = "CC_EVENT_LOST_ERROR", [CC_UNDEFINED_ERROR] = "CC_UNDEFINED_ERROR", [CC_INVALID_STREAM_ID_ERROR] = "CC_INVALID_STREAM_ID_ERROR", [CC_SECONDARY_BANDWIDTH_ERROR] = "CC_SECONDARY_BANDWIDTH_ERROR", [CC_SPLIT_TRANSACTION_ERROR] = "CC_SPLIT_TRANSACTION_ERROR", }; static const char *ep_state_names[] = { [EP_DISABLED] = "disabled", [EP_RUNNING] = "running", [EP_HALTED] = "halted", [EP_STOPPED] = "stopped", [EP_ERROR] = "error", }; static const char *lookup_name(uint32_t index, const char **list, uint32_t llen) { if (index >= llen || list[index] == NULL) { return "???"; } return list[index]; } static const char *trb_name(XHCITRB *trb) { return lookup_name(TRB_TYPE(*trb), TRBType_names, ARRAY_SIZE(TRBType_names)); } static const char *event_name(XHCIEvent *event) { return lookup_name(event->ccode, TRBCCode_names, ARRAY_SIZE(TRBCCode_names)); } static const char *ep_state_name(uint32_t state) { return lookup_name(state, ep_state_names, ARRAY_SIZE(ep_state_names)); } static bool xhci_get_flag(XHCIState *xhci, enum xhci_flags bit) { return xhci->flags & (1 << bit); } static uint64_t xhci_mfindex_get(XHCIState *xhci) { int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); return (now - xhci->mfindex_start) / 125000; } static void xhci_mfwrap_update(XHCIState *xhci) { const uint32_t bits = USBCMD_RS | USBCMD_EWE; uint32_t mfindex, left; int64_t now; if ((xhci->usbcmd & bits) == bits) { now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); mfindex = ((now - xhci->mfindex_start) / 125000) & 0x3fff; left = 0x4000 - mfindex; timer_mod(xhci->mfwrap_timer, now + left * 125000); } else { timer_del(xhci->mfwrap_timer); } } static void xhci_mfwrap_timer(void *opaque) { XHCIState *xhci = opaque; XHCIEvent wrap = { ER_MFINDEX_WRAP, CC_SUCCESS }; xhci_event(xhci, &wrap, 0); xhci_mfwrap_update(xhci); } static inline dma_addr_t xhci_addr64(uint32_t low, uint32_t high) { if (sizeof(dma_addr_t) == 4) { return low; } else { return low | (((dma_addr_t)high << 16) << 16); } } static inline dma_addr_t xhci_mask64(uint64_t addr) { if (sizeof(dma_addr_t) == 4) { return addr & 0xffffffff; } else { return addr; } } static inline void xhci_dma_read_u32s(XHCIState *xhci, dma_addr_t addr, uint32_t *buf, size_t len) { int i; assert((len % sizeof(uint32_t)) == 0); pci_dma_read(PCI_DEVICE(xhci), addr, buf, len); for (i = 0; i < (len / sizeof(uint32_t)); i++) { buf[i] = le32_to_cpu(buf[i]); } } static inline void xhci_dma_write_u32s(XHCIState *xhci, dma_addr_t addr, uint32_t *buf, size_t len) { int i; uint32_t tmp[len / sizeof(uint32_t)]; assert((len % sizeof(uint32_t)) == 0); for (i = 0; i < (len / sizeof(uint32_t)); i++) { tmp[i] = cpu_to_le32(buf[i]); } pci_dma_write(PCI_DEVICE(xhci), addr, tmp, len); } static XHCIPort *xhci_lookup_port(XHCIState *xhci, struct USBPort *uport) { int index; if (!uport->dev) { return NULL; } switch (uport->dev->speed) { case USB_SPEED_LOW: case USB_SPEED_FULL: case USB_SPEED_HIGH: if (xhci_get_flag(xhci, XHCI_FLAG_SS_FIRST)) { index = uport->index + xhci->numports_3; } else { index = uport->index; } break; case USB_SPEED_SUPER: if (xhci_get_flag(xhci, XHCI_FLAG_SS_FIRST)) { index = uport->index; } else { index = uport->index + xhci->numports_2; } break; default: return NULL; } return &xhci->ports[index]; } static void xhci_intx_update(XHCIState *xhci) { PCIDevice *pci_dev = PCI_DEVICE(xhci); int level = 0; if (msix_enabled(pci_dev) || msi_enabled(pci_dev)) { return; } if (xhci->intr[0].iman & IMAN_IP && xhci->intr[0].iman & IMAN_IE && xhci->usbcmd & USBCMD_INTE) { level = 1; } trace_usb_xhci_irq_intx(level); pci_set_irq(pci_dev, level); } static void xhci_msix_update(XHCIState *xhci, int v) { PCIDevice *pci_dev = PCI_DEVICE(xhci); bool enabled; if (!msix_enabled(pci_dev)) { return; } enabled = xhci->intr[v].iman & IMAN_IE; if (enabled == xhci->intr[v].msix_used) { return; } if (enabled) { trace_usb_xhci_irq_msix_use(v); msix_vector_use(pci_dev, v); xhci->intr[v].msix_used = true; } else { trace_usb_xhci_irq_msix_unuse(v); msix_vector_unuse(pci_dev, v); xhci->intr[v].msix_used = false; } } static void xhci_intr_raise(XHCIState *xhci, int v) { PCIDevice *pci_dev = PCI_DEVICE(xhci); xhci->intr[v].erdp_low |= ERDP_EHB; xhci->intr[v].iman |= IMAN_IP; xhci->usbsts |= USBSTS_EINT; if (!(xhci->intr[v].iman & IMAN_IE)) { return; } if (!(xhci->usbcmd & USBCMD_INTE)) { return; } if (msix_enabled(pci_dev)) { trace_usb_xhci_irq_msix(v); msix_notify(pci_dev, v); return; } if (msi_enabled(pci_dev)) { trace_usb_xhci_irq_msi(v); msi_notify(pci_dev, v); return; } if (v == 0) { trace_usb_xhci_irq_intx(1); pci_irq_assert(pci_dev); } } static inline int xhci_running(XHCIState *xhci) { return !(xhci->usbsts & USBSTS_HCH) && !xhci->intr[0].er_full; } static void xhci_die(XHCIState *xhci) { xhci->usbsts |= USBSTS_HCE; DPRINTF("xhci: asserted controller error\n"); } static void xhci_write_event(XHCIState *xhci, XHCIEvent *event, int v) { PCIDevice *pci_dev = PCI_DEVICE(xhci); XHCIInterrupter *intr = &xhci->intr[v]; XHCITRB ev_trb; dma_addr_t addr; ev_trb.parameter = cpu_to_le64(event->ptr); ev_trb.status = cpu_to_le32(event->length | (event->ccode << 24)); ev_trb.control = (event->slotid << 24) | (event->epid << 16) | event->flags | (event->type << TRB_TYPE_SHIFT); if (intr->er_pcs) { ev_trb.control |= TRB_C; } ev_trb.control = cpu_to_le32(ev_trb.control); trace_usb_xhci_queue_event(v, intr->er_ep_idx, trb_name(&ev_trb), event_name(event), ev_trb.parameter, ev_trb.status, ev_trb.control); addr = intr->er_start + TRB_SIZE*intr->er_ep_idx; pci_dma_write(pci_dev, addr, &ev_trb, TRB_SIZE); intr->er_ep_idx++; if (intr->er_ep_idx >= intr->er_size) { intr->er_ep_idx = 0; intr->er_pcs = !intr->er_pcs; } } static void xhci_events_update(XHCIState *xhci, int v) { XHCIInterrupter *intr = &xhci->intr[v]; dma_addr_t erdp; unsigned int dp_idx; bool do_irq = 0; if (xhci->usbsts & USBSTS_HCH) { return; } erdp = xhci_addr64(intr->erdp_low, intr->erdp_high); if (erdp < intr->er_start || erdp >= (intr->er_start + TRB_SIZE*intr->er_size)) { DPRINTF("xhci: ERDP out of bounds: "DMA_ADDR_FMT"\n", erdp); DPRINTF("xhci: ER[%d] at "DMA_ADDR_FMT" len %d\n", v, intr->er_start, intr->er_size); xhci_die(xhci); return; } dp_idx = (erdp - intr->er_start) / TRB_SIZE; assert(dp_idx < intr->er_size); /* NEC didn't read section 4.9.4 of the spec (v1.0 p139 top Note) and thus * deadlocks when the ER is full. Hack it by holding off events until * the driver decides to free at least half of the ring */ if (intr->er_full) { int er_free = dp_idx - intr->er_ep_idx; if (er_free <= 0) { er_free += intr->er_size; } if (er_free < (intr->er_size/2)) { DPRINTF("xhci_events_update(): event ring still " "more than half full (hack)\n"); return; } } while (intr->ev_buffer_put != intr->ev_buffer_get) { assert(intr->er_full); if (((intr->er_ep_idx+1) % intr->er_size) == dp_idx) { DPRINTF("xhci_events_update(): event ring full again\n"); #ifndef ER_FULL_HACK XHCIEvent full = {ER_HOST_CONTROLLER, CC_EVENT_RING_FULL_ERROR}; xhci_write_event(xhci, &full, v); #endif do_irq = 1; break; } XHCIEvent *event = &intr->ev_buffer[intr->ev_buffer_get]; xhci_write_event(xhci, event, v); intr->ev_buffer_get++; do_irq = 1; if (intr->ev_buffer_get == EV_QUEUE) { intr->ev_buffer_get = 0; } } if (do_irq) { xhci_intr_raise(xhci, v); } if (intr->er_full && intr->ev_buffer_put == intr->ev_buffer_get) { DPRINTF("xhci_events_update(): event ring no longer full\n"); intr->er_full = 0; } } static void xhci_event(XHCIState *xhci, XHCIEvent *event, int v) { XHCIInterrupter *intr; dma_addr_t erdp; unsigned int dp_idx; if (v >= xhci->numintrs) { DPRINTF("intr nr out of range (%d >= %d)\n", v, xhci->numintrs); return; } intr = &xhci->intr[v]; if (intr->er_full) { DPRINTF("xhci_event(): ER full, queueing\n"); if (((intr->ev_buffer_put+1) % EV_QUEUE) == intr->ev_buffer_get) { DPRINTF("xhci: event queue full, dropping event!\n"); return; } intr->ev_buffer[intr->ev_buffer_put++] = *event; if (intr->ev_buffer_put == EV_QUEUE) { intr->ev_buffer_put = 0; } return; } erdp = xhci_addr64(intr->erdp_low, intr->erdp_high); if (erdp < intr->er_start || erdp >= (intr->er_start + TRB_SIZE*intr->er_size)) { DPRINTF("xhci: ERDP out of bounds: "DMA_ADDR_FMT"\n", erdp); DPRINTF("xhci: ER[%d] at "DMA_ADDR_FMT" len %d\n", v, intr->er_start, intr->er_size); xhci_die(xhci); return; } dp_idx = (erdp - intr->er_start) / TRB_SIZE; assert(dp_idx < intr->er_size); if ((intr->er_ep_idx+1) % intr->er_size == dp_idx) { DPRINTF("xhci_event(): ER full, queueing\n"); #ifndef ER_FULL_HACK XHCIEvent full = {ER_HOST_CONTROLLER, CC_EVENT_RING_FULL_ERROR}; xhci_write_event(xhci, &full); #endif intr->er_full = 1; if (((intr->ev_buffer_put+1) % EV_QUEUE) == intr->ev_buffer_get) { DPRINTF("xhci: event queue full, dropping event!\n"); return; } intr->ev_buffer[intr->ev_buffer_put++] = *event; if (intr->ev_buffer_put == EV_QUEUE) { intr->ev_buffer_put = 0; } } else { xhci_write_event(xhci, event, v); } xhci_intr_raise(xhci, v); } static void xhci_ring_init(XHCIState *xhci, XHCIRing *ring, dma_addr_t base) { ring->dequeue = base; ring->ccs = 1; } static TRBType xhci_ring_fetch(XHCIState *xhci, XHCIRing *ring, XHCITRB *trb, dma_addr_t *addr) { PCIDevice *pci_dev = PCI_DEVICE(xhci); while (1) { TRBType type; pci_dma_read(pci_dev, ring->dequeue, trb, TRB_SIZE); trb->addr = ring->dequeue; trb->ccs = ring->ccs; le64_to_cpus(&trb->parameter); le32_to_cpus(&trb->status); le32_to_cpus(&trb->control); trace_usb_xhci_fetch_trb(ring->dequeue, trb_name(trb), trb->parameter, trb->status, trb->control); if ((trb->control & TRB_C) != ring->ccs) { return 0; } type = TRB_TYPE(*trb); if (type != TR_LINK) { if (addr) { *addr = ring->dequeue; } ring->dequeue += TRB_SIZE; return type; } else { ring->dequeue = xhci_mask64(trb->parameter); if (trb->control & TRB_LK_TC) { ring->ccs = !ring->ccs; } } } } static int xhci_ring_chain_length(XHCIState *xhci, const XHCIRing *ring) { PCIDevice *pci_dev = PCI_DEVICE(xhci); XHCITRB trb; int length = 0; dma_addr_t dequeue = ring->dequeue; bool ccs = ring->ccs; /* hack to bundle together the two/three TDs that make a setup transfer */ bool control_td_set = 0; while (1) { TRBType type; pci_dma_read(pci_dev, dequeue, &trb, TRB_SIZE); le64_to_cpus(&trb.parameter); le32_to_cpus(&trb.status); le32_to_cpus(&trb.control); if ((trb.control & TRB_C) != ccs) { return -length; } type = TRB_TYPE(trb); if (type == TR_LINK) { dequeue = xhci_mask64(trb.parameter); if (trb.control & TRB_LK_TC) { ccs = !ccs; } continue; } length += 1; dequeue += TRB_SIZE; if (type == TR_SETUP) { control_td_set = 1; } else if (type == TR_STATUS) { control_td_set = 0; } if (!control_td_set && !(trb.control & TRB_TR_CH)) { return length; } } } static void xhci_er_reset(XHCIState *xhci, int v) { XHCIInterrupter *intr = &xhci->intr[v]; XHCIEvRingSeg seg; if (intr->erstsz == 0) { /* disabled */ intr->er_start = 0; intr->er_size = 0; return; } /* cache the (sole) event ring segment location */ if (intr->erstsz != 1) { DPRINTF("xhci: invalid value for ERSTSZ: %d\n", intr->erstsz); xhci_die(xhci); return; } dma_addr_t erstba = xhci_addr64(intr->erstba_low, intr->erstba_high); pci_dma_read(PCI_DEVICE(xhci), erstba, &seg, sizeof(seg)); le32_to_cpus(&seg.addr_low); le32_to_cpus(&seg.addr_high); le32_to_cpus(&seg.size); if (seg.size < 16 || seg.size > 4096) { DPRINTF("xhci: invalid value for segment size: %d\n", seg.size); xhci_die(xhci); return; } intr->er_start = xhci_addr64(seg.addr_low, seg.addr_high); intr->er_size = seg.size; intr->er_ep_idx = 0; intr->er_pcs = 1; intr->er_full = 0; DPRINTF("xhci: event ring[%d]:" DMA_ADDR_FMT " [%d]\n", v, intr->er_start, intr->er_size); } static void xhci_run(XHCIState *xhci) { trace_usb_xhci_run(); xhci->usbsts &= ~USBSTS_HCH; xhci->mfindex_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); } static void xhci_stop(XHCIState *xhci) { trace_usb_xhci_stop(); xhci->usbsts |= USBSTS_HCH; xhci->crcr_low &= ~CRCR_CRR; } static XHCIStreamContext *xhci_alloc_stream_contexts(unsigned count, dma_addr_t base) { XHCIStreamContext *stctx; unsigned int i; stctx = g_new0(XHCIStreamContext, count); for (i = 0; i < count; i++) { stctx[i].pctx = base + i * 16; stctx[i].sct = -1; } return stctx; } static void xhci_reset_streams(XHCIEPContext *epctx) { unsigned int i; for (i = 0; i < epctx->nr_pstreams; i++) { epctx->pstreams[i].sct = -1; } } static void xhci_alloc_streams(XHCIEPContext *epctx, dma_addr_t base) { assert(epctx->pstreams == NULL); epctx->nr_pstreams = 2 << epctx->max_pstreams; epctx->pstreams = xhci_alloc_stream_contexts(epctx->nr_pstreams, base); } static void xhci_free_streams(XHCIEPContext *epctx) { assert(epctx->pstreams != NULL); g_free(epctx->pstreams); epctx->pstreams = NULL; epctx->nr_pstreams = 0; } static int xhci_epmask_to_eps_with_streams(XHCIState *xhci, unsigned int slotid, uint32_t epmask, XHCIEPContext **epctxs, USBEndpoint **eps) { XHCISlot *slot; XHCIEPContext *epctx; USBEndpoint *ep; int i, j; assert(slotid >= 1 && slotid <= xhci->numslots); slot = &xhci->slots[slotid - 1]; for (i = 2, j = 0; i <= 31; i++) { if (!(epmask & (1u << i))) { continue; } epctx = slot->eps[i - 1]; ep = xhci_epid_to_usbep(xhci, slotid, i); if (!epctx || !epctx->nr_pstreams || !ep) { continue; } if (epctxs) { epctxs[j] = epctx; } eps[j++] = ep; } return j; } static void xhci_free_device_streams(XHCIState *xhci, unsigned int slotid, uint32_t epmask) { USBEndpoint *eps[30]; int nr_eps; nr_eps = xhci_epmask_to_eps_with_streams(xhci, slotid, epmask, NULL, eps); if (nr_eps) { usb_device_free_streams(eps[0]->dev, eps, nr_eps); } } static TRBCCode xhci_alloc_device_streams(XHCIState *xhci, unsigned int slotid, uint32_t epmask) { XHCIEPContext *epctxs[30]; USBEndpoint *eps[30]; int i, r, nr_eps, req_nr_streams, dev_max_streams; nr_eps = xhci_epmask_to_eps_with_streams(xhci, slotid, epmask, epctxs, eps); if (nr_eps == 0) { return CC_SUCCESS; } req_nr_streams = epctxs[0]->nr_pstreams; dev_max_streams = eps[0]->max_streams; for (i = 1; i < nr_eps; i++) { /* * HdG: I don't expect these to ever trigger, but if they do we need * to come up with another solution, ie group identical endpoints * together and make an usb_device_alloc_streams call per group. */ if (epctxs[i]->nr_pstreams != req_nr_streams) { FIXME("guest streams config not identical for all eps"); return CC_RESOURCE_ERROR; } if (eps[i]->max_streams != dev_max_streams) { FIXME("device streams config not identical for all eps"); return CC_RESOURCE_ERROR; } } /* * max-streams in both the device descriptor and in the controller is a * power of 2. But stream id 0 is reserved, so if a device can do up to 4 * streams the guest will ask for 5 rounded up to the next power of 2 which * becomes 8. For emulated devices usb_device_alloc_streams is a nop. * * For redirected devices however this is an issue, as there we must ask * the real xhci controller to alloc streams, and the host driver for the * real xhci controller will likely disallow allocating more streams then * the device can handle. * * So we limit the requested nr_streams to the maximum number the device * can handle. */ if (req_nr_streams > dev_max_streams) { req_nr_streams = dev_max_streams; } r = usb_device_alloc_streams(eps[0]->dev, eps, nr_eps, req_nr_streams); if (r != 0) { DPRINTF("xhci: alloc streams failed\n"); return CC_RESOURCE_ERROR; } return CC_SUCCESS; } static XHCIStreamContext *xhci_find_stream(XHCIEPContext *epctx, unsigned int streamid, uint32_t *cc_error) { XHCIStreamContext *sctx; dma_addr_t base; uint32_t ctx[2], sct; assert(streamid != 0); if (epctx->lsa) { if (streamid >= epctx->nr_pstreams) { *cc_error = CC_INVALID_STREAM_ID_ERROR; return NULL; } sctx = epctx->pstreams + streamid; } else { FIXME("secondary streams not implemented yet"); } if (sctx->sct == -1) { xhci_dma_read_u32s(epctx->xhci, sctx->pctx, ctx, sizeof(ctx)); sct = (ctx[0] >> 1) & 0x07; if (epctx->lsa && sct != 1) { *cc_error = CC_INVALID_STREAM_TYPE_ERROR; return NULL; } sctx->sct = sct; base = xhci_addr64(ctx[0] & ~0xf, ctx[1]); xhci_ring_init(epctx->xhci, &sctx->ring, base); } return sctx; } static void xhci_set_ep_state(XHCIState *xhci, XHCIEPContext *epctx, XHCIStreamContext *sctx, uint32_t state) { XHCIRing *ring = NULL; uint32_t ctx[5]; uint32_t ctx2[2]; xhci_dma_read_u32s(xhci, epctx->pctx, ctx, sizeof(ctx)); ctx[0] &= ~EP_STATE_MASK; ctx[0] |= state; /* update ring dequeue ptr */ if (epctx->nr_pstreams) { if (sctx != NULL) { ring = &sctx->ring; xhci_dma_read_u32s(xhci, sctx->pctx, ctx2, sizeof(ctx2)); ctx2[0] &= 0xe; ctx2[0] |= sctx->ring.dequeue | sctx->ring.ccs; ctx2[1] = (sctx->ring.dequeue >> 16) >> 16; xhci_dma_write_u32s(xhci, sctx->pctx, ctx2, sizeof(ctx2)); } } else { ring = &epctx->ring; } if (ring) { ctx[2] = ring->dequeue | ring->ccs; ctx[3] = (ring->dequeue >> 16) >> 16; DPRINTF("xhci: set epctx: " DMA_ADDR_FMT " state=%d dequeue=%08x%08x\n", epctx->pctx, state, ctx[3], ctx[2]); } xhci_dma_write_u32s(xhci, epctx->pctx, ctx, sizeof(ctx)); if (epctx->state != state) { trace_usb_xhci_ep_state(epctx->slotid, epctx->epid, ep_state_name(epctx->state), ep_state_name(state)); } epctx->state = state; } static void xhci_ep_kick_timer(void *opaque) { XHCIEPContext *epctx = opaque; xhci_kick_ep(epctx->xhci, epctx->slotid, epctx->epid, 0); } static XHCIEPContext *xhci_alloc_epctx(XHCIState *xhci, unsigned int slotid, unsigned int epid) { XHCIEPContext *epctx; int i; epctx = g_new0(XHCIEPContext, 1); epctx->xhci = xhci; epctx->slotid = slotid; epctx->epid = epid; for (i = 0; i < ARRAY_SIZE(epctx->transfers); i++) { epctx->transfers[i].xhci = xhci; epctx->transfers[i].slotid = slotid; epctx->transfers[i].epid = epid; usb_packet_init(&epctx->transfers[i].packet); } epctx->kick_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, xhci_ep_kick_timer, epctx); return epctx; } static void xhci_init_epctx(XHCIEPContext *epctx, dma_addr_t pctx, uint32_t *ctx) { dma_addr_t dequeue; dequeue = xhci_addr64(ctx[2] & ~0xf, ctx[3]); epctx->type = (ctx[1] >> EP_TYPE_SHIFT) & EP_TYPE_MASK; epctx->pctx = pctx; epctx->max_psize = ctx[1]>>16; epctx->max_psize *= 1+((ctx[1]>>8)&0xff); epctx->max_pstreams = (ctx[0] >> 10) & epctx->xhci->max_pstreams_mask; epctx->lsa = (ctx[0] >> 15) & 1; if (epctx->max_pstreams) { xhci_alloc_streams(epctx, dequeue); } else { xhci_ring_init(epctx->xhci, &epctx->ring, dequeue); epctx->ring.ccs = ctx[2] & 1; } epctx->interval = 1 << ((ctx[0] >> 16) & 0xff); } static TRBCCode xhci_enable_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid, dma_addr_t pctx, uint32_t *ctx) { XHCISlot *slot; XHCIEPContext *epctx; trace_usb_xhci_ep_enable(slotid, epid); assert(slotid >= 1 && slotid <= xhci->numslots); assert(epid >= 1 && epid <= 31); slot = &xhci->slots[slotid-1]; if (slot->eps[epid-1]) { xhci_disable_ep(xhci, slotid, epid); } epctx = xhci_alloc_epctx(xhci, slotid, epid); slot->eps[epid-1] = epctx; xhci_init_epctx(epctx, pctx, ctx); DPRINTF("xhci: endpoint %d.%d type is %d, max transaction (burst) " "size is %d\n", epid/2, epid%2, epctx->type, epctx->max_psize); epctx->mfindex_last = 0; epctx->state = EP_RUNNING; ctx[0] &= ~EP_STATE_MASK; ctx[0] |= EP_RUNNING; return CC_SUCCESS; } static int xhci_ep_nuke_one_xfer(XHCITransfer *t, TRBCCode report) { int killed = 0; if (report && (t->running_async || t->running_retry)) { t->status = report; xhci_xfer_report(t); } if (t->running_async) { usb_cancel_packet(&t->packet); t->running_async = 0; killed = 1; } if (t->running_retry) { XHCIEPContext *epctx = t->xhci->slots[t->slotid-1].eps[t->epid-1]; if (epctx) { epctx->retry = NULL; timer_del(epctx->kick_timer); } t->running_retry = 0; killed = 1; } if (t->trbs) { g_free(t->trbs); } t->trbs = NULL; t->trb_count = t->trb_alloced = 0; return killed; } static int xhci_ep_nuke_xfers(XHCIState *xhci, unsigned int slotid, unsigned int epid, TRBCCode report) { XHCISlot *slot; XHCIEPContext *epctx; int i, xferi, killed = 0; USBEndpoint *ep = NULL; assert(slotid >= 1 && slotid <= xhci->numslots); assert(epid >= 1 && epid <= 31); DPRINTF("xhci_ep_nuke_xfers(%d, %d)\n", slotid, epid); slot = &xhci->slots[slotid-1]; if (!slot->eps[epid-1]) { return 0; } epctx = slot->eps[epid-1]; xferi = epctx->next_xfer; for (i = 0; i < TD_QUEUE; i++) { killed += xhci_ep_nuke_one_xfer(&epctx->transfers[xferi], report); if (killed) { report = 0; /* Only report once */ } epctx->transfers[xferi].packet.ep = NULL; xferi = (xferi + 1) % TD_QUEUE; } ep = xhci_epid_to_usbep(xhci, slotid, epid); if (ep) { usb_device_ep_stopped(ep->dev, ep); } return killed; } static TRBCCode xhci_disable_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid) { XHCISlot *slot; XHCIEPContext *epctx; int i; trace_usb_xhci_ep_disable(slotid, epid); assert(slotid >= 1 && slotid <= xhci->numslots); assert(epid >= 1 && epid <= 31); slot = &xhci->slots[slotid-1]; if (!slot->eps[epid-1]) { DPRINTF("xhci: slot %d ep %d already disabled\n", slotid, epid); return CC_SUCCESS; } xhci_ep_nuke_xfers(xhci, slotid, epid, 0); epctx = slot->eps[epid-1]; if (epctx->nr_pstreams) { xhci_free_streams(epctx); } for (i = 0; i < ARRAY_SIZE(epctx->transfers); i++) { usb_packet_cleanup(&epctx->transfers[i].packet); } xhci_set_ep_state(xhci, epctx, NULL, EP_DISABLED); timer_free(epctx->kick_timer); g_free(epctx); slot->eps[epid-1] = NULL; return CC_SUCCESS; } static TRBCCode xhci_stop_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid) { XHCISlot *slot; XHCIEPContext *epctx; trace_usb_xhci_ep_stop(slotid, epid); assert(slotid >= 1 && slotid <= xhci->numslots); if (epid < 1 || epid > 31) { DPRINTF("xhci: bad ep %d\n", epid); return CC_TRB_ERROR; } slot = &xhci->slots[slotid-1]; if (!slot->eps[epid-1]) { DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid); return CC_EP_NOT_ENABLED_ERROR; } if (xhci_ep_nuke_xfers(xhci, slotid, epid, CC_STOPPED) > 0) { DPRINTF("xhci: FIXME: endpoint stopped w/ xfers running, " "data might be lost\n"); } epctx = slot->eps[epid-1]; xhci_set_ep_state(xhci, epctx, NULL, EP_STOPPED); if (epctx->nr_pstreams) { xhci_reset_streams(epctx); } return CC_SUCCESS; } static TRBCCode xhci_reset_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid) { XHCISlot *slot; XHCIEPContext *epctx; trace_usb_xhci_ep_reset(slotid, epid); assert(slotid >= 1 && slotid <= xhci->numslots); if (epid < 1 || epid > 31) { DPRINTF("xhci: bad ep %d\n", epid); return CC_TRB_ERROR; } slot = &xhci->slots[slotid-1]; if (!slot->eps[epid-1]) { DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid); return CC_EP_NOT_ENABLED_ERROR; } epctx = slot->eps[epid-1]; if (epctx->state != EP_HALTED) { DPRINTF("xhci: reset EP while EP %d not halted (%d)\n", epid, epctx->state); return CC_CONTEXT_STATE_ERROR; } if (xhci_ep_nuke_xfers(xhci, slotid, epid, 0) > 0) { DPRINTF("xhci: FIXME: endpoint reset w/ xfers running, " "data might be lost\n"); } if (!xhci->slots[slotid-1].uport || !xhci->slots[slotid-1].uport->dev || !xhci->slots[slotid-1].uport->dev->attached) { return CC_USB_TRANSACTION_ERROR; } xhci_set_ep_state(xhci, epctx, NULL, EP_STOPPED); if (epctx->nr_pstreams) { xhci_reset_streams(epctx); } return CC_SUCCESS; } static TRBCCode xhci_set_ep_dequeue(XHCIState *xhci, unsigned int slotid, unsigned int epid, unsigned int streamid, uint64_t pdequeue) { XHCISlot *slot; XHCIEPContext *epctx; XHCIStreamContext *sctx; dma_addr_t dequeue; assert(slotid >= 1 && slotid <= xhci->numslots); if (epid < 1 || epid > 31) { DPRINTF("xhci: bad ep %d\n", epid); return CC_TRB_ERROR; } trace_usb_xhci_ep_set_dequeue(slotid, epid, streamid, pdequeue); dequeue = xhci_mask64(pdequeue); slot = &xhci->slots[slotid-1]; if (!slot->eps[epid-1]) { DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid); return CC_EP_NOT_ENABLED_ERROR; } epctx = slot->eps[epid-1]; if (epctx->state != EP_STOPPED) { DPRINTF("xhci: set EP dequeue pointer while EP %d not stopped\n", epid); return CC_CONTEXT_STATE_ERROR; } if (epctx->nr_pstreams) { uint32_t err; sctx = xhci_find_stream(epctx, streamid, &err); if (sctx == NULL) { return err; } xhci_ring_init(xhci, &sctx->ring, dequeue & ~0xf); sctx->ring.ccs = dequeue & 1; } else { sctx = NULL; xhci_ring_init(xhci, &epctx->ring, dequeue & ~0xF); epctx->ring.ccs = dequeue & 1; } xhci_set_ep_state(xhci, epctx, sctx, EP_STOPPED); return CC_SUCCESS; } static int xhci_xfer_create_sgl(XHCITransfer *xfer, int in_xfer) { XHCIState *xhci = xfer->xhci; int i; xfer->int_req = false; pci_dma_sglist_init(&xfer->sgl, PCI_DEVICE(xhci), xfer->trb_count); for (i = 0; i < xfer->trb_count; i++) { XHCITRB *trb = &xfer->trbs[i]; dma_addr_t addr; unsigned int chunk = 0; if (trb->control & TRB_TR_IOC) { xfer->int_req = true; } switch (TRB_TYPE(*trb)) { case TR_DATA: if ((!(trb->control & TRB_TR_DIR)) != (!in_xfer)) { DPRINTF("xhci: data direction mismatch for TR_DATA\n"); goto err; } /* fallthrough */ case TR_NORMAL: case TR_ISOCH: addr = xhci_mask64(trb->parameter); chunk = trb->status & 0x1ffff; if (trb->control & TRB_TR_IDT) { if (chunk > 8 || in_xfer) { DPRINTF("xhci: invalid immediate data TRB\n"); goto err; } qemu_sglist_add(&xfer->sgl, trb->addr, chunk); } else { qemu_sglist_add(&xfer->sgl, addr, chunk); } break; } } return 0; err: qemu_sglist_destroy(&xfer->sgl); xhci_die(xhci); return -1; } static void xhci_xfer_unmap(XHCITransfer *xfer) { usb_packet_unmap(&xfer->packet, &xfer->sgl); qemu_sglist_destroy(&xfer->sgl); } static void xhci_xfer_report(XHCITransfer *xfer) { uint32_t edtla = 0; unsigned int left; bool reported = 0; bool shortpkt = 0; XHCIEvent event = {ER_TRANSFER, CC_SUCCESS}; XHCIState *xhci = xfer->xhci; int i; left = xfer->packet.actual_length; for (i = 0; i < xfer->trb_count; i++) { XHCITRB *trb = &xfer->trbs[i]; unsigned int chunk = 0; switch (TRB_TYPE(*trb)) { case TR_DATA: case TR_NORMAL: case TR_ISOCH: chunk = trb->status & 0x1ffff; if (chunk > left) { chunk = left; if (xfer->status == CC_SUCCESS) { shortpkt = 1; } } left -= chunk; edtla += chunk; break; case TR_STATUS: reported = 0; shortpkt = 0; break; } if (!reported && ((trb->control & TRB_TR_IOC) || (shortpkt && (trb->control & TRB_TR_ISP)) || (xfer->status != CC_SUCCESS && left == 0))) { event.slotid = xfer->slotid; event.epid = xfer->epid; event.length = (trb->status & 0x1ffff) - chunk; event.flags = 0; event.ptr = trb->addr; if (xfer->status == CC_SUCCESS) { event.ccode = shortpkt ? CC_SHORT_PACKET : CC_SUCCESS; } else { event.ccode = xfer->status; } if (TRB_TYPE(*trb) == TR_EVDATA) { event.ptr = trb->parameter; event.flags |= TRB_EV_ED; event.length = edtla & 0xffffff; DPRINTF("xhci_xfer_data: EDTLA=%d\n", event.length); edtla = 0; } xhci_event(xhci, &event, TRB_INTR(*trb)); reported = 1; if (xfer->status != CC_SUCCESS) { return; } } } } static void xhci_stall_ep(XHCITransfer *xfer) { XHCIState *xhci = xfer->xhci; XHCISlot *slot = &xhci->slots[xfer->slotid-1]; XHCIEPContext *epctx = slot->eps[xfer->epid-1]; uint32_t err; XHCIStreamContext *sctx; if (epctx->nr_pstreams) { sctx = xhci_find_stream(epctx, xfer->streamid, &err); if (sctx == NULL) { return; } sctx->ring.dequeue = xfer->trbs[0].addr; sctx->ring.ccs = xfer->trbs[0].ccs; xhci_set_ep_state(xhci, epctx, sctx, EP_HALTED); } else { epctx->ring.dequeue = xfer->trbs[0].addr; epctx->ring.ccs = xfer->trbs[0].ccs; xhci_set_ep_state(xhci, epctx, NULL, EP_HALTED); } } static int xhci_submit(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx); static int xhci_setup_packet(XHCITransfer *xfer) { XHCIState *xhci = xfer->xhci; USBEndpoint *ep; int dir; dir = xfer->in_xfer ? USB_TOKEN_IN : USB_TOKEN_OUT; if (xfer->packet.ep) { ep = xfer->packet.ep; } else { ep = xhci_epid_to_usbep(xhci, xfer->slotid, xfer->epid); if (!ep) { DPRINTF("xhci: slot %d has no device\n", xfer->slotid); return -1; } } xhci_xfer_create_sgl(xfer, dir == USB_TOKEN_IN); /* Also sets int_req */ usb_packet_setup(&xfer->packet, dir, ep, xfer->streamid, xfer->trbs[0].addr, false, xfer->int_req); usb_packet_map(&xfer->packet, &xfer->sgl); DPRINTF("xhci: setup packet pid 0x%x addr %d ep %d\n", xfer->packet.pid, ep->dev->addr, ep->nr); return 0; } static int xhci_complete_packet(XHCITransfer *xfer) { if (xfer->packet.status == USB_RET_ASYNC) { trace_usb_xhci_xfer_async(xfer); xfer->running_async = 1; xfer->running_retry = 0; xfer->complete = 0; return 0; } else if (xfer->packet.status == USB_RET_NAK) { trace_usb_xhci_xfer_nak(xfer); xfer->running_async = 0; xfer->running_retry = 1; xfer->complete = 0; return 0; } else { xfer->running_async = 0; xfer->running_retry = 0; xfer->complete = 1; xhci_xfer_unmap(xfer); } if (xfer->packet.status == USB_RET_SUCCESS) { trace_usb_xhci_xfer_success(xfer, xfer->packet.actual_length); xfer->status = CC_SUCCESS; xhci_xfer_report(xfer); return 0; } /* error */ trace_usb_xhci_xfer_error(xfer, xfer->packet.status); switch (xfer->packet.status) { case USB_RET_NODEV: case USB_RET_IOERROR: xfer->status = CC_USB_TRANSACTION_ERROR; xhci_xfer_report(xfer); xhci_stall_ep(xfer); break; case USB_RET_STALL: xfer->status = CC_STALL_ERROR; xhci_xfer_report(xfer); xhci_stall_ep(xfer); break; case USB_RET_BABBLE: xfer->status = CC_BABBLE_DETECTED; xhci_xfer_report(xfer); xhci_stall_ep(xfer); break; default: DPRINTF("%s: FIXME: status = %d\n", __func__, xfer->packet.status); FIXME("unhandled USB_RET_*"); } return 0; } static int xhci_fire_ctl_transfer(XHCIState *xhci, XHCITransfer *xfer) { XHCITRB *trb_setup, *trb_status; uint8_t bmRequestType; trb_setup = &xfer->trbs[0]; trb_status = &xfer->trbs[xfer->trb_count-1]; trace_usb_xhci_xfer_start(xfer, xfer->slotid, xfer->epid, xfer->streamid); /* at most one Event Data TRB allowed after STATUS */ if (TRB_TYPE(*trb_status) == TR_EVDATA && xfer->trb_count > 2) { trb_status--; } /* do some sanity checks */ if (TRB_TYPE(*trb_setup) != TR_SETUP) { DPRINTF("xhci: ep0 first TD not SETUP: %d\n", TRB_TYPE(*trb_setup)); return -1; } if (TRB_TYPE(*trb_status) != TR_STATUS) { DPRINTF("xhci: ep0 last TD not STATUS: %d\n", TRB_TYPE(*trb_status)); return -1; } if (!(trb_setup->control & TRB_TR_IDT)) { DPRINTF("xhci: Setup TRB doesn't have IDT set\n"); return -1; } if ((trb_setup->status & 0x1ffff) != 8) { DPRINTF("xhci: Setup TRB has bad length (%d)\n", (trb_setup->status & 0x1ffff)); return -1; } bmRequestType = trb_setup->parameter; xfer->in_xfer = bmRequestType & USB_DIR_IN; xfer->iso_xfer = false; xfer->timed_xfer = false; if (xhci_setup_packet(xfer) < 0) { return -1; } xfer->packet.parameter = trb_setup->parameter; usb_handle_packet(xfer->packet.ep->dev, &xfer->packet); xhci_complete_packet(xfer); if (!xfer->running_async && !xfer->running_retry) { xhci_kick_ep(xhci, xfer->slotid, xfer->epid, 0); } return 0; } static void xhci_calc_intr_kick(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx, uint64_t mfindex) { uint64_t asap = ((mfindex + epctx->interval - 1) & ~(epctx->interval-1)); uint64_t kick = epctx->mfindex_last + epctx->interval; assert(epctx->interval != 0); xfer->mfindex_kick = MAX(asap, kick); } static void xhci_calc_iso_kick(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx, uint64_t mfindex) { if (xfer->trbs[0].control & TRB_TR_SIA) { uint64_t asap = ((mfindex + epctx->interval - 1) & ~(epctx->interval-1)); if (asap >= epctx->mfindex_last && asap <= epctx->mfindex_last + epctx->interval * 4) { xfer->mfindex_kick = epctx->mfindex_last + epctx->interval; } else { xfer->mfindex_kick = asap; } } else { xfer->mfindex_kick = ((xfer->trbs[0].control >> TRB_TR_FRAMEID_SHIFT) & TRB_TR_FRAMEID_MASK) << 3; xfer->mfindex_kick |= mfindex & ~0x3fff; if (xfer->mfindex_kick + 0x100 < mfindex) { xfer->mfindex_kick += 0x4000; } } } static void xhci_check_intr_iso_kick(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx, uint64_t mfindex) { if (xfer->mfindex_kick > mfindex) { timer_mod(epctx->kick_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (xfer->mfindex_kick - mfindex) * 125000); xfer->running_retry = 1; } else { epctx->mfindex_last = xfer->mfindex_kick; timer_del(epctx->kick_timer); xfer->running_retry = 0; } } static int xhci_submit(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx) { uint64_t mfindex; DPRINTF("xhci_submit(slotid=%d,epid=%d)\n", xfer->slotid, xfer->epid); xfer->in_xfer = epctx->type>>2; switch(epctx->type) { case ET_INTR_OUT: case ET_INTR_IN: xfer->pkts = 0; xfer->iso_xfer = false; xfer->timed_xfer = true; mfindex = xhci_mfindex_get(xhci); xhci_calc_intr_kick(xhci, xfer, epctx, mfindex); xhci_check_intr_iso_kick(xhci, xfer, epctx, mfindex); if (xfer->running_retry) { return -1; } break; case ET_BULK_OUT: case ET_BULK_IN: xfer->pkts = 0; xfer->iso_xfer = false; xfer->timed_xfer = false; break; case ET_ISO_OUT: case ET_ISO_IN: xfer->pkts = 1; xfer->iso_xfer = true; xfer->timed_xfer = true; mfindex = xhci_mfindex_get(xhci); xhci_calc_iso_kick(xhci, xfer, epctx, mfindex); xhci_check_intr_iso_kick(xhci, xfer, epctx, mfindex); if (xfer->running_retry) { return -1; } break; default: trace_usb_xhci_unimplemented("endpoint type", epctx->type); return -1; } if (xhci_setup_packet(xfer) < 0) { return -1; } usb_handle_packet(xfer->packet.ep->dev, &xfer->packet); xhci_complete_packet(xfer); if (!xfer->running_async && !xfer->running_retry) { xhci_kick_ep(xhci, xfer->slotid, xfer->epid, xfer->streamid); } return 0; } static int xhci_fire_transfer(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx) { trace_usb_xhci_xfer_start(xfer, xfer->slotid, xfer->epid, xfer->streamid); return xhci_submit(xhci, xfer, epctx); } static void xhci_kick_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid, unsigned int streamid) { XHCIStreamContext *stctx; XHCIEPContext *epctx; XHCIRing *ring; USBEndpoint *ep = NULL; uint64_t mfindex; int length; int i; trace_usb_xhci_ep_kick(slotid, epid, streamid); assert(slotid >= 1 && slotid <= xhci->numslots); assert(epid >= 1 && epid <= 31); if (!xhci->slots[slotid-1].enabled) { DPRINTF("xhci: xhci_kick_ep for disabled slot %d\n", slotid); return; } epctx = xhci->slots[slotid-1].eps[epid-1]; if (!epctx) { DPRINTF("xhci: xhci_kick_ep for disabled endpoint %d,%d\n", epid, slotid); return; } /* If the device has been detached, but the guest has not noticed this yet the 2 above checks will succeed, but we must NOT continue */ if (!xhci->slots[slotid - 1].uport || !xhci->slots[slotid - 1].uport->dev || !xhci->slots[slotid - 1].uport->dev->attached) { return; } if (epctx->retry) { XHCITransfer *xfer = epctx->retry; trace_usb_xhci_xfer_retry(xfer); assert(xfer->running_retry); if (xfer->timed_xfer) { /* time to kick the transfer? */ mfindex = xhci_mfindex_get(xhci); xhci_check_intr_iso_kick(xhci, xfer, epctx, mfindex); if (xfer->running_retry) { return; } xfer->timed_xfer = 0; xfer->running_retry = 1; } if (xfer->iso_xfer) { /* retry iso transfer */ if (xhci_setup_packet(xfer) < 0) { return; } usb_handle_packet(xfer->packet.ep->dev, &xfer->packet); assert(xfer->packet.status != USB_RET_NAK); xhci_complete_packet(xfer); } else { /* retry nak'ed transfer */ if (xhci_setup_packet(xfer) < 0) { return; } usb_handle_packet(xfer->packet.ep->dev, &xfer->packet); if (xfer->packet.status == USB_RET_NAK) { return; } xhci_complete_packet(xfer); } assert(!xfer->running_retry); epctx->retry = NULL; } if (epctx->state == EP_HALTED) { DPRINTF("xhci: ep halted, not running schedule\n"); return; } if (epctx->nr_pstreams) { uint32_t err; stctx = xhci_find_stream(epctx, streamid, &err); if (stctx == NULL) { return; } ring = &stctx->ring; xhci_set_ep_state(xhci, epctx, stctx, EP_RUNNING); } else { ring = &epctx->ring; streamid = 0; xhci_set_ep_state(xhci, epctx, NULL, EP_RUNNING); } assert(ring->dequeue != 0); while (1) { XHCITransfer *xfer = &epctx->transfers[epctx->next_xfer]; if (xfer->running_async || xfer->running_retry) { break; } length = xhci_ring_chain_length(xhci, ring); if (length < 0) { break; } else if (length == 0) { break; } if (xfer->trbs && xfer->trb_alloced < length) { xfer->trb_count = 0; xfer->trb_alloced = 0; g_free(xfer->trbs); xfer->trbs = NULL; } if (!xfer->trbs) { xfer->trbs = g_malloc(sizeof(XHCITRB) * length); xfer->trb_alloced = length; } xfer->trb_count = length; for (i = 0; i < length; i++) { assert(xhci_ring_fetch(xhci, ring, &xfer->trbs[i], NULL)); } xfer->streamid = streamid; if (epid == 1) { if (xhci_fire_ctl_transfer(xhci, xfer) >= 0) { epctx->next_xfer = (epctx->next_xfer + 1) % TD_QUEUE; ep = xfer->packet.ep; } else { DPRINTF("xhci: error firing CTL transfer\n"); } } else { if (xhci_fire_transfer(xhci, xfer, epctx) >= 0) { epctx->next_xfer = (epctx->next_xfer + 1) % TD_QUEUE; } else { if (!xfer->timed_xfer) { DPRINTF("xhci: error firing data transfer\n"); } } } if (epctx->state == EP_HALTED) { break; } if (xfer->running_retry) { DPRINTF("xhci: xfer nacked, stopping schedule\n"); epctx->retry = xfer; break; } } ep = xhci_epid_to_usbep(xhci, slotid, epid); if (ep) { usb_device_flush_ep_queue(ep->dev, ep); } } static TRBCCode xhci_enable_slot(XHCIState *xhci, unsigned int slotid) { trace_usb_xhci_slot_enable(slotid); assert(slotid >= 1 && slotid <= xhci->numslots); xhci->slots[slotid-1].enabled = 1; xhci->slots[slotid-1].uport = NULL; memset(xhci->slots[slotid-1].eps, 0, sizeof(XHCIEPContext*)*31); return CC_SUCCESS; } static TRBCCode xhci_disable_slot(XHCIState *xhci, unsigned int slotid) { int i; trace_usb_xhci_slot_disable(slotid); assert(slotid >= 1 && slotid <= xhci->numslots); for (i = 1; i <= 31; i++) { if (xhci->slots[slotid-1].eps[i-1]) { xhci_disable_ep(xhci, slotid, i); } } xhci->slots[slotid-1].enabled = 0; xhci->slots[slotid-1].addressed = 0; xhci->slots[slotid-1].uport = NULL; return CC_SUCCESS; } static USBPort *xhci_lookup_uport(XHCIState *xhci, uint32_t *slot_ctx) { USBPort *uport; char path[32]; int i, pos, port; port = (slot_ctx[1]>>16) & 0xFF; port = xhci->ports[port-1].uport->index+1; pos = snprintf(path, sizeof(path), "%d", port); for (i = 0; i < 5; i++) { port = (slot_ctx[0] >> 4*i) & 0x0f; if (!port) { break; } pos += snprintf(path + pos, sizeof(path) - pos, ".%d", port); } QTAILQ_FOREACH(uport, &xhci->bus.used, next) { if (strcmp(uport->path, path) == 0) { return uport; } } return NULL; } static TRBCCode xhci_address_slot(XHCIState *xhci, unsigned int slotid, uint64_t pictx, bool bsr) { XHCISlot *slot; USBPort *uport; USBDevice *dev; dma_addr_t ictx, octx, dcbaap; uint64_t poctx; uint32_t ictl_ctx[2]; uint32_t slot_ctx[4]; uint32_t ep0_ctx[5]; int i; TRBCCode res; assert(slotid >= 1 && slotid <= xhci->numslots); dcbaap = xhci_addr64(xhci->dcbaap_low, xhci->dcbaap_high); poctx = ldq_le_pci_dma(PCI_DEVICE(xhci), dcbaap + 8 * slotid); ictx = xhci_mask64(pictx); octx = xhci_mask64(poctx); DPRINTF("xhci: input context at "DMA_ADDR_FMT"\n", ictx); DPRINTF("xhci: output context at "DMA_ADDR_FMT"\n", octx); xhci_dma_read_u32s(xhci, ictx, ictl_ctx, sizeof(ictl_ctx)); if (ictl_ctx[0] != 0x0 || ictl_ctx[1] != 0x3) { DPRINTF("xhci: invalid input context control %08x %08x\n", ictl_ctx[0], ictl_ctx[1]); return CC_TRB_ERROR; } xhci_dma_read_u32s(xhci, ictx+32, slot_ctx, sizeof(slot_ctx)); xhci_dma_read_u32s(xhci, ictx+64, ep0_ctx, sizeof(ep0_ctx)); DPRINTF("xhci: input slot context: %08x %08x %08x %08x\n", slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]); DPRINTF("xhci: input ep0 context: %08x %08x %08x %08x %08x\n", ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]); uport = xhci_lookup_uport(xhci, slot_ctx); if (uport == NULL) { DPRINTF("xhci: port not found\n"); return CC_TRB_ERROR; } trace_usb_xhci_slot_address(slotid, uport->path); dev = uport->dev; if (!dev || !dev->attached) { DPRINTF("xhci: port %s not connected\n", uport->path); return CC_USB_TRANSACTION_ERROR; } for (i = 0; i < xhci->numslots; i++) { if (i == slotid-1) { continue; } if (xhci->slots[i].uport == uport) { DPRINTF("xhci: port %s already assigned to slot %d\n", uport->path, i+1); return CC_TRB_ERROR; } } slot = &xhci->slots[slotid-1]; slot->uport = uport; slot->ctx = octx; if (bsr) { slot_ctx[3] = SLOT_DEFAULT << SLOT_STATE_SHIFT; } else { USBPacket p; uint8_t buf[1]; slot_ctx[3] = (SLOT_ADDRESSED << SLOT_STATE_SHIFT) | slotid; usb_device_reset(dev); memset(&p, 0, sizeof(p)); usb_packet_addbuf(&p, buf, sizeof(buf)); usb_packet_setup(&p, USB_TOKEN_OUT, usb_ep_get(dev, USB_TOKEN_OUT, 0), 0, 0, false, false); usb_device_handle_control(dev, &p, DeviceOutRequest | USB_REQ_SET_ADDRESS, slotid, 0, 0, NULL); assert(p.status != USB_RET_ASYNC); } res = xhci_enable_ep(xhci, slotid, 1, octx+32, ep0_ctx); DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n", slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]); DPRINTF("xhci: output ep0 context: %08x %08x %08x %08x %08x\n", ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]); xhci_dma_write_u32s(xhci, octx, slot_ctx, sizeof(slot_ctx)); xhci_dma_write_u32s(xhci, octx+32, ep0_ctx, sizeof(ep0_ctx)); xhci->slots[slotid-1].addressed = 1; return res; } static TRBCCode xhci_configure_slot(XHCIState *xhci, unsigned int slotid, uint64_t pictx, bool dc) { dma_addr_t ictx, octx; uint32_t ictl_ctx[2]; uint32_t slot_ctx[4]; uint32_t islot_ctx[4]; uint32_t ep_ctx[5]; int i; TRBCCode res; trace_usb_xhci_slot_configure(slotid); assert(slotid >= 1 && slotid <= xhci->numslots); ictx = xhci_mask64(pictx); octx = xhci->slots[slotid-1].ctx; DPRINTF("xhci: input context at "DMA_ADDR_FMT"\n", ictx); DPRINTF("xhci: output context at "DMA_ADDR_FMT"\n", octx); if (dc) { for (i = 2; i <= 31; i++) { if (xhci->slots[slotid-1].eps[i-1]) { xhci_disable_ep(xhci, slotid, i); } } xhci_dma_read_u32s(xhci, octx, slot_ctx, sizeof(slot_ctx)); slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT); slot_ctx[3] |= SLOT_ADDRESSED << SLOT_STATE_SHIFT; DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n", slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]); xhci_dma_write_u32s(xhci, octx, slot_ctx, sizeof(slot_ctx)); return CC_SUCCESS; } xhci_dma_read_u32s(xhci, ictx, ictl_ctx, sizeof(ictl_ctx)); if ((ictl_ctx[0] & 0x3) != 0x0 || (ictl_ctx[1] & 0x3) != 0x1) { DPRINTF("xhci: invalid input context control %08x %08x\n", ictl_ctx[0], ictl_ctx[1]); return CC_TRB_ERROR; } xhci_dma_read_u32s(xhci, ictx+32, islot_ctx, sizeof(islot_ctx)); xhci_dma_read_u32s(xhci, octx, slot_ctx, sizeof(slot_ctx)); if (SLOT_STATE(slot_ctx[3]) < SLOT_ADDRESSED) { DPRINTF("xhci: invalid slot state %08x\n", slot_ctx[3]); return CC_CONTEXT_STATE_ERROR; } xhci_free_device_streams(xhci, slotid, ictl_ctx[0] | ictl_ctx[1]); for (i = 2; i <= 31; i++) { if (ictl_ctx[0] & (1<= 1 && slotid <= xhci->numslots); ictx = xhci_mask64(pictx); octx = xhci->slots[slotid-1].ctx; DPRINTF("xhci: input context at "DMA_ADDR_FMT"\n", ictx); DPRINTF("xhci: output context at "DMA_ADDR_FMT"\n", octx); xhci_dma_read_u32s(xhci, ictx, ictl_ctx, sizeof(ictl_ctx)); if (ictl_ctx[0] != 0x0 || ictl_ctx[1] & ~0x3) { DPRINTF("xhci: invalid input context control %08x %08x\n", ictl_ctx[0], ictl_ctx[1]); return CC_TRB_ERROR; } if (ictl_ctx[1] & 0x1) { xhci_dma_read_u32s(xhci, ictx+32, islot_ctx, sizeof(islot_ctx)); DPRINTF("xhci: input slot context: %08x %08x %08x %08x\n", islot_ctx[0], islot_ctx[1], islot_ctx[2], islot_ctx[3]); xhci_dma_read_u32s(xhci, octx, slot_ctx, sizeof(slot_ctx)); slot_ctx[1] &= ~0xFFFF; /* max exit latency */ slot_ctx[1] |= islot_ctx[1] & 0xFFFF; slot_ctx[2] &= ~0xFF00000; /* interrupter target */ slot_ctx[2] |= islot_ctx[2] & 0xFF000000; DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n", slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]); xhci_dma_write_u32s(xhci, octx, slot_ctx, sizeof(slot_ctx)); } if (ictl_ctx[1] & 0x2) { xhci_dma_read_u32s(xhci, ictx+64, iep0_ctx, sizeof(iep0_ctx)); DPRINTF("xhci: input ep0 context: %08x %08x %08x %08x %08x\n", iep0_ctx[0], iep0_ctx[1], iep0_ctx[2], iep0_ctx[3], iep0_ctx[4]); xhci_dma_read_u32s(xhci, octx+32, ep0_ctx, sizeof(ep0_ctx)); ep0_ctx[1] &= ~0xFFFF0000; /* max packet size*/ ep0_ctx[1] |= iep0_ctx[1] & 0xFFFF0000; DPRINTF("xhci: output ep0 context: %08x %08x %08x %08x %08x\n", ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]); xhci_dma_write_u32s(xhci, octx+32, ep0_ctx, sizeof(ep0_ctx)); } return CC_SUCCESS; } static TRBCCode xhci_reset_slot(XHCIState *xhci, unsigned int slotid) { uint32_t slot_ctx[4]; dma_addr_t octx; int i; trace_usb_xhci_slot_reset(slotid); assert(slotid >= 1 && slotid <= xhci->numslots); octx = xhci->slots[slotid-1].ctx; DPRINTF("xhci: output context at "DMA_ADDR_FMT"\n", octx); for (i = 2; i <= 31; i++) { if (xhci->slots[slotid-1].eps[i-1]) { xhci_disable_ep(xhci, slotid, i); } } xhci_dma_read_u32s(xhci, octx, slot_ctx, sizeof(slot_ctx)); slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT); slot_ctx[3] |= SLOT_DEFAULT << SLOT_STATE_SHIFT; DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n", slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]); xhci_dma_write_u32s(xhci, octx, slot_ctx, sizeof(slot_ctx)); return CC_SUCCESS; } static unsigned int xhci_get_slot(XHCIState *xhci, XHCIEvent *event, XHCITRB *trb) { unsigned int slotid; slotid = (trb->control >> TRB_CR_SLOTID_SHIFT) & TRB_CR_SLOTID_MASK; if (slotid < 1 || slotid > xhci->numslots) { DPRINTF("xhci: bad slot id %d\n", slotid); event->ccode = CC_TRB_ERROR; return 0; } else if (!xhci->slots[slotid-1].enabled) { DPRINTF("xhci: slot id %d not enabled\n", slotid); event->ccode = CC_SLOT_NOT_ENABLED_ERROR; return 0; } return slotid; } /* cleanup slot state on usb device detach */ static void xhci_detach_slot(XHCIState *xhci, USBPort *uport) { int slot, ep; for (slot = 0; slot < xhci->numslots; slot++) { if (xhci->slots[slot].uport == uport) { break; } } if (slot == xhci->numslots) { return; } for (ep = 0; ep < 31; ep++) { if (xhci->slots[slot].eps[ep]) { xhci_ep_nuke_xfers(xhci, slot + 1, ep + 1, 0); } } xhci->slots[slot].uport = NULL; } static TRBCCode xhci_get_port_bandwidth(XHCIState *xhci, uint64_t pctx) { dma_addr_t ctx; uint8_t bw_ctx[xhci->numports+1]; DPRINTF("xhci_get_port_bandwidth()\n"); ctx = xhci_mask64(pctx); DPRINTF("xhci: bandwidth context at "DMA_ADDR_FMT"\n", ctx); /* TODO: actually implement real values here */ bw_ctx[0] = 0; memset(&bw_ctx[1], 80, xhci->numports); /* 80% */ pci_dma_write(PCI_DEVICE(xhci), ctx, bw_ctx, sizeof(bw_ctx)); return CC_SUCCESS; } static uint32_t rotl(uint32_t v, unsigned count) { count &= 31; return (v << count) | (v >> (32 - count)); } static uint32_t xhci_nec_challenge(uint32_t hi, uint32_t lo) { uint32_t val; val = rotl(lo - 0x49434878, 32 - ((hi>>8) & 0x1F)); val += rotl(lo + 0x49434878, hi & 0x1F); val -= rotl(hi ^ 0x49434878, (lo >> 16) & 0x1F); return ~val; } static void xhci_via_challenge(XHCIState *xhci, uint64_t addr) { PCIDevice *pci_dev = PCI_DEVICE(xhci); uint32_t buf[8]; uint32_t obuf[8]; dma_addr_t paddr = xhci_mask64(addr); pci_dma_read(pci_dev, paddr, &buf, 32); memcpy(obuf, buf, sizeof(obuf)); if ((buf[0] & 0xff) == 2) { obuf[0] = 0x49932000 + 0x54dc200 * buf[2] + 0x7429b578 * buf[3]; obuf[0] |= (buf[2] * buf[3]) & 0xff; obuf[1] = 0x0132bb37 + 0xe89 * buf[2] + 0xf09 * buf[3]; obuf[2] = 0x0066c2e9 + 0x2091 * buf[2] + 0x19bd * buf[3]; obuf[3] = 0xd5281342 + 0x2cc9691 * buf[2] + 0x2367662 * buf[3]; obuf[4] = 0x0123c75c + 0x1595 * buf[2] + 0x19ec * buf[3]; obuf[5] = 0x00f695de + 0x26fd * buf[2] + 0x3e9 * buf[3]; obuf[6] = obuf[2] ^ obuf[3] ^ 0x29472956; obuf[7] = obuf[2] ^ obuf[3] ^ 0x65866593; } pci_dma_write(pci_dev, paddr, &obuf, 32); } static void xhci_process_commands(XHCIState *xhci) { XHCITRB trb; TRBType type; XHCIEvent event = {ER_COMMAND_COMPLETE, CC_SUCCESS}; dma_addr_t addr; unsigned int i, slotid = 0; DPRINTF("xhci_process_commands()\n"); if (!xhci_running(xhci)) { DPRINTF("xhci_process_commands() called while xHC stopped or paused\n"); return; } xhci->crcr_low |= CRCR_CRR; while ((type = xhci_ring_fetch(xhci, &xhci->cmd_ring, &trb, &addr))) { event.ptr = addr; switch (type) { case CR_ENABLE_SLOT: for (i = 0; i < xhci->numslots; i++) { if (!xhci->slots[i].enabled) { break; } } if (i >= xhci->numslots) { DPRINTF("xhci: no device slots available\n"); event.ccode = CC_NO_SLOTS_ERROR; } else { slotid = i+1; event.ccode = xhci_enable_slot(xhci, slotid); } break; case CR_DISABLE_SLOT: slotid = xhci_get_slot(xhci, &event, &trb); if (slotid) { event.ccode = xhci_disable_slot(xhci, slotid); } break; case CR_ADDRESS_DEVICE: slotid = xhci_get_slot(xhci, &event, &trb); if (slotid) { event.ccode = xhci_address_slot(xhci, slotid, trb.parameter, trb.control & TRB_CR_BSR); } break; case CR_CONFIGURE_ENDPOINT: slotid = xhci_get_slot(xhci, &event, &trb); if (slotid) { event.ccode = xhci_configure_slot(xhci, slotid, trb.parameter, trb.control & TRB_CR_DC); } break; case CR_EVALUATE_CONTEXT: slotid = xhci_get_slot(xhci, &event, &trb); if (slotid) { event.ccode = xhci_evaluate_slot(xhci, slotid, trb.parameter); } break; case CR_STOP_ENDPOINT: slotid = xhci_get_slot(xhci, &event, &trb); if (slotid) { unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT) & TRB_CR_EPID_MASK; event.ccode = xhci_stop_ep(xhci, slotid, epid); } break; case CR_RESET_ENDPOINT: slotid = xhci_get_slot(xhci, &event, &trb); if (slotid) { unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT) & TRB_CR_EPID_MASK; event.ccode = xhci_reset_ep(xhci, slotid, epid); } break; case CR_SET_TR_DEQUEUE: slotid = xhci_get_slot(xhci, &event, &trb); if (slotid) { unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT) & TRB_CR_EPID_MASK; unsigned int streamid = (trb.status >> 16) & 0xffff; event.ccode = xhci_set_ep_dequeue(xhci, slotid, epid, streamid, trb.parameter); } break; case CR_RESET_DEVICE: slotid = xhci_get_slot(xhci, &event, &trb); if (slotid) { event.ccode = xhci_reset_slot(xhci, slotid); } break; case CR_GET_PORT_BANDWIDTH: event.ccode = xhci_get_port_bandwidth(xhci, trb.parameter); break; case CR_VENDOR_VIA_CHALLENGE_RESPONSE: xhci_via_challenge(xhci, trb.parameter); break; case CR_VENDOR_NEC_FIRMWARE_REVISION: event.type = 48; /* NEC reply */ event.length = 0x3025; break; case CR_VENDOR_NEC_CHALLENGE_RESPONSE: { uint32_t chi = trb.parameter >> 32; uint32_t clo = trb.parameter; uint32_t val = xhci_nec_challenge(chi, clo); event.length = val & 0xFFFF; event.epid = val >> 16; slotid = val >> 24; event.type = 48; /* NEC reply */ } break; default: trace_usb_xhci_unimplemented("command", type); event.ccode = CC_TRB_ERROR; break; } event.slotid = slotid; xhci_event(xhci, &event, 0); } } static bool xhci_port_have_device(XHCIPort *port) { if (!port->uport->dev || !port->uport->dev->attached) { return false; /* no device present */ } if (!((1 << port->uport->dev->speed) & port->speedmask)) { return false; /* speed mismatch */ } return true; } static void xhci_port_notify(XHCIPort *port, uint32_t bits) { XHCIEvent ev = { ER_PORT_STATUS_CHANGE, CC_SUCCESS, port->portnr << 24 }; if ((port->portsc & bits) == bits) { return; } trace_usb_xhci_port_notify(port->portnr, bits); port->portsc |= bits; if (!xhci_running(port->xhci)) { return; } xhci_event(port->xhci, &ev, 0); } static void xhci_port_update(XHCIPort *port, int is_detach) { uint32_t pls = PLS_RX_DETECT; port->portsc = PORTSC_PP; if (!is_detach && xhci_port_have_device(port)) { port->portsc |= PORTSC_CCS; switch (port->uport->dev->speed) { case USB_SPEED_LOW: port->portsc |= PORTSC_SPEED_LOW; pls = PLS_POLLING; break; case USB_SPEED_FULL: port->portsc |= PORTSC_SPEED_FULL; pls = PLS_POLLING; break; case USB_SPEED_HIGH: port->portsc |= PORTSC_SPEED_HIGH; pls = PLS_POLLING; break; case USB_SPEED_SUPER: port->portsc |= PORTSC_SPEED_SUPER; port->portsc |= PORTSC_PED; pls = PLS_U0; break; } } set_field(&port->portsc, pls, PORTSC_PLS); trace_usb_xhci_port_link(port->portnr, pls); xhci_port_notify(port, PORTSC_CSC); } static void xhci_port_reset(XHCIPort *port, bool warm_reset) { trace_usb_xhci_port_reset(port->portnr, warm_reset); if (!xhci_port_have_device(port)) { return; } usb_device_reset(port->uport->dev); switch (port->uport->dev->speed) { case USB_SPEED_SUPER: if (warm_reset) { port->portsc |= PORTSC_WRC; } /* fall through */ case USB_SPEED_LOW: case USB_SPEED_FULL: case USB_SPEED_HIGH: set_field(&port->portsc, PLS_U0, PORTSC_PLS); trace_usb_xhci_port_link(port->portnr, PLS_U0); port->portsc |= PORTSC_PED; break; } port->portsc &= ~PORTSC_PR; xhci_port_notify(port, PORTSC_PRC); } static void xhci_reset(DeviceState *dev) { XHCIState *xhci = XHCI(dev); int i; trace_usb_xhci_reset(); if (!(xhci->usbsts & USBSTS_HCH)) { DPRINTF("xhci: reset while running!\n"); } xhci->usbcmd = 0; xhci->usbsts = USBSTS_HCH; xhci->dnctrl = 0; xhci->crcr_low = 0; xhci->crcr_high = 0; xhci->dcbaap_low = 0; xhci->dcbaap_high = 0; xhci->config = 0; for (i = 0; i < xhci->numslots; i++) { xhci_disable_slot(xhci, i+1); } for (i = 0; i < xhci->numports; i++) { xhci_port_update(xhci->ports + i, 0); } for (i = 0; i < xhci->numintrs; i++) { xhci->intr[i].iman = 0; xhci->intr[i].imod = 0; xhci->intr[i].erstsz = 0; xhci->intr[i].erstba_low = 0; xhci->intr[i].erstba_high = 0; xhci->intr[i].erdp_low = 0; xhci->intr[i].erdp_high = 0; xhci->intr[i].msix_used = 0; xhci->intr[i].er_ep_idx = 0; xhci->intr[i].er_pcs = 1; xhci->intr[i].er_full = 0; xhci->intr[i].ev_buffer_put = 0; xhci->intr[i].ev_buffer_get = 0; } xhci->mfindex_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); xhci_mfwrap_update(xhci); } static uint64_t xhci_cap_read(void *ptr, hwaddr reg, unsigned size) { XHCIState *xhci = ptr; uint32_t ret; switch (reg) { case 0x00: /* HCIVERSION, CAPLENGTH */ ret = 0x01000000 | LEN_CAP; break; case 0x04: /* HCSPARAMS 1 */ ret = ((xhci->numports_2+xhci->numports_3)<<24) | (xhci->numintrs<<8) | xhci->numslots; break; case 0x08: /* HCSPARAMS 2 */ ret = 0x0000000f; break; case 0x0c: /* HCSPARAMS 3 */ ret = 0x00000000; break; case 0x10: /* HCCPARAMS */ if (sizeof(dma_addr_t) == 4) { ret = 0x00080000 | (xhci->max_pstreams_mask << 12); } else { ret = 0x00080001 | (xhci->max_pstreams_mask << 12); } break; case 0x14: /* DBOFF */ ret = OFF_DOORBELL; break; case 0x18: /* RTSOFF */ ret = OFF_RUNTIME; break; /* extended capabilities */ case 0x20: /* Supported Protocol:00 */ ret = 0x02000402; /* USB 2.0 */ break; case 0x24: /* Supported Protocol:04 */ ret = 0x20425355; /* "USB " */ break; case 0x28: /* Supported Protocol:08 */ if (xhci_get_flag(xhci, XHCI_FLAG_SS_FIRST)) { ret = (xhci->numports_2<<8) | (xhci->numports_3+1); } else { ret = (xhci->numports_2<<8) | 1; } break; case 0x2c: /* Supported Protocol:0c */ ret = 0x00000000; /* reserved */ break; case 0x30: /* Supported Protocol:00 */ ret = 0x03000002; /* USB 3.0 */ break; case 0x34: /* Supported Protocol:04 */ ret = 0x20425355; /* "USB " */ break; case 0x38: /* Supported Protocol:08 */ if (xhci_get_flag(xhci, XHCI_FLAG_SS_FIRST)) { ret = (xhci->numports_3<<8) | 1; } else { ret = (xhci->numports_3<<8) | (xhci->numports_2+1); } break; case 0x3c: /* Supported Protocol:0c */ ret = 0x00000000; /* reserved */ break; default: trace_usb_xhci_unimplemented("cap read", reg); ret = 0; } trace_usb_xhci_cap_read(reg, ret); return ret; } static uint64_t xhci_port_read(void *ptr, hwaddr reg, unsigned size) { XHCIPort *port = ptr; uint32_t ret; switch (reg) { case 0x00: /* PORTSC */ ret = port->portsc; break; case 0x04: /* PORTPMSC */ case 0x08: /* PORTLI */ ret = 0; break; case 0x0c: /* reserved */ default: trace_usb_xhci_unimplemented("port read", reg); ret = 0; } trace_usb_xhci_port_read(port->portnr, reg, ret); return ret; } static void xhci_port_write(void *ptr, hwaddr reg, uint64_t val, unsigned size) { XHCIPort *port = ptr; uint32_t portsc, notify; trace_usb_xhci_port_write(port->portnr, reg, val); switch (reg) { case 0x00: /* PORTSC */ /* write-1-to-start bits */ if (val & PORTSC_WPR) { xhci_port_reset(port, true); break; } if (val & PORTSC_PR) { xhci_port_reset(port, false); break; } portsc = port->portsc; notify = 0; /* write-1-to-clear bits*/ portsc &= ~(val & (PORTSC_CSC|PORTSC_PEC|PORTSC_WRC|PORTSC_OCC| PORTSC_PRC|PORTSC_PLC|PORTSC_CEC)); if (val & PORTSC_LWS) { /* overwrite PLS only when LWS=1 */ uint32_t old_pls = get_field(port->portsc, PORTSC_PLS); uint32_t new_pls = get_field(val, PORTSC_PLS); switch (new_pls) { case PLS_U0: if (old_pls != PLS_U0) { set_field(&portsc, new_pls, PORTSC_PLS); trace_usb_xhci_port_link(port->portnr, new_pls); notify = PORTSC_PLC; } break; case PLS_U3: if (old_pls < PLS_U3) { set_field(&portsc, new_pls, PORTSC_PLS); trace_usb_xhci_port_link(port->portnr, new_pls); } break; case PLS_RESUME: /* windows does this for some reason, don't spam stderr */ break; default: DPRINTF("%s: ignore pls write (old %d, new %d)\n", __func__, old_pls, new_pls); break; } } /* read/write bits */ portsc &= ~(PORTSC_PP|PORTSC_WCE|PORTSC_WDE|PORTSC_WOE); portsc |= (val & (PORTSC_PP|PORTSC_WCE|PORTSC_WDE|PORTSC_WOE)); port->portsc = portsc; if (notify) { xhci_port_notify(port, notify); } break; case 0x04: /* PORTPMSC */ case 0x08: /* PORTLI */ default: trace_usb_xhci_unimplemented("port write", reg); } } static uint64_t xhci_oper_read(void *ptr, hwaddr reg, unsigned size) { XHCIState *xhci = ptr; uint32_t ret; switch (reg) { case 0x00: /* USBCMD */ ret = xhci->usbcmd; break; case 0x04: /* USBSTS */ ret = xhci->usbsts; break; case 0x08: /* PAGESIZE */ ret = 1; /* 4KiB */ break; case 0x14: /* DNCTRL */ ret = xhci->dnctrl; break; case 0x18: /* CRCR low */ ret = xhci->crcr_low & ~0xe; break; case 0x1c: /* CRCR high */ ret = xhci->crcr_high; break; case 0x30: /* DCBAAP low */ ret = xhci->dcbaap_low; break; case 0x34: /* DCBAAP high */ ret = xhci->dcbaap_high; break; case 0x38: /* CONFIG */ ret = xhci->config; break; default: trace_usb_xhci_unimplemented("oper read", reg); ret = 0; } trace_usb_xhci_oper_read(reg, ret); return ret; } static void xhci_oper_write(void *ptr, hwaddr reg, uint64_t val, unsigned size) { XHCIState *xhci = ptr; DeviceState *d = DEVICE(ptr); trace_usb_xhci_oper_write(reg, val); switch (reg) { case 0x00: /* USBCMD */ if ((val & USBCMD_RS) && !(xhci->usbcmd & USBCMD_RS)) { xhci_run(xhci); } else if (!(val & USBCMD_RS) && (xhci->usbcmd & USBCMD_RS)) { xhci_stop(xhci); } if (val & USBCMD_CSS) { /* save state */ xhci->usbsts &= ~USBSTS_SRE; } if (val & USBCMD_CRS) { /* restore state */ xhci->usbsts |= USBSTS_SRE; } xhci->usbcmd = val & 0xc0f; xhci_mfwrap_update(xhci); if (val & USBCMD_HCRST) { xhci_reset(d); } xhci_intx_update(xhci); break; case 0x04: /* USBSTS */ /* these bits are write-1-to-clear */ xhci->usbsts &= ~(val & (USBSTS_HSE|USBSTS_EINT|USBSTS_PCD|USBSTS_SRE)); xhci_intx_update(xhci); break; case 0x14: /* DNCTRL */ xhci->dnctrl = val & 0xffff; break; case 0x18: /* CRCR low */ xhci->crcr_low = (val & 0xffffffcf) | (xhci->crcr_low & CRCR_CRR); break; case 0x1c: /* CRCR high */ xhci->crcr_high = val; if (xhci->crcr_low & (CRCR_CA|CRCR_CS) && (xhci->crcr_low & CRCR_CRR)) { XHCIEvent event = {ER_COMMAND_COMPLETE, CC_COMMAND_RING_STOPPED}; xhci->crcr_low &= ~CRCR_CRR; xhci_event(xhci, &event, 0); DPRINTF("xhci: command ring stopped (CRCR=%08x)\n", xhci->crcr_low); } else { dma_addr_t base = xhci_addr64(xhci->crcr_low & ~0x3f, val); xhci_ring_init(xhci, &xhci->cmd_ring, base); } xhci->crcr_low &= ~(CRCR_CA | CRCR_CS); break; case 0x30: /* DCBAAP low */ xhci->dcbaap_low = val & 0xffffffc0; break; case 0x34: /* DCBAAP high */ xhci->dcbaap_high = val; break; case 0x38: /* CONFIG */ xhci->config = val & 0xff; break; default: trace_usb_xhci_unimplemented("oper write", reg); } } static uint64_t xhci_runtime_read(void *ptr, hwaddr reg, unsigned size) { XHCIState *xhci = ptr; uint32_t ret = 0; if (reg < 0x20) { switch (reg) { case 0x00: /* MFINDEX */ ret = xhci_mfindex_get(xhci) & 0x3fff; break; default: trace_usb_xhci_unimplemented("runtime read", reg); break; } } else { int v = (reg - 0x20) / 0x20; XHCIInterrupter *intr = &xhci->intr[v]; switch (reg & 0x1f) { case 0x00: /* IMAN */ ret = intr->iman; break; case 0x04: /* IMOD */ ret = intr->imod; break; case 0x08: /* ERSTSZ */ ret = intr->erstsz; break; case 0x10: /* ERSTBA low */ ret = intr->erstba_low; break; case 0x14: /* ERSTBA high */ ret = intr->erstba_high; break; case 0x18: /* ERDP low */ ret = intr->erdp_low; break; case 0x1c: /* ERDP high */ ret = intr->erdp_high; break; } } trace_usb_xhci_runtime_read(reg, ret); return ret; } static void xhci_runtime_write(void *ptr, hwaddr reg, uint64_t val, unsigned size) { XHCIState *xhci = ptr; int v = (reg - 0x20) / 0x20; XHCIInterrupter *intr = &xhci->intr[v]; trace_usb_xhci_runtime_write(reg, val); if (reg < 0x20) { trace_usb_xhci_unimplemented("runtime write", reg); return; } switch (reg & 0x1f) { case 0x00: /* IMAN */ if (val & IMAN_IP) { intr->iman &= ~IMAN_IP; } intr->iman &= ~IMAN_IE; intr->iman |= val & IMAN_IE; if (v == 0) { xhci_intx_update(xhci); } xhci_msix_update(xhci, v); break; case 0x04: /* IMOD */ intr->imod = val; break; case 0x08: /* ERSTSZ */ intr->erstsz = val & 0xffff; break; case 0x10: /* ERSTBA low */ /* XXX NEC driver bug: it doesn't align this to 64 bytes intr->erstba_low = val & 0xffffffc0; */ intr->erstba_low = val & 0xfffffff0; break; case 0x14: /* ERSTBA high */ intr->erstba_high = val; xhci_er_reset(xhci, v); break; case 0x18: /* ERDP low */ if (val & ERDP_EHB) { intr->erdp_low &= ~ERDP_EHB; } intr->erdp_low = (val & ~ERDP_EHB) | (intr->erdp_low & ERDP_EHB); break; case 0x1c: /* ERDP high */ intr->erdp_high = val; xhci_events_update(xhci, v); break; default: trace_usb_xhci_unimplemented("oper write", reg); } } static uint64_t xhci_doorbell_read(void *ptr, hwaddr reg, unsigned size) { /* doorbells always read as 0 */ trace_usb_xhci_doorbell_read(reg, 0); return 0; } static void xhci_doorbell_write(void *ptr, hwaddr reg, uint64_t val, unsigned size) { XHCIState *xhci = ptr; unsigned int epid, streamid; trace_usb_xhci_doorbell_write(reg, val); if (!xhci_running(xhci)) { DPRINTF("xhci: wrote doorbell while xHC stopped or paused\n"); return; } reg >>= 2; if (reg == 0) { if (val == 0) { xhci_process_commands(xhci); } else { DPRINTF("xhci: bad doorbell 0 write: 0x%x\n", (uint32_t)val); } } else { epid = val & 0xff; streamid = (val >> 16) & 0xffff; if (reg > xhci->numslots) { DPRINTF("xhci: bad doorbell %d\n", (int)reg); } else if (epid > 31) { DPRINTF("xhci: bad doorbell %d write: 0x%x\n", (int)reg, (uint32_t)val); } else { xhci_kick_ep(xhci, reg, epid, streamid); } } } static void xhci_cap_write(void *opaque, hwaddr addr, uint64_t val, unsigned width) { /* nothing */ } static const MemoryRegionOps xhci_cap_ops = { .read = xhci_cap_read, .write = xhci_cap_write, .valid.min_access_size = 1, .valid.max_access_size = 4, .impl.min_access_size = 4, .impl.max_access_size = 4, .endianness = DEVICE_LITTLE_ENDIAN, }; static const MemoryRegionOps xhci_oper_ops = { .read = xhci_oper_read, .write = xhci_oper_write, .valid.min_access_size = 4, .valid.max_access_size = 4, .endianness = DEVICE_LITTLE_ENDIAN, }; static const MemoryRegionOps xhci_port_ops = { .read = xhci_port_read, .write = xhci_port_write, .valid.min_access_size = 4, .valid.max_access_size = 4, .endianness = DEVICE_LITTLE_ENDIAN, }; static const MemoryRegionOps xhci_runtime_ops = { .read = xhci_runtime_read, .write = xhci_runtime_write, .valid.min_access_size = 4, .valid.max_access_size = 4, .endianness = DEVICE_LITTLE_ENDIAN, }; static const MemoryRegionOps xhci_doorbell_ops = { .read = xhci_doorbell_read, .write = xhci_doorbell_write, .valid.min_access_size = 4, .valid.max_access_size = 4, .endianness = DEVICE_LITTLE_ENDIAN, }; static void xhci_attach(USBPort *usbport) { XHCIState *xhci = usbport->opaque; XHCIPort *port = xhci_lookup_port(xhci, usbport); xhci_port_update(port, 0); } static void xhci_detach(USBPort *usbport) { XHCIState *xhci = usbport->opaque; XHCIPort *port = xhci_lookup_port(xhci, usbport); xhci_detach_slot(xhci, usbport); xhci_port_update(port, 1); } static void xhci_wakeup(USBPort *usbport) { XHCIState *xhci = usbport->opaque; XHCIPort *port = xhci_lookup_port(xhci, usbport); if (get_field(port->portsc, PORTSC_PLS) != PLS_U3) { return; } set_field(&port->portsc, PLS_RESUME, PORTSC_PLS); xhci_port_notify(port, PORTSC_PLC); } static void xhci_complete(USBPort *port, USBPacket *packet) { XHCITransfer *xfer = container_of(packet, XHCITransfer, packet); if (packet->status == USB_RET_REMOVE_FROM_QUEUE) { xhci_ep_nuke_one_xfer(xfer, 0); return; } xhci_complete_packet(xfer); xhci_kick_ep(xfer->xhci, xfer->slotid, xfer->epid, xfer->streamid); } static void xhci_child_detach(USBPort *uport, USBDevice *child) { USBBus *bus = usb_bus_from_device(child); XHCIState *xhci = container_of(bus, XHCIState, bus); xhci_detach_slot(xhci, child->port); } static USBPortOps xhci_uport_ops = { .attach = xhci_attach, .detach = xhci_detach, .wakeup = xhci_wakeup, .complete = xhci_complete, .child_detach = xhci_child_detach, }; static int xhci_find_epid(USBEndpoint *ep) { if (ep->nr == 0) { return 1; } if (ep->pid == USB_TOKEN_IN) { return ep->nr * 2 + 1; } else { return ep->nr * 2; } } static USBEndpoint *xhci_epid_to_usbep(XHCIState *xhci, unsigned int slotid, unsigned int epid) { assert(slotid >= 1 && slotid <= xhci->numslots); if (!xhci->slots[slotid - 1].uport) { return NULL; } return usb_ep_get(xhci->slots[slotid - 1].uport->dev, (epid & 1) ? USB_TOKEN_IN : USB_TOKEN_OUT, epid >> 1); } static void xhci_wakeup_endpoint(USBBus *bus, USBEndpoint *ep, unsigned int stream) { XHCIState *xhci = container_of(bus, XHCIState, bus); int slotid; DPRINTF("%s\n", __func__); slotid = ep->dev->addr; if (slotid == 0 || !xhci->slots[slotid-1].enabled) { DPRINTF("%s: oops, no slot for dev %d\n", __func__, ep->dev->addr); return; } xhci_kick_ep(xhci, slotid, xhci_find_epid(ep), stream); } static USBBusOps xhci_bus_ops = { .wakeup_endpoint = xhci_wakeup_endpoint, }; static void usb_xhci_init(XHCIState *xhci) { DeviceState *dev = DEVICE(xhci); XHCIPort *port; int i, usbports, speedmask; xhci->usbsts = USBSTS_HCH; if (xhci->numports_2 > MAXPORTS_2) { xhci->numports_2 = MAXPORTS_2; } if (xhci->numports_3 > MAXPORTS_3) { xhci->numports_3 = MAXPORTS_3; } usbports = MAX(xhci->numports_2, xhci->numports_3); xhci->numports = xhci->numports_2 + xhci->numports_3; usb_bus_new(&xhci->bus, sizeof(xhci->bus), &xhci_bus_ops, dev); for (i = 0; i < usbports; i++) { speedmask = 0; if (i < xhci->numports_2) { if (xhci_get_flag(xhci, XHCI_FLAG_SS_FIRST)) { port = &xhci->ports[i + xhci->numports_3]; port->portnr = i + 1 + xhci->numports_3; } else { port = &xhci->ports[i]; port->portnr = i + 1; } port->uport = &xhci->uports[i]; port->speedmask = USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL | USB_SPEED_MASK_HIGH; snprintf(port->name, sizeof(port->name), "usb2 port #%d", i+1); speedmask |= port->speedmask; } if (i < xhci->numports_3) { if (xhci_get_flag(xhci, XHCI_FLAG_SS_FIRST)) { port = &xhci->ports[i]; port->portnr = i + 1; } else { port = &xhci->ports[i + xhci->numports_2]; port->portnr = i + 1 + xhci->numports_2; } port->uport = &xhci->uports[i]; port->speedmask = USB_SPEED_MASK_SUPER; snprintf(port->name, sizeof(port->name), "usb3 port #%d", i+1); speedmask |= port->speedmask; } usb_register_port(&xhci->bus, &xhci->uports[i], xhci, i, &xhci_uport_ops, speedmask); } } static int usb_xhci_initfn(struct PCIDevice *dev) { int i, ret; XHCIState *xhci = XHCI(dev); dev->config[PCI_CLASS_PROG] = 0x30; /* xHCI */ dev->config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin 1 */ dev->config[PCI_CACHE_LINE_SIZE] = 0x10; dev->config[0x60] = 0x30; /* release number */ usb_xhci_init(xhci); if (xhci->numintrs > MAXINTRS) { xhci->numintrs = MAXINTRS; } while (xhci->numintrs & (xhci->numintrs - 1)) { /* ! power of 2 */ xhci->numintrs++; } if (xhci->numintrs < 1) { xhci->numintrs = 1; } if (xhci->numslots > MAXSLOTS) { xhci->numslots = MAXSLOTS; } if (xhci->numslots < 1) { xhci->numslots = 1; } if (xhci_get_flag(xhci, XHCI_FLAG_ENABLE_STREAMS)) { xhci->max_pstreams_mask = 7; /* == 256 primary streams */ } else { xhci->max_pstreams_mask = 0; } xhci->mfwrap_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, xhci_mfwrap_timer, xhci); memory_region_init(&xhci->mem, OBJECT(xhci), "xhci", LEN_REGS); memory_region_init_io(&xhci->mem_cap, OBJECT(xhci), &xhci_cap_ops, xhci, "capabilities", LEN_CAP); memory_region_init_io(&xhci->mem_oper, OBJECT(xhci), &xhci_oper_ops, xhci, "operational", 0x400); memory_region_init_io(&xhci->mem_runtime, OBJECT(xhci), &xhci_runtime_ops, xhci, "runtime", LEN_RUNTIME); memory_region_init_io(&xhci->mem_doorbell, OBJECT(xhci), &xhci_doorbell_ops, xhci, "doorbell", LEN_DOORBELL); memory_region_add_subregion(&xhci->mem, 0, &xhci->mem_cap); memory_region_add_subregion(&xhci->mem, OFF_OPER, &xhci->mem_oper); memory_region_add_subregion(&xhci->mem, OFF_RUNTIME, &xhci->mem_runtime); memory_region_add_subregion(&xhci->mem, OFF_DOORBELL, &xhci->mem_doorbell); for (i = 0; i < xhci->numports; i++) { XHCIPort *port = &xhci->ports[i]; uint32_t offset = OFF_OPER + 0x400 + 0x10 * i; port->xhci = xhci; memory_region_init_io(&port->mem, OBJECT(xhci), &xhci_port_ops, port, port->name, 0x10); memory_region_add_subregion(&xhci->mem, offset, &port->mem); } pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY|PCI_BASE_ADDRESS_MEM_TYPE_64, &xhci->mem); if (pci_bus_is_express(dev->bus) || xhci_get_flag(xhci, XHCI_FLAG_FORCE_PCIE_ENDCAP)) { ret = pcie_endpoint_cap_init(dev, 0xa0); assert(ret >= 0); } if (xhci_get_flag(xhci, XHCI_FLAG_USE_MSI)) { msi_init(dev, 0x70, xhci->numintrs, true, false); } if (xhci_get_flag(xhci, XHCI_FLAG_USE_MSI_X)) { msix_init(dev, xhci->numintrs, &xhci->mem, 0, OFF_MSIX_TABLE, &xhci->mem, 0, OFF_MSIX_PBA, 0x90); } return 0; } static void usb_xhci_exit(PCIDevice *dev) { int i; XHCIState *xhci = XHCI(dev); trace_usb_xhci_exit(); for (i = 0; i < xhci->numslots; i++) { xhci_disable_slot(xhci, i + 1); } if (xhci->mfwrap_timer) { timer_del(xhci->mfwrap_timer); timer_free(xhci->mfwrap_timer); xhci->mfwrap_timer = NULL; } memory_region_del_subregion(&xhci->mem, &xhci->mem_cap); memory_region_del_subregion(&xhci->mem, &xhci->mem_oper); memory_region_del_subregion(&xhci->mem, &xhci->mem_runtime); memory_region_del_subregion(&xhci->mem, &xhci->mem_doorbell); for (i = 0; i < xhci->numports; i++) { XHCIPort *port = &xhci->ports[i]; memory_region_del_subregion(&xhci->mem, &port->mem); } /* destroy msix memory region */ if (dev->msix_table && dev->msix_pba && dev->msix_entry_used) { memory_region_del_subregion(&xhci->mem, &dev->msix_table_mmio); memory_region_del_subregion(&xhci->mem, &dev->msix_pba_mmio); } usb_bus_release(&xhci->bus); } static int usb_xhci_post_load(void *opaque, int version_id) { XHCIState *xhci = opaque; PCIDevice *pci_dev = PCI_DEVICE(xhci); XHCISlot *slot; XHCIEPContext *epctx; dma_addr_t dcbaap, pctx; uint32_t slot_ctx[4]; uint32_t ep_ctx[5]; int slotid, epid, state, intr; dcbaap = xhci_addr64(xhci->dcbaap_low, xhci->dcbaap_high); for (slotid = 1; slotid <= xhci->numslots; slotid++) { slot = &xhci->slots[slotid-1]; if (!slot->addressed) { continue; } slot->ctx = xhci_mask64(ldq_le_pci_dma(pci_dev, dcbaap + 8 * slotid)); xhci_dma_read_u32s(xhci, slot->ctx, slot_ctx, sizeof(slot_ctx)); slot->uport = xhci_lookup_uport(xhci, slot_ctx); assert(slot->uport && slot->uport->dev); for (epid = 1; epid <= 31; epid++) { pctx = slot->ctx + 32 * epid; xhci_dma_read_u32s(xhci, pctx, ep_ctx, sizeof(ep_ctx)); state = ep_ctx[0] & EP_STATE_MASK; if (state == EP_DISABLED) { continue; } epctx = xhci_alloc_epctx(xhci, slotid, epid); slot->eps[epid-1] = epctx; xhci_init_epctx(epctx, pctx, ep_ctx); epctx->state = state; if (state == EP_RUNNING) { /* kick endpoint after vmload is finished */ timer_mod(epctx->kick_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); } } } for (intr = 0; intr < xhci->numintrs; intr++) { if (xhci->intr[intr].msix_used) { msix_vector_use(pci_dev, intr); } else { msix_vector_unuse(pci_dev, intr); } } return 0; } static const VMStateDescription vmstate_xhci_ring = { .name = "xhci-ring", .version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT64(dequeue, XHCIRing), VMSTATE_BOOL(ccs, XHCIRing), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_xhci_port = { .name = "xhci-port", .version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(portsc, XHCIPort), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_xhci_slot = { .name = "xhci-slot", .version_id = 1, .fields = (VMStateField[]) { VMSTATE_BOOL(enabled, XHCISlot), VMSTATE_BOOL(addressed, XHCISlot), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_xhci_event = { .name = "xhci-event", .version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(type, XHCIEvent), VMSTATE_UINT32(ccode, XHCIEvent), VMSTATE_UINT64(ptr, XHCIEvent), VMSTATE_UINT32(length, XHCIEvent), VMSTATE_UINT32(flags, XHCIEvent), VMSTATE_UINT8(slotid, XHCIEvent), VMSTATE_UINT8(epid, XHCIEvent), VMSTATE_END_OF_LIST() } }; static bool xhci_er_full(void *opaque, int version_id) { struct XHCIInterrupter *intr = opaque; return intr->er_full; } static const VMStateDescription vmstate_xhci_intr = { .name = "xhci-intr", .version_id = 1, .fields = (VMStateField[]) { /* registers */ VMSTATE_UINT32(iman, XHCIInterrupter), VMSTATE_UINT32(imod, XHCIInterrupter), VMSTATE_UINT32(erstsz, XHCIInterrupter), VMSTATE_UINT32(erstba_low, XHCIInterrupter), VMSTATE_UINT32(erstba_high, XHCIInterrupter), VMSTATE_UINT32(erdp_low, XHCIInterrupter), VMSTATE_UINT32(erdp_high, XHCIInterrupter), /* state */ VMSTATE_BOOL(msix_used, XHCIInterrupter), VMSTATE_BOOL(er_pcs, XHCIInterrupter), VMSTATE_UINT64(er_start, XHCIInterrupter), VMSTATE_UINT32(er_size, XHCIInterrupter), VMSTATE_UINT32(er_ep_idx, XHCIInterrupter), /* event queue (used if ring is full) */ VMSTATE_BOOL(er_full, XHCIInterrupter), VMSTATE_UINT32_TEST(ev_buffer_put, XHCIInterrupter, xhci_er_full), VMSTATE_UINT32_TEST(ev_buffer_get, XHCIInterrupter, xhci_er_full), VMSTATE_STRUCT_ARRAY_TEST(ev_buffer, XHCIInterrupter, EV_QUEUE, xhci_er_full, 1, vmstate_xhci_event, XHCIEvent), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_xhci = { .name = "xhci", .version_id = 1, .post_load = usb_xhci_post_load, .fields = (VMStateField[]) { VMSTATE_PCIE_DEVICE(parent_obj, XHCIState), VMSTATE_MSIX(parent_obj, XHCIState), VMSTATE_STRUCT_VARRAY_UINT32(ports, XHCIState, numports, 1, vmstate_xhci_port, XHCIPort), VMSTATE_STRUCT_VARRAY_UINT32(slots, XHCIState, numslots, 1, vmstate_xhci_slot, XHCISlot), VMSTATE_STRUCT_VARRAY_UINT32(intr, XHCIState, numintrs, 1, vmstate_xhci_intr, XHCIInterrupter), /* Operational Registers */ VMSTATE_UINT32(usbcmd, XHCIState), VMSTATE_UINT32(usbsts, XHCIState), VMSTATE_UINT32(dnctrl, XHCIState), VMSTATE_UINT32(crcr_low, XHCIState), VMSTATE_UINT32(crcr_high, XHCIState), VMSTATE_UINT32(dcbaap_low, XHCIState), VMSTATE_UINT32(dcbaap_high, XHCIState), VMSTATE_UINT32(config, XHCIState), /* Runtime Registers & state */ VMSTATE_INT64(mfindex_start, XHCIState), VMSTATE_TIMER(mfwrap_timer, XHCIState), VMSTATE_STRUCT(cmd_ring, XHCIState, 1, vmstate_xhci_ring, XHCIRing), VMSTATE_END_OF_LIST() } }; static Property xhci_properties[] = { DEFINE_PROP_BIT("msi", XHCIState, flags, XHCI_FLAG_USE_MSI, true), DEFINE_PROP_BIT("msix", XHCIState, flags, XHCI_FLAG_USE_MSI_X, true), DEFINE_PROP_BIT("superspeed-ports-first", XHCIState, flags, XHCI_FLAG_SS_FIRST, true), DEFINE_PROP_BIT("force-pcie-endcap", XHCIState, flags, XHCI_FLAG_FORCE_PCIE_ENDCAP, false), DEFINE_PROP_BIT("streams", XHCIState, flags, XHCI_FLAG_ENABLE_STREAMS, true), DEFINE_PROP_UINT32("intrs", XHCIState, numintrs, MAXINTRS), DEFINE_PROP_UINT32("slots", XHCIState, numslots, MAXSLOTS), DEFINE_PROP_UINT32("p2", XHCIState, numports_2, 4), DEFINE_PROP_UINT32("p3", XHCIState, numports_3, 4), DEFINE_PROP_END_OF_LIST(), }; static void xhci_class_init(ObjectClass *klass, void *data) { PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); DeviceClass *dc = DEVICE_CLASS(klass); dc->vmsd = &vmstate_xhci; dc->props = xhci_properties; dc->reset = xhci_reset; set_bit(DEVICE_CATEGORY_USB, dc->categories); k->init = usb_xhci_initfn; k->exit = usb_xhci_exit; k->vendor_id = PCI_VENDOR_ID_NEC; k->device_id = PCI_DEVICE_ID_NEC_UPD720200; k->class_id = PCI_CLASS_SERIAL_USB; k->revision = 0x03; k->is_express = 1; } static const TypeInfo xhci_info = { .name = TYPE_XHCI, .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(XHCIState), .class_init = xhci_class_init, }; static void xhci_register_types(void) { type_register_static(&xhci_info); } type_init(xhci_register_types)