/* * IMX EPIT Timer * * Copyright (c) 2008 OK Labs * Copyright (c) 2011 NICTA Pty Ltd * Originally written by Hans Jiang * Updated by Peter Chubb * Updated by Jean-Christophe Dubois * Updated by Axel Heider * * This code is licensed under GPL version 2 or later. See * the COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include "hw/timer/imx_epit.h" #include "migration/vmstate.h" #include "hw/irq.h" #include "hw/misc/imx_ccm.h" #include "qemu/module.h" #include "qemu/log.h" #ifndef DEBUG_IMX_EPIT #define DEBUG_IMX_EPIT 0 #endif #define DPRINTF(fmt, args...) \ do { \ if (DEBUG_IMX_EPIT) { \ fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_EPIT, \ __func__, ##args); \ } \ } while (0) static const char *imx_epit_reg_name(uint32_t reg) { switch (reg) { case 0: return "CR"; case 1: return "SR"; case 2: return "LR"; case 3: return "CMP"; case 4: return "CNT"; default: return "[?]"; } } /* * Exact clock frequencies vary from board to board. * These are typical. */ static const IMXClk imx_epit_clocks[] = { CLK_NONE, /* 00 disabled */ CLK_IPG, /* 01 ipg_clk, ~532MHz */ CLK_IPG_HIGH, /* 10 ipg_clk_highfreq */ CLK_32k, /* 11 ipg_clk_32k -- ~32kHz */ }; /* * Update interrupt status */ static void imx_epit_update_int(IMXEPITState *s) { if ((s->sr & SR_OCIF) && (s->cr & CR_OCIEN) && (s->cr & CR_EN)) { qemu_irq_raise(s->irq); } else { qemu_irq_lower(s->irq); } } static uint32_t imx_epit_get_freq(IMXEPITState *s) { uint32_t clksrc = extract32(s->cr, CR_CLKSRC_SHIFT, CR_CLKSRC_BITS); uint32_t prescaler = 1 + extract32(s->cr, CR_PRESCALE_SHIFT, CR_PRESCALE_BITS); uint32_t f_in = imx_ccm_get_clock_frequency(s->ccm, imx_epit_clocks[clksrc]); uint32_t freq = f_in / prescaler; DPRINTF("ptimer frequency is %u\n", freq); return freq; } /* * This is called both on hardware (device) reset and software reset. */ static void imx_epit_reset(IMXEPITState *s, bool is_hard_reset) { /* Soft reset doesn't touch some bits; hard reset clears them */ if (is_hard_reset) { s->cr = 0; } else { s->cr &= (CR_EN|CR_ENMOD|CR_STOPEN|CR_DOZEN|CR_WAITEN|CR_DBGEN); } s->sr = 0; s->lr = EPIT_TIMER_MAX; s->cmp = 0; ptimer_transaction_begin(s->timer_cmp); ptimer_transaction_begin(s->timer_reload); /* * The reset switches off the input clock, so even if the CR.EN is still * set, the timers are no longer running. */ assert(imx_epit_get_freq(s) == 0); ptimer_stop(s->timer_cmp); ptimer_stop(s->timer_reload); /* init both timers to EPIT_TIMER_MAX */ ptimer_set_limit(s->timer_cmp, EPIT_TIMER_MAX, 1); ptimer_set_limit(s->timer_reload, EPIT_TIMER_MAX, 1); ptimer_transaction_commit(s->timer_cmp); ptimer_transaction_commit(s->timer_reload); } static uint64_t imx_epit_read(void *opaque, hwaddr offset, unsigned size) { IMXEPITState *s = IMX_EPIT(opaque); uint32_t reg_value = 0; switch (offset >> 2) { case 0: /* Control Register */ reg_value = s->cr; break; case 1: /* Status Register */ reg_value = s->sr; break; case 2: /* LR - ticks*/ reg_value = s->lr; break; case 3: /* CMP */ reg_value = s->cmp; break; case 4: /* CNT */ reg_value = ptimer_get_count(s->timer_reload); break; default: qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%" HWADDR_PRIx "\n", TYPE_IMX_EPIT, __func__, offset); break; } DPRINTF("(%s) = 0x%08x\n", imx_epit_reg_name(offset >> 2), reg_value); return reg_value; } /* * Must be called from a ptimer_transaction_begin/commit block for * s->timer_cmp, but outside of a transaction block of s->timer_reload, * so the proper counter value is read. */ static void imx_epit_update_compare_timer(IMXEPITState *s) { uint64_t counter = 0; bool is_oneshot = false; /* * The compare timer only has to run if the timer peripheral is active * and there is an input clock, Otherwise it can be switched off. */ bool is_active = (s->cr & CR_EN) && imx_epit_get_freq(s); if (is_active) { /* * Calculate next timeout for compare timer. Reading the reload * counter returns proper results only if pending transactions * on it are committed here. Otherwise stale values are be read. */ counter = ptimer_get_count(s->timer_reload); uint64_t limit = ptimer_get_limit(s->timer_cmp); /* * The compare timer is a periodic timer if the limit is at least * the compare value. Otherwise it may fire at most once in the * current round. */ is_oneshot = (limit < s->cmp); if (counter >= s->cmp) { /* The compare timer fires in the current round. */ counter -= s->cmp; } else if (!is_oneshot) { /* * The compare timer fires after a reload, as it is below the * compare value already in this round. Note that the counter * value calculated below can be above the 32-bit limit, which * is legal here because the compare timer is an internal * helper ptimer only. */ counter += limit - s->cmp; } else { /* * The compare timer won't fire in this round, and the limit is * set to a value below the compare value. This practically means * it will never fire, so it can be switched off. */ is_active = false; } } /* * Set the compare timer and let it run, or stop it. This is agnostic * of CR.OCIEN bit, as this bit affects interrupt generation only. The * compare timer needs to run even if no interrupts are to be generated, * because the SR.OCIF bit must be updated also. * Note that the timer might already be stopped or be running with * counter values. However, finding out when an update is needed and * when not is not trivial. It's much easier applying the setting again, * as this does not harm either and the overhead is negligible. */ if (is_active) { ptimer_set_count(s->timer_cmp, counter); ptimer_run(s->timer_cmp, is_oneshot ? 1 : 0); } else { ptimer_stop(s->timer_cmp); } } static void imx_epit_write_cr(IMXEPITState *s, uint32_t value) { uint32_t oldcr = s->cr; s->cr = value & 0x03ffffff; if (s->cr & CR_SWR) { /* * Reset clears CR.SWR again. It does not touch CR.EN, but the timers * are still stopped because the input clock is disabled. */ imx_epit_reset(s, false); } else { uint32_t freq; uint32_t toggled_cr_bits = oldcr ^ s->cr; /* re-initialize the limits if CR.RLD has changed */ bool set_limit = toggled_cr_bits & CR_RLD; /* set the counter if the timer got just enabled and CR.ENMOD is set */ bool is_switched_on = (toggled_cr_bits & s->cr) & CR_EN; bool set_counter = is_switched_on && (s->cr & CR_ENMOD); ptimer_transaction_begin(s->timer_cmp); ptimer_transaction_begin(s->timer_reload); freq = imx_epit_get_freq(s); if (freq) { ptimer_set_freq(s->timer_reload, freq); ptimer_set_freq(s->timer_cmp, freq); } if (set_limit || set_counter) { uint64_t limit = (s->cr & CR_RLD) ? s->lr : EPIT_TIMER_MAX; ptimer_set_limit(s->timer_reload, limit, set_counter ? 1 : 0); if (set_limit) { ptimer_set_limit(s->timer_cmp, limit, 0); } } /* * If there is an input clock and the peripheral is enabled, then * ensure the wall clock timer is ticking. Otherwise stop the timers. * The compare timer will be updated later. */ if (freq && (s->cr & CR_EN)) { ptimer_run(s->timer_reload, 0); } else { ptimer_stop(s->timer_reload); } /* Commit changes to reload timer, so they can propagate. */ ptimer_transaction_commit(s->timer_reload); /* Update compare timer based on the committed reload timer value. */ imx_epit_update_compare_timer(s); ptimer_transaction_commit(s->timer_cmp); } /* * The interrupt state can change due to: * - reset clears both SR.OCIF and CR.OCIE * - write to CR.EN or CR.OCIE */ imx_epit_update_int(s); } static void imx_epit_write_sr(IMXEPITState *s, uint32_t value) { /* writing 1 to SR.OCIF clears this bit and turns the interrupt off */ if (value & SR_OCIF) { s->sr = 0; /* SR.OCIF is the only bit in this register anyway */ imx_epit_update_int(s); } } static void imx_epit_write_lr(IMXEPITState *s, uint32_t value) { s->lr = value; ptimer_transaction_begin(s->timer_cmp); ptimer_transaction_begin(s->timer_reload); if (s->cr & CR_RLD) { /* Also set the limit if the LRD bit is set */ /* If IOVW bit is set then set the timer value */ ptimer_set_limit(s->timer_reload, s->lr, s->cr & CR_IOVW); ptimer_set_limit(s->timer_cmp, s->lr, 0); } else if (s->cr & CR_IOVW) { /* If IOVW bit is set then set the timer value */ ptimer_set_count(s->timer_reload, s->lr); } /* Commit the changes to s->timer_reload, so they can propagate. */ ptimer_transaction_commit(s->timer_reload); /* Update the compare timer based on the committed reload timer value. */ imx_epit_update_compare_timer(s); ptimer_transaction_commit(s->timer_cmp); } static void imx_epit_write_cmp(IMXEPITState *s, uint32_t value) { s->cmp = value; /* Update the compare timer based on the committed reload timer value. */ ptimer_transaction_begin(s->timer_cmp); imx_epit_update_compare_timer(s); ptimer_transaction_commit(s->timer_cmp); } static void imx_epit_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { IMXEPITState *s = IMX_EPIT(opaque); DPRINTF("(%s, value = 0x%08x)\n", imx_epit_reg_name(offset >> 2), (uint32_t)value); switch (offset >> 2) { case 0: /* CR */ imx_epit_write_cr(s, (uint32_t)value); break; case 1: /* SR */ imx_epit_write_sr(s, (uint32_t)value); break; case 2: /* LR */ imx_epit_write_lr(s, (uint32_t)value); break; case 3: /* CMP */ imx_epit_write_cmp(s, (uint32_t)value); break; default: qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%" HWADDR_PRIx "\n", TYPE_IMX_EPIT, __func__, offset); break; } } static void imx_epit_cmp(void *opaque) { IMXEPITState *s = IMX_EPIT(opaque); /* The cmp ptimer can't be running when the peripheral is disabled */ assert(s->cr & CR_EN); DPRINTF("sr was %d\n", s->sr); /* Set interrupt status bit SR.OCIF and update the interrupt state */ s->sr |= SR_OCIF; imx_epit_update_int(s); } static void imx_epit_reload(void *opaque) { /* No action required on rollover of timer_reload */ } static const MemoryRegionOps imx_epit_ops = { .read = imx_epit_read, .write = imx_epit_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static const VMStateDescription vmstate_imx_timer_epit = { .name = TYPE_IMX_EPIT, .version_id = 3, .minimum_version_id = 3, .fields = (const VMStateField[]) { VMSTATE_UINT32(cr, IMXEPITState), VMSTATE_UINT32(sr, IMXEPITState), VMSTATE_UINT32(lr, IMXEPITState), VMSTATE_UINT32(cmp, IMXEPITState), VMSTATE_PTIMER(timer_reload, IMXEPITState), VMSTATE_PTIMER(timer_cmp, IMXEPITState), VMSTATE_END_OF_LIST() } }; static void imx_epit_realize(DeviceState *dev, Error **errp) { IMXEPITState *s = IMX_EPIT(dev); SysBusDevice *sbd = SYS_BUS_DEVICE(dev); DPRINTF("\n"); sysbus_init_irq(sbd, &s->irq); memory_region_init_io(&s->iomem, OBJECT(s), &imx_epit_ops, s, TYPE_IMX_EPIT, 0x00001000); sysbus_init_mmio(sbd, &s->iomem); /* * The reload timer keeps running when the peripheral is enabled. It is a * kind of wall clock that does not generate any interrupts. The callback * needs to be provided, but it does nothing as the ptimer already supports * all necessary reloading functionality. */ s->timer_reload = ptimer_init(imx_epit_reload, s, PTIMER_POLICY_LEGACY); /* * The compare timer is running only when the peripheral configuration is * in a state that will generate compare interrupts. */ s->timer_cmp = ptimer_init(imx_epit_cmp, s, PTIMER_POLICY_LEGACY); } static void imx_epit_dev_reset(DeviceState *dev) { IMXEPITState *s = IMX_EPIT(dev); imx_epit_reset(s, true); } static void imx_epit_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = imx_epit_realize; device_class_set_legacy_reset(dc, imx_epit_dev_reset); dc->vmsd = &vmstate_imx_timer_epit; dc->desc = "i.MX periodic timer"; } static const TypeInfo imx_epit_info = { .name = TYPE_IMX_EPIT, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(IMXEPITState), .class_init = imx_epit_class_init, }; static void imx_epit_register_types(void) { type_register_static(&imx_epit_info); } type_init(imx_epit_register_types)