/* * QEMU GRLIB GPTimer Emulator * * Copyright (c) 2010-2019 AdaCore * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "hw/sparc/grlib.h" #include "hw/sysbus.h" #include "qemu/timer.h" #include "hw/ptimer.h" #include "qemu/main-loop.h" #include "trace.h" #define UNIT_REG_SIZE 16 /* Size of memory mapped regs for the unit */ #define GPTIMER_REG_SIZE 16 /* Size of memory mapped regs for a GPTimer */ #define GPTIMER_MAX_TIMERS 8 /* GPTimer Config register fields */ #define GPTIMER_ENABLE (1 << 0) #define GPTIMER_RESTART (1 << 1) #define GPTIMER_LOAD (1 << 2) #define GPTIMER_INT_ENABLE (1 << 3) #define GPTIMER_INT_PENDING (1 << 4) #define GPTIMER_CHAIN (1 << 5) /* Not supported */ #define GPTIMER_DEBUG_HALT (1 << 6) /* Not supported */ /* Memory mapped register offsets */ #define SCALER_OFFSET 0x00 #define SCALER_RELOAD_OFFSET 0x04 #define CONFIG_OFFSET 0x08 #define COUNTER_OFFSET 0x00 #define COUNTER_RELOAD_OFFSET 0x04 #define TIMER_BASE 0x10 #define GRLIB_GPTIMER(obj) \ OBJECT_CHECK(GPTimerUnit, (obj), TYPE_GRLIB_GPTIMER) typedef struct GPTimer GPTimer; typedef struct GPTimerUnit GPTimerUnit; struct GPTimer { QEMUBH *bh; struct ptimer_state *ptimer; qemu_irq irq; int id; GPTimerUnit *unit; /* registers */ uint32_t counter; uint32_t reload; uint32_t config; }; struct GPTimerUnit { SysBusDevice parent_obj; MemoryRegion iomem; uint32_t nr_timers; /* Number of timers available */ uint32_t freq_hz; /* System frequency */ uint32_t irq_line; /* Base irq line */ GPTimer *timers; /* registers */ uint32_t scaler; uint32_t reload; uint32_t config; }; static void grlib_gptimer_enable(GPTimer *timer) { assert(timer != NULL); ptimer_stop(timer->ptimer); if (!(timer->config & GPTIMER_ENABLE)) { /* Timer disabled */ trace_grlib_gptimer_disabled(timer->id, timer->config); return; } /* ptimer is triggered when the counter reach 0 but GPTimer is triggered at underflow. Set count + 1 to simulate the GPTimer behavior. */ trace_grlib_gptimer_enable(timer->id, timer->counter); ptimer_set_count(timer->ptimer, (uint64_t)timer->counter + 1); ptimer_run(timer->ptimer, 1); } static void grlib_gptimer_restart(GPTimer *timer) { assert(timer != NULL); trace_grlib_gptimer_restart(timer->id, timer->reload); timer->counter = timer->reload; grlib_gptimer_enable(timer); } static void grlib_gptimer_set_scaler(GPTimerUnit *unit, uint32_t scaler) { int i = 0; uint32_t value = 0; assert(unit != NULL); if (scaler > 0) { value = unit->freq_hz / (scaler + 1); } else { value = unit->freq_hz; } trace_grlib_gptimer_set_scaler(scaler, value); for (i = 0; i < unit->nr_timers; i++) { ptimer_set_freq(unit->timers[i].ptimer, value); } } static void grlib_gptimer_hit(void *opaque) { GPTimer *timer = opaque; assert(timer != NULL); trace_grlib_gptimer_hit(timer->id); /* Timer expired */ if (timer->config & GPTIMER_INT_ENABLE) { /* Set the pending bit (only unset by write in the config register) */ timer->config |= GPTIMER_INT_PENDING; qemu_irq_pulse(timer->irq); } if (timer->config & GPTIMER_RESTART) { grlib_gptimer_restart(timer); } } static uint64_t grlib_gptimer_read(void *opaque, hwaddr addr, unsigned size) { GPTimerUnit *unit = opaque; hwaddr timer_addr; int id; uint32_t value = 0; addr &= 0xff; /* Unit registers */ switch (addr) { case SCALER_OFFSET: trace_grlib_gptimer_readl(-1, addr, unit->scaler); return unit->scaler; case SCALER_RELOAD_OFFSET: trace_grlib_gptimer_readl(-1, addr, unit->reload); return unit->reload; case CONFIG_OFFSET: trace_grlib_gptimer_readl(-1, addr, unit->config); return unit->config; default: break; } timer_addr = (addr % TIMER_BASE); id = (addr - TIMER_BASE) / TIMER_BASE; if (id >= 0 && id < unit->nr_timers) { /* GPTimer registers */ switch (timer_addr) { case COUNTER_OFFSET: value = ptimer_get_count(unit->timers[id].ptimer); trace_grlib_gptimer_readl(id, addr, value); return value; case COUNTER_RELOAD_OFFSET: value = unit->timers[id].reload; trace_grlib_gptimer_readl(id, addr, value); return value; case CONFIG_OFFSET: trace_grlib_gptimer_readl(id, addr, unit->timers[id].config); return unit->timers[id].config; default: break; } } trace_grlib_gptimer_readl(-1, addr, 0); return 0; } static void grlib_gptimer_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { GPTimerUnit *unit = opaque; hwaddr timer_addr; int id; addr &= 0xff; /* Unit registers */ switch (addr) { case SCALER_OFFSET: value &= 0xFFFF; /* clean up the value */ unit->scaler = value; trace_grlib_gptimer_writel(-1, addr, unit->scaler); return; case SCALER_RELOAD_OFFSET: value &= 0xFFFF; /* clean up the value */ unit->reload = value; trace_grlib_gptimer_writel(-1, addr, unit->reload); grlib_gptimer_set_scaler(unit, value); return; case CONFIG_OFFSET: /* Read Only (disable timer freeze not supported) */ trace_grlib_gptimer_writel(-1, addr, 0); return; default: break; } timer_addr = (addr % TIMER_BASE); id = (addr - TIMER_BASE) / TIMER_BASE; if (id >= 0 && id < unit->nr_timers) { /* GPTimer registers */ switch (timer_addr) { case COUNTER_OFFSET: trace_grlib_gptimer_writel(id, addr, value); unit->timers[id].counter = value; grlib_gptimer_enable(&unit->timers[id]); return; case COUNTER_RELOAD_OFFSET: trace_grlib_gptimer_writel(id, addr, value); unit->timers[id].reload = value; return; case CONFIG_OFFSET: trace_grlib_gptimer_writel(id, addr, value); if (value & GPTIMER_INT_PENDING) { /* clear pending bit */ value &= ~GPTIMER_INT_PENDING; } else { /* keep pending bit */ value |= unit->timers[id].config & GPTIMER_INT_PENDING; } unit->timers[id].config = value; /* gptimer_restart calls gptimer_enable, so if "enable" and "load" bits are present, we just have to call restart. */ if (value & GPTIMER_LOAD) { grlib_gptimer_restart(&unit->timers[id]); } else if (value & GPTIMER_ENABLE) { grlib_gptimer_enable(&unit->timers[id]); } /* These fields must always be read as 0 */ value &= ~(GPTIMER_LOAD & GPTIMER_DEBUG_HALT); unit->timers[id].config = value; return; default: break; } } trace_grlib_gptimer_writel(-1, addr, value); } static const MemoryRegionOps grlib_gptimer_ops = { .read = grlib_gptimer_read, .write = grlib_gptimer_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, }; static void grlib_gptimer_reset(DeviceState *d) { GPTimerUnit *unit = GRLIB_GPTIMER(d); int i = 0; assert(unit != NULL); unit->scaler = 0; unit->reload = 0; unit->config = unit->nr_timers; unit->config |= unit->irq_line << 3; unit->config |= 1 << 8; /* separate interrupt */ unit->config |= 1 << 9; /* Disable timer freeze */ for (i = 0; i < unit->nr_timers; i++) { GPTimer *timer = &unit->timers[i]; timer->counter = 0; timer->reload = 0; timer->config = 0; ptimer_stop(timer->ptimer); ptimer_set_count(timer->ptimer, 0); ptimer_set_freq(timer->ptimer, unit->freq_hz); } } static void grlib_gptimer_realize(DeviceState *dev, Error **errp) { GPTimerUnit *unit = GRLIB_GPTIMER(dev); unsigned int i; SysBusDevice *sbd = SYS_BUS_DEVICE(dev); assert(unit->nr_timers > 0); assert(unit->nr_timers <= GPTIMER_MAX_TIMERS); unit->timers = g_malloc0(sizeof unit->timers[0] * unit->nr_timers); for (i = 0; i < unit->nr_timers; i++) { GPTimer *timer = &unit->timers[i]; timer->unit = unit; timer->bh = qemu_bh_new(grlib_gptimer_hit, timer); timer->ptimer = ptimer_init(timer->bh, PTIMER_POLICY_DEFAULT); timer->id = i; /* One IRQ line for each timer */ sysbus_init_irq(sbd, &timer->irq); ptimer_set_freq(timer->ptimer, unit->freq_hz); } memory_region_init_io(&unit->iomem, OBJECT(unit), &grlib_gptimer_ops, unit, "gptimer", UNIT_REG_SIZE + GPTIMER_REG_SIZE * unit->nr_timers); sysbus_init_mmio(sbd, &unit->iomem); } static Property grlib_gptimer_properties[] = { DEFINE_PROP_UINT32("frequency", GPTimerUnit, freq_hz, 40000000), DEFINE_PROP_UINT32("irq-line", GPTimerUnit, irq_line, 8), DEFINE_PROP_UINT32("nr-timers", GPTimerUnit, nr_timers, 2), DEFINE_PROP_END_OF_LIST(), }; static void grlib_gptimer_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = grlib_gptimer_realize; dc->reset = grlib_gptimer_reset; dc->props = grlib_gptimer_properties; } static const TypeInfo grlib_gptimer_info = { .name = TYPE_GRLIB_GPTIMER, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(GPTimerUnit), .class_init = grlib_gptimer_class_init, }; static void grlib_gptimer_register_types(void) { type_register_static(&grlib_gptimer_info); } type_init(grlib_gptimer_register_types)