/* * AVR 16-bit timer * * Copyright (c) 2018 University of Kent * Author: Ed Robbins * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see * */ /* * Driver for 16 bit timers on 8 bit AVR devices. * Note: * ATmega640/V-1280/V-1281/V-2560/V-2561/V timers 1, 3, 4 and 5 are 16 bit */ /* * XXX TODO: Power Reduction Register support * prescaler pause support * PWM modes, GPIO, output capture pins, input compare pin */ #include "qemu/osdep.h" #include "qapi/error.h" #include "qemu/log.h" #include "hw/irq.h" #include "hw/qdev-properties.h" #include "hw/timer/avr_timer16.h" #include "trace.h" /* Register offsets */ #define T16_CRA 0x0 #define T16_CRB 0x1 #define T16_CRC 0x2 #define T16_CNTL 0x4 #define T16_CNTH 0x5 #define T16_ICRL 0x6 #define T16_ICRH 0x7 #define T16_OCRAL 0x8 #define T16_OCRAH 0x9 #define T16_OCRBL 0xa #define T16_OCRBH 0xb #define T16_OCRCL 0xc #define T16_OCRCH 0xd /* Field masks */ #define T16_CRA_WGM01 0x3 #define T16_CRA_COMC 0xc #define T16_CRA_COMB 0x30 #define T16_CRA_COMA 0xc0 #define T16_CRA_OC_CONF \ (T16_CRA_COMA | T16_CRA_COMB | T16_CRA_COMC) #define T16_CRB_CS 0x7 #define T16_CRB_WGM23 0x18 #define T16_CRB_ICES 0x40 #define T16_CRB_ICNC 0x80 #define T16_CRC_FOCC 0x20 #define T16_CRC_FOCB 0x40 #define T16_CRC_FOCA 0x80 /* Fields masks both TIMSK and TIFR (interrupt mask/flag registers) */ #define T16_INT_TOV 0x1 /* Timer overflow */ #define T16_INT_OCA 0x2 /* Output compare A */ #define T16_INT_OCB 0x4 /* Output compare B */ #define T16_INT_OCC 0x8 /* Output compare C */ #define T16_INT_IC 0x20 /* Input capture */ /* Clock source values */ #define T16_CLKSRC_STOPPED 0 #define T16_CLKSRC_DIV1 1 #define T16_CLKSRC_DIV8 2 #define T16_CLKSRC_DIV64 3 #define T16_CLKSRC_DIV256 4 #define T16_CLKSRC_DIV1024 5 #define T16_CLKSRC_EXT_FALLING 6 #define T16_CLKSRC_EXT_RISING 7 /* Timer mode values (not including PWM modes) */ #define T16_MODE_NORMAL 0 #define T16_MODE_CTC_OCRA 4 #define T16_MODE_CTC_ICR 12 /* Accessors */ #define CLKSRC(t16) (t16->crb & T16_CRB_CS) #define MODE(t16) (((t16->crb & T16_CRB_WGM23) >> 1) | \ (t16->cra & T16_CRA_WGM01)) #define CNT(t16) VAL16(t16->cntl, t16->cnth) #define OCRA(t16) VAL16(t16->ocral, t16->ocrah) #define OCRB(t16) VAL16(t16->ocrbl, t16->ocrbh) #define OCRC(t16) VAL16(t16->ocrcl, t16->ocrch) #define ICR(t16) VAL16(t16->icrl, t16->icrh) /* Helper macros */ #define VAL16(l, h) ((h << 8) | l) #define DB_PRINT(fmt, args...) /* Nothing */ static inline int64_t avr_timer16_ns_to_ticks(AVRTimer16State *t16, int64_t t) { if (t16->period_ns == 0) { return 0; } return t / t16->period_ns; } static void avr_timer16_update_cnt(AVRTimer16State *t16) { uint16_t cnt; cnt = avr_timer16_ns_to_ticks(t16, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - t16->reset_time_ns); t16->cntl = (uint8_t)(cnt & 0xff); t16->cnth = (uint8_t)((cnt & 0xff00) >> 8); } static inline void avr_timer16_recalc_reset_time(AVRTimer16State *t16) { t16->reset_time_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - CNT(t16) * t16->period_ns; } static void avr_timer16_clock_reset(AVRTimer16State *t16) { t16->cntl = 0; t16->cnth = 0; t16->reset_time_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); } static void avr_timer16_clksrc_update(AVRTimer16State *t16) { uint16_t divider = 0; switch (CLKSRC(t16)) { case T16_CLKSRC_EXT_FALLING: case T16_CLKSRC_EXT_RISING: qemu_log_mask(LOG_UNIMP, "%s: external clock source unsupported\n", __func__); break; case T16_CLKSRC_STOPPED: break; case T16_CLKSRC_DIV1: divider = 1; break; case T16_CLKSRC_DIV8: divider = 8; break; case T16_CLKSRC_DIV64: divider = 64; break; case T16_CLKSRC_DIV256: divider = 256; break; case T16_CLKSRC_DIV1024: divider = 1024; break; default: break; } if (divider) { t16->freq_hz = t16->cpu_freq_hz / divider; t16->period_ns = NANOSECONDS_PER_SECOND / t16->freq_hz; trace_avr_timer16_clksrc_update(t16->freq_hz, t16->period_ns, (uint64_t)(1e6 / t16->freq_hz)); } } static void avr_timer16_set_alarm(AVRTimer16State *t16) { if (CLKSRC(t16) == T16_CLKSRC_EXT_FALLING || CLKSRC(t16) == T16_CLKSRC_EXT_RISING || CLKSRC(t16) == T16_CLKSRC_STOPPED) { /* Timer is disabled or set to external clock source (unsupported) */ return; } uint64_t alarm_offset = 0xffff; enum NextInterrupt next_interrupt = OVERFLOW; switch (MODE(t16)) { case T16_MODE_NORMAL: /* Normal mode */ if (OCRA(t16) < alarm_offset && OCRA(t16) > CNT(t16) && (t16->imsk & T16_INT_OCA)) { alarm_offset = OCRA(t16); next_interrupt = COMPA; } break; case T16_MODE_CTC_OCRA: /* CTC mode, top = ocra */ if (OCRA(t16) < alarm_offset && OCRA(t16) > CNT(t16)) { alarm_offset = OCRA(t16); next_interrupt = COMPA; } break; case T16_MODE_CTC_ICR: /* CTC mode, top = icr */ if (ICR(t16) < alarm_offset && ICR(t16) > CNT(t16)) { alarm_offset = ICR(t16); next_interrupt = CAPT; } if (OCRA(t16) < alarm_offset && OCRA(t16) > CNT(t16) && (t16->imsk & T16_INT_OCA)) { alarm_offset = OCRA(t16); next_interrupt = COMPA; } break; default: qemu_log_mask(LOG_UNIMP, "%s: pwm modes are unsupported\n", __func__); return; } if (OCRB(t16) < alarm_offset && OCRB(t16) > CNT(t16) && (t16->imsk & T16_INT_OCB)) { alarm_offset = OCRB(t16); next_interrupt = COMPB; } if (OCRC(t16) < alarm_offset && OCRB(t16) > CNT(t16) && (t16->imsk & T16_INT_OCC)) { alarm_offset = OCRB(t16); next_interrupt = COMPC; } alarm_offset -= CNT(t16); t16->next_interrupt = next_interrupt; uint64_t alarm_ns = t16->reset_time_ns + ((CNT(t16) + alarm_offset) * t16->period_ns); timer_mod(t16->timer, alarm_ns); trace_avr_timer16_next_alarm(alarm_offset * t16->period_ns); } static void avr_timer16_interrupt(void *opaque) { AVRTimer16State *t16 = opaque; uint8_t mode = MODE(t16); avr_timer16_update_cnt(t16); if (CLKSRC(t16) == T16_CLKSRC_EXT_FALLING || CLKSRC(t16) == T16_CLKSRC_EXT_RISING || CLKSRC(t16) == T16_CLKSRC_STOPPED) { /* Timer is disabled or set to external clock source (unsupported) */ return; } trace_avr_timer16_interrupt_count(CNT(t16)); /* Counter overflow */ if (t16->next_interrupt == OVERFLOW) { trace_avr_timer16_interrupt_overflow("counter 0xffff"); avr_timer16_clock_reset(t16); if (t16->imsk & T16_INT_TOV) { t16->ifr |= T16_INT_TOV; qemu_set_irq(t16->ovf_irq, 1); } } /* Check for ocra overflow in CTC mode */ if (mode == T16_MODE_CTC_OCRA && t16->next_interrupt == COMPA) { trace_avr_timer16_interrupt_overflow("CTC OCRA"); avr_timer16_clock_reset(t16); } /* Check for icr overflow in CTC mode */ if (mode == T16_MODE_CTC_ICR && t16->next_interrupt == CAPT) { trace_avr_timer16_interrupt_overflow("CTC ICR"); avr_timer16_clock_reset(t16); if (t16->imsk & T16_INT_IC) { t16->ifr |= T16_INT_IC; qemu_set_irq(t16->capt_irq, 1); } } /* Check for output compare interrupts */ if (t16->imsk & T16_INT_OCA && t16->next_interrupt == COMPA) { t16->ifr |= T16_INT_OCA; qemu_set_irq(t16->compa_irq, 1); } if (t16->imsk & T16_INT_OCB && t16->next_interrupt == COMPB) { t16->ifr |= T16_INT_OCB; qemu_set_irq(t16->compb_irq, 1); } if (t16->imsk & T16_INT_OCC && t16->next_interrupt == COMPC) { t16->ifr |= T16_INT_OCC; qemu_set_irq(t16->compc_irq, 1); } avr_timer16_set_alarm(t16); } static void avr_timer16_reset(DeviceState *dev) { AVRTimer16State *t16 = AVR_TIMER16(dev); avr_timer16_clock_reset(t16); avr_timer16_clksrc_update(t16); avr_timer16_set_alarm(t16); qemu_set_irq(t16->capt_irq, 0); qemu_set_irq(t16->compa_irq, 0); qemu_set_irq(t16->compb_irq, 0); qemu_set_irq(t16->compc_irq, 0); qemu_set_irq(t16->ovf_irq, 0); } static uint64_t avr_timer16_read(void *opaque, hwaddr offset, unsigned size) { assert(size == 1); AVRTimer16State *t16 = opaque; uint8_t retval = 0; switch (offset) { case T16_CRA: retval = t16->cra; break; case T16_CRB: retval = t16->crb; break; case T16_CRC: retval = t16->crc; break; case T16_CNTL: avr_timer16_update_cnt(t16); t16->rtmp = t16->cnth; retval = t16->cntl; break; case T16_CNTH: retval = t16->rtmp; break; case T16_ICRL: /* * The timer copies cnt to icr when the input capture pin changes * state or when the analog comparator has a match. We don't * emulate this behaviour. We do support it's use for defining a * TOP value in T16_MODE_CTC_ICR */ t16->rtmp = t16->icrh; retval = t16->icrl; break; case T16_ICRH: retval = t16->rtmp; break; case T16_OCRAL: retval = t16->ocral; break; case T16_OCRAH: retval = t16->ocrah; break; case T16_OCRBL: retval = t16->ocrbl; break; case T16_OCRBH: retval = t16->ocrbh; break; case T16_OCRCL: retval = t16->ocrcl; break; case T16_OCRCH: retval = t16->ocrch; break; default: break; } trace_avr_timer16_read(offset, retval); return (uint64_t)retval; } static void avr_timer16_write(void *opaque, hwaddr offset, uint64_t val64, unsigned size) { assert(size == 1); AVRTimer16State *t16 = opaque; uint8_t val8 = (uint8_t)val64; uint8_t prev_clk_src = CLKSRC(t16); trace_avr_timer16_write(offset, val8); switch (offset) { case T16_CRA: t16->cra = val8; if (t16->cra & T16_CRA_OC_CONF) { qemu_log_mask(LOG_UNIMP, "%s: output compare pins unsupported\n", __func__); } break; case T16_CRB: t16->crb = val8; if (t16->crb & T16_CRB_ICNC) { qemu_log_mask(LOG_UNIMP, "%s: input capture noise canceller unsupported\n", __func__); } if (t16->crb & T16_CRB_ICES) { qemu_log_mask(LOG_UNIMP, "%s: input capture unsupported\n", __func__); } if (CLKSRC(t16) != prev_clk_src) { avr_timer16_clksrc_update(t16); if (prev_clk_src == T16_CLKSRC_STOPPED) { t16->reset_time_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); } } break; case T16_CRC: t16->crc = val8; qemu_log_mask(LOG_UNIMP, "%s: output compare pins unsupported\n", __func__); break; case T16_CNTL: /* * CNT is the 16-bit counter value, it must be read/written via * a temporary register (rtmp) to make the read/write atomic. */ /* ICR also has this behaviour, and shares rtmp */ /* * Writing CNT blocks compare matches for one clock cycle. * Writing CNT to TOP or to an OCR value (if in use) will * skip the relevant interrupt */ t16->cntl = val8; t16->cnth = t16->rtmp; avr_timer16_recalc_reset_time(t16); break; case T16_CNTH: t16->rtmp = val8; break; case T16_ICRL: /* ICR can only be written in mode T16_MODE_CTC_ICR */ if (MODE(t16) == T16_MODE_CTC_ICR) { t16->icrl = val8; t16->icrh = t16->rtmp; } break; case T16_ICRH: if (MODE(t16) == T16_MODE_CTC_ICR) { t16->rtmp = val8; } break; case T16_OCRAL: /* * OCRn cause the relevant output compare flag to be raised, and * trigger an interrupt, when CNT is equal to the value here */ t16->ocral = val8; break; case T16_OCRAH: t16->ocrah = val8; break; case T16_OCRBL: t16->ocrbl = val8; break; case T16_OCRBH: t16->ocrbh = val8; break; case T16_OCRCL: t16->ocrcl = val8; break; case T16_OCRCH: t16->ocrch = val8; break; default: break; } avr_timer16_set_alarm(t16); } static uint64_t avr_timer16_imsk_read(void *opaque, hwaddr offset, unsigned size) { assert(size == 1); AVRTimer16State *t16 = opaque; trace_avr_timer16_read_imsk(offset ? 0 : t16->imsk); if (offset != 0) { return 0; } return t16->imsk; } static void avr_timer16_imsk_write(void *opaque, hwaddr offset, uint64_t val64, unsigned size) { assert(size == 1); AVRTimer16State *t16 = opaque; trace_avr_timer16_write_imsk(val64); if (offset != 0) { return; } t16->imsk = (uint8_t)val64; } static uint64_t avr_timer16_ifr_read(void *opaque, hwaddr offset, unsigned size) { assert(size == 1); AVRTimer16State *t16 = opaque; trace_avr_timer16_read_ifr(offset ? 0 : t16->ifr); if (offset != 0) { return 0; } return t16->ifr; } static void avr_timer16_ifr_write(void *opaque, hwaddr offset, uint64_t val64, unsigned size) { assert(size == 1); AVRTimer16State *t16 = opaque; trace_avr_timer16_write_imsk(val64); if (offset != 0) { return; } t16->ifr = (uint8_t)val64; } static const MemoryRegionOps avr_timer16_ops = { .read = avr_timer16_read, .write = avr_timer16_write, .endianness = DEVICE_NATIVE_ENDIAN, .impl = {.max_access_size = 1} }; static const MemoryRegionOps avr_timer16_imsk_ops = { .read = avr_timer16_imsk_read, .write = avr_timer16_imsk_write, .endianness = DEVICE_NATIVE_ENDIAN, .impl = {.max_access_size = 1} }; static const MemoryRegionOps avr_timer16_ifr_ops = { .read = avr_timer16_ifr_read, .write = avr_timer16_ifr_write, .endianness = DEVICE_NATIVE_ENDIAN, .impl = {.max_access_size = 1} }; static Property avr_timer16_properties[] = { DEFINE_PROP_UINT8("id", struct AVRTimer16State, id, 0), DEFINE_PROP_UINT64("cpu-frequency-hz", struct AVRTimer16State, cpu_freq_hz, 0), DEFINE_PROP_END_OF_LIST(), }; static void avr_timer16_pr(void *opaque, int irq, int level) { AVRTimer16State *s = AVR_TIMER16(opaque); s->enabled = !level; if (!s->enabled) { avr_timer16_reset(DEVICE(s)); } } static void avr_timer16_init(Object *obj) { AVRTimer16State *s = AVR_TIMER16(obj); sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->capt_irq); sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->compa_irq); sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->compb_irq); sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->compc_irq); sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->ovf_irq); memory_region_init_io(&s->iomem, obj, &avr_timer16_ops, s, "avr-timer16", 0xe); memory_region_init_io(&s->imsk_iomem, obj, &avr_timer16_imsk_ops, s, "avr-timer16-intmask", 0x1); memory_region_init_io(&s->ifr_iomem, obj, &avr_timer16_ifr_ops, s, "avr-timer16-intflag", 0x1); sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem); sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->imsk_iomem); sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->ifr_iomem); qdev_init_gpio_in(DEVICE(s), avr_timer16_pr, 1); } static void avr_timer16_realize(DeviceState *dev, Error **errp) { AVRTimer16State *s = AVR_TIMER16(dev); if (s->cpu_freq_hz == 0) { error_setg(errp, "AVR timer16: cpu-frequency-hz property must be set"); return; } s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, avr_timer16_interrupt, s); s->enabled = true; } static void avr_timer16_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); device_class_set_legacy_reset(dc, avr_timer16_reset); dc->realize = avr_timer16_realize; device_class_set_props(dc, avr_timer16_properties); } static const TypeInfo avr_timer16_info = { .name = TYPE_AVR_TIMER16, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(AVRTimer16State), .instance_init = avr_timer16_init, .class_init = avr_timer16_class_init, }; static void avr_timer16_register_types(void) { type_register_static(&avr_timer16_info); } type_init(avr_timer16_register_types)