/* * Global peripheral timer block for ARM A9MP * * (C) 2013 Xilinx Inc. * * Written by François LEGAL * Written by Peter Crosthwaite * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see . */ #include "qemu/osdep.h" #include "hw/hw.h" #include "hw/irq.h" #include "hw/qdev-properties.h" #include "hw/timer/a9gtimer.h" #include "migration/vmstate.h" #include "qapi/error.h" #include "qemu/timer.h" #include "qemu/bitops.h" #include "qemu/log.h" #include "qemu/module.h" #include "qom/cpu.h" #ifndef A9_GTIMER_ERR_DEBUG #define A9_GTIMER_ERR_DEBUG 0 #endif #define DB_PRINT_L(level, ...) do { \ if (A9_GTIMER_ERR_DEBUG > (level)) { \ fprintf(stderr, ": %s: ", __func__); \ fprintf(stderr, ## __VA_ARGS__); \ } \ } while (0) #define DB_PRINT(...) DB_PRINT_L(0, ## __VA_ARGS__) static inline int a9_gtimer_get_current_cpu(A9GTimerState *s) { if (current_cpu->cpu_index >= s->num_cpu) { hw_error("a9gtimer: num-cpu %d but this cpu is %d!\n", s->num_cpu, current_cpu->cpu_index); } return current_cpu->cpu_index; } static inline uint64_t a9_gtimer_get_conv(A9GTimerState *s) { uint64_t prescale = extract32(s->control, R_CONTROL_PRESCALER_SHIFT, R_CONTROL_PRESCALER_LEN); return (prescale + 1) * 10; } static A9GTimerUpdate a9_gtimer_get_update(A9GTimerState *s) { A9GTimerUpdate ret; ret.now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); ret.new = s->ref_counter + (ret.now - s->cpu_ref_time) / a9_gtimer_get_conv(s); return ret; } static void a9_gtimer_update(A9GTimerState *s, bool sync) { A9GTimerUpdate update = a9_gtimer_get_update(s); int i; int64_t next_cdiff = 0; for (i = 0; i < s->num_cpu; ++i) { A9GTimerPerCPU *gtb = &s->per_cpu[i]; int64_t cdiff = 0; if ((s->control & R_CONTROL_TIMER_ENABLE) && (gtb->control & R_CONTROL_COMP_ENABLE)) { /* R2p0+, where the compare function is >= */ if (gtb->compare < update.new) { DB_PRINT("Compare event happened for CPU %d\n", i); gtb->status = 1; if (gtb->control & R_CONTROL_AUTO_INCREMENT && gtb->inc) { uint64_t inc = QEMU_ALIGN_UP(update.new - gtb->compare, gtb->inc); DB_PRINT("Auto incrementing timer compare by %" PRId64 "\n", inc); gtb->compare += inc; } } cdiff = (int64_t)gtb->compare - (int64_t)update.new + 1; if (cdiff > 0 && (cdiff < next_cdiff || !next_cdiff)) { next_cdiff = cdiff; } } qemu_set_irq(gtb->irq, gtb->status && (gtb->control & R_CONTROL_IRQ_ENABLE)); } timer_del(s->timer); if (next_cdiff) { DB_PRINT("scheduling qemu_timer to fire again in %" PRIx64 " cycles\n", next_cdiff); timer_mod(s->timer, update.now + next_cdiff * a9_gtimer_get_conv(s)); } if (s->control & R_CONTROL_TIMER_ENABLE) { s->counter = update.new; } if (sync) { s->cpu_ref_time = update.now; s->ref_counter = s->counter; } } static void a9_gtimer_update_no_sync(void *opaque) { A9GTimerState *s = A9_GTIMER(opaque); a9_gtimer_update(s, false); } static uint64_t a9_gtimer_read(void *opaque, hwaddr addr, unsigned size) { A9GTimerPerCPU *gtb = (A9GTimerPerCPU *)opaque; A9GTimerState *s = gtb->parent; A9GTimerUpdate update; uint64_t ret = 0; int shift = 0; switch (addr) { case R_COUNTER_HI: shift = 32; /* fallthrough */ case R_COUNTER_LO: update = a9_gtimer_get_update(s); ret = extract64(update.new, shift, 32); break; case R_CONTROL: ret = s->control | gtb->control; break; case R_INTERRUPT_STATUS: ret = gtb->status; break; case R_COMPARATOR_HI: shift = 32; /* fallthrough */ case R_COMPARATOR_LO: ret = extract64(gtb->compare, shift, 32); break; case R_AUTO_INCREMENT: ret = gtb->inc; break; default: qemu_log_mask(LOG_GUEST_ERROR, "bad a9gtimer register: %x\n", (unsigned)addr); return 0; } DB_PRINT("addr:%#x data:%#08" PRIx64 "\n", (unsigned)addr, ret); return ret; } static void a9_gtimer_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { A9GTimerPerCPU *gtb = (A9GTimerPerCPU *)opaque; A9GTimerState *s = gtb->parent; int shift = 0; DB_PRINT("addr:%#x data:%#08" PRIx64 "\n", (unsigned)addr, value); switch (addr) { case R_COUNTER_HI: shift = 32; /* fallthrough */ case R_COUNTER_LO: /* * Keep it simple - ARM docco explicitly says to disable timer before * modding it, so don't bother trying to do all the difficult on the fly * timer modifications - (if they even work in real hardware??). */ if (s->control & R_CONTROL_TIMER_ENABLE) { qemu_log_mask(LOG_GUEST_ERROR, "Cannot mod running ARM gtimer\n"); return; } s->counter = deposit64(s->counter, shift, 32, value); return; case R_CONTROL: a9_gtimer_update(s, (value ^ s->control) & R_CONTROL_NEEDS_SYNC); gtb->control = value & R_CONTROL_BANKED; s->control = value & ~R_CONTROL_BANKED; break; case R_INTERRUPT_STATUS: a9_gtimer_update(s, false); gtb->status &= ~value; break; case R_COMPARATOR_HI: shift = 32; /* fallthrough */ case R_COMPARATOR_LO: a9_gtimer_update(s, false); gtb->compare = deposit64(gtb->compare, shift, 32, value); break; case R_AUTO_INCREMENT: gtb->inc = value; return; default: return; } a9_gtimer_update(s, false); } /* Wrapper functions to implement the "read global timer for * the current CPU" memory regions. */ static uint64_t a9_gtimer_this_read(void *opaque, hwaddr addr, unsigned size) { A9GTimerState *s = A9_GTIMER(opaque); int id = a9_gtimer_get_current_cpu(s); /* no \n so concatenates with message from read fn */ DB_PRINT("CPU:%d:", id); return a9_gtimer_read(&s->per_cpu[id], addr, size); } static void a9_gtimer_this_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { A9GTimerState *s = A9_GTIMER(opaque); int id = a9_gtimer_get_current_cpu(s); /* no \n so concatenates with message from write fn */ DB_PRINT("CPU:%d:", id); a9_gtimer_write(&s->per_cpu[id], addr, value, size); } static const MemoryRegionOps a9_gtimer_this_ops = { .read = a9_gtimer_this_read, .write = a9_gtimer_this_write, .valid = { .min_access_size = 4, .max_access_size = 4, }, .endianness = DEVICE_NATIVE_ENDIAN, }; static const MemoryRegionOps a9_gtimer_ops = { .read = a9_gtimer_read, .write = a9_gtimer_write, .valid = { .min_access_size = 4, .max_access_size = 4, }, .endianness = DEVICE_NATIVE_ENDIAN, }; static void a9_gtimer_reset(DeviceState *dev) { A9GTimerState *s = A9_GTIMER(dev); int i; s->counter = 0; s->control = 0; for (i = 0; i < s->num_cpu; i++) { A9GTimerPerCPU *gtb = &s->per_cpu[i]; gtb->control = 0; gtb->status = 0; gtb->compare = 0; gtb->inc = 0; } a9_gtimer_update(s, false); } static void a9_gtimer_realize(DeviceState *dev, Error **errp) { A9GTimerState *s = A9_GTIMER(dev); SysBusDevice *sbd = SYS_BUS_DEVICE(dev); int i; if (s->num_cpu < 1 || s->num_cpu > A9_GTIMER_MAX_CPUS) { error_setg(errp, "%s: num-cpu must be between 1 and %d", __func__, A9_GTIMER_MAX_CPUS); return; } memory_region_init_io(&s->iomem, OBJECT(dev), &a9_gtimer_this_ops, s, "a9gtimer shared", 0x20); sysbus_init_mmio(sbd, &s->iomem); s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, a9_gtimer_update_no_sync, s); for (i = 0; i < s->num_cpu; i++) { A9GTimerPerCPU *gtb = &s->per_cpu[i]; gtb->parent = s; sysbus_init_irq(sbd, >b->irq); memory_region_init_io(>b->iomem, OBJECT(dev), &a9_gtimer_ops, gtb, "a9gtimer per cpu", 0x20); sysbus_init_mmio(sbd, >b->iomem); } } static const VMStateDescription vmstate_a9_gtimer_per_cpu = { .name = "arm.cortex-a9-global-timer.percpu", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(control, A9GTimerPerCPU), VMSTATE_UINT64(compare, A9GTimerPerCPU), VMSTATE_UINT32(status, A9GTimerPerCPU), VMSTATE_UINT32(inc, A9GTimerPerCPU), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_a9_gtimer = { .name = "arm.cortex-a9-global-timer", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_TIMER_PTR(timer, A9GTimerState), VMSTATE_UINT64(counter, A9GTimerState), VMSTATE_UINT64(ref_counter, A9GTimerState), VMSTATE_UINT64(cpu_ref_time, A9GTimerState), VMSTATE_STRUCT_VARRAY_UINT32(per_cpu, A9GTimerState, num_cpu, 1, vmstate_a9_gtimer_per_cpu, A9GTimerPerCPU), VMSTATE_END_OF_LIST() } }; static Property a9_gtimer_properties[] = { DEFINE_PROP_UINT32("num-cpu", A9GTimerState, num_cpu, 0), DEFINE_PROP_END_OF_LIST() }; static void a9_gtimer_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = a9_gtimer_realize; dc->vmsd = &vmstate_a9_gtimer; dc->reset = a9_gtimer_reset; dc->props = a9_gtimer_properties; } static const TypeInfo a9_gtimer_info = { .name = TYPE_A9_GTIMER, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(A9GTimerState), .class_init = a9_gtimer_class_init, }; static void a9_gtimer_register_types(void) { type_register_static(&a9_gtimer_info); } type_init(a9_gtimer_register_types)