/* * QEMU ESP/NCR53C9x emulation * * Copyright (c) 2005-2006 Fabrice Bellard * Copyright (c) 2012 Herve Poussineau * Copyright (c) 2023 Mark Cave-Ayland * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "hw/sysbus.h" #include "migration/vmstate.h" #include "hw/irq.h" #include "hw/scsi/esp.h" #include "trace.h" #include "qemu/log.h" #include "qemu/module.h" /* * On Sparc32, this is the ESP (NCR53C90) part of chip STP2000 (Master I/O), * also produced as NCR89C100. See * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt * and * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR53C9X.txt * * On Macintosh Quadra it is a NCR53C96. */ static void esp_raise_irq(ESPState *s) { if (!(s->rregs[ESP_RSTAT] & STAT_INT)) { s->rregs[ESP_RSTAT] |= STAT_INT; qemu_irq_raise(s->irq); trace_esp_raise_irq(); } } static void esp_lower_irq(ESPState *s) { if (s->rregs[ESP_RSTAT] & STAT_INT) { s->rregs[ESP_RSTAT] &= ~STAT_INT; qemu_irq_lower(s->irq); trace_esp_lower_irq(); } } static void esp_raise_drq(ESPState *s) { if (!(s->drq_state)) { qemu_irq_raise(s->drq_irq); trace_esp_raise_drq(); s->drq_state = true; } } static void esp_lower_drq(ESPState *s) { if (s->drq_state) { qemu_irq_lower(s->drq_irq); trace_esp_lower_drq(); s->drq_state = false; } } static const char *esp_phase_names[8] = { "DATA OUT", "DATA IN", "COMMAND", "STATUS", "(reserved)", "(reserved)", "MESSAGE OUT", "MESSAGE IN" }; static void esp_set_phase(ESPState *s, uint8_t phase) { s->rregs[ESP_RSTAT] &= ~7; s->rregs[ESP_RSTAT] |= phase; trace_esp_set_phase(esp_phase_names[phase]); } static uint8_t esp_get_phase(ESPState *s) { return s->rregs[ESP_RSTAT] & 7; } void esp_dma_enable(ESPState *s, int irq, int level) { if (level) { s->dma_enabled = 1; trace_esp_dma_enable(); if (s->dma_cb) { s->dma_cb(s); s->dma_cb = NULL; } } else { trace_esp_dma_disable(); s->dma_enabled = 0; } } void esp_request_cancelled(SCSIRequest *req) { ESPState *s = req->hba_private; if (req == s->current_req) { scsi_req_unref(s->current_req); s->current_req = NULL; s->current_dev = NULL; s->async_len = 0; } } static void esp_update_drq(ESPState *s) { bool to_device; switch (esp_get_phase(s)) { case STAT_MO: case STAT_CD: case STAT_DO: to_device = true; break; case STAT_DI: case STAT_ST: case STAT_MI: to_device = false; break; default: return; } if (s->dma) { /* DMA request so update DRQ according to transfer direction */ if (to_device) { if (fifo8_num_free(&s->fifo) < 2) { esp_lower_drq(s); } else { esp_raise_drq(s); } } else { if (fifo8_num_used(&s->fifo) < 2) { esp_lower_drq(s); } else { esp_raise_drq(s); } } } else { /* Not a DMA request */ esp_lower_drq(s); } } static void esp_fifo_push(ESPState *s, uint8_t val) { if (fifo8_num_used(&s->fifo) == s->fifo.capacity) { trace_esp_error_fifo_overrun(); } else { fifo8_push(&s->fifo, val); } esp_update_drq(s); } static void esp_fifo_push_buf(ESPState *s, uint8_t *buf, int len) { fifo8_push_all(&s->fifo, buf, len); esp_update_drq(s); } static uint8_t esp_fifo_pop(ESPState *s) { uint8_t val; if (fifo8_is_empty(&s->fifo)) { val = 0; } else { val = fifo8_pop(&s->fifo); } esp_update_drq(s); return val; } static uint32_t esp_fifo8_pop_buf(Fifo8 *fifo, uint8_t *dest, int maxlen) { const uint8_t *buf; uint32_t n, n2; int len; if (maxlen == 0) { return 0; } len = maxlen; buf = fifo8_pop_buf(fifo, len, &n); if (dest) { memcpy(dest, buf, n); } /* Add FIFO wraparound if needed */ len -= n; len = MIN(len, fifo8_num_used(fifo)); if (len) { buf = fifo8_pop_buf(fifo, len, &n2); if (dest) { memcpy(&dest[n], buf, n2); } n += n2; } return n; } static uint32_t esp_fifo_pop_buf(ESPState *s, uint8_t *dest, int maxlen) { uint32_t len = esp_fifo8_pop_buf(&s->fifo, dest, maxlen); esp_update_drq(s); return len; } static uint32_t esp_get_tc(ESPState *s) { uint32_t dmalen; dmalen = s->rregs[ESP_TCLO]; dmalen |= s->rregs[ESP_TCMID] << 8; dmalen |= s->rregs[ESP_TCHI] << 16; return dmalen; } static void esp_set_tc(ESPState *s, uint32_t dmalen) { uint32_t old_tc = esp_get_tc(s); s->rregs[ESP_TCLO] = dmalen; s->rregs[ESP_TCMID] = dmalen >> 8; s->rregs[ESP_TCHI] = dmalen >> 16; if (old_tc && dmalen == 0) { s->rregs[ESP_RSTAT] |= STAT_TC; } } static uint32_t esp_get_stc(ESPState *s) { uint32_t dmalen; dmalen = s->wregs[ESP_TCLO]; dmalen |= s->wregs[ESP_TCMID] << 8; dmalen |= s->wregs[ESP_TCHI] << 16; return dmalen; } static uint8_t esp_pdma_read(ESPState *s) { uint8_t val; val = esp_fifo_pop(s); return val; } static void esp_pdma_write(ESPState *s, uint8_t val) { uint32_t dmalen = esp_get_tc(s); esp_fifo_push(s, val); if (dmalen && s->drq_state) { dmalen--; esp_set_tc(s, dmalen); } } static int esp_select(ESPState *s) { int target; target = s->wregs[ESP_WBUSID] & BUSID_DID; s->ti_size = 0; s->rregs[ESP_RSEQ] = SEQ_0; if (s->current_req) { /* Started a new command before the old one finished. Cancel it. */ scsi_req_cancel(s->current_req); } s->current_dev = scsi_device_find(&s->bus, 0, target, 0); if (!s->current_dev) { /* No such drive */ s->rregs[ESP_RSTAT] = 0; s->rregs[ESP_RINTR] = INTR_DC; esp_raise_irq(s); return -1; } /* * Note that we deliberately don't raise the IRQ here: this will be done * either in esp_transfer_data() or esp_command_complete() */ return 0; } static void esp_do_dma(ESPState *s); static void esp_do_nodma(ESPState *s); static void do_command_phase(ESPState *s) { uint32_t cmdlen; int32_t datalen; SCSIDevice *current_lun; uint8_t buf[ESP_CMDFIFO_SZ]; trace_esp_do_command_phase(s->lun); cmdlen = fifo8_num_used(&s->cmdfifo); if (!cmdlen || !s->current_dev) { return; } esp_fifo8_pop_buf(&s->cmdfifo, buf, cmdlen); current_lun = scsi_device_find(&s->bus, 0, s->current_dev->id, s->lun); if (!current_lun) { /* No such drive */ s->rregs[ESP_RSTAT] = 0; s->rregs[ESP_RINTR] = INTR_DC; s->rregs[ESP_RSEQ] = SEQ_0; esp_raise_irq(s); return; } s->current_req = scsi_req_new(current_lun, 0, s->lun, buf, cmdlen, s); datalen = scsi_req_enqueue(s->current_req); s->ti_size = datalen; fifo8_reset(&s->cmdfifo); s->data_ready = false; if (datalen != 0) { /* * Switch to DATA phase but wait until initial data xfer is * complete before raising the command completion interrupt */ if (datalen > 0) { esp_set_phase(s, STAT_DI); } else { esp_set_phase(s, STAT_DO); } scsi_req_continue(s->current_req); return; } } static void do_message_phase(ESPState *s) { if (s->cmdfifo_cdb_offset) { uint8_t message = fifo8_is_empty(&s->cmdfifo) ? 0 : fifo8_pop(&s->cmdfifo); trace_esp_do_identify(message); s->lun = message & 7; s->cmdfifo_cdb_offset--; } /* Ignore extended messages for now */ if (s->cmdfifo_cdb_offset) { int len = MIN(s->cmdfifo_cdb_offset, fifo8_num_used(&s->cmdfifo)); esp_fifo8_pop_buf(&s->cmdfifo, NULL, len); s->cmdfifo_cdb_offset = 0; } } static void do_cmd(ESPState *s) { do_message_phase(s); assert(s->cmdfifo_cdb_offset == 0); do_command_phase(s); } static void handle_satn(ESPState *s) { if (s->dma && !s->dma_enabled) { s->dma_cb = handle_satn; return; } if (esp_select(s) < 0) { return; } esp_set_phase(s, STAT_MO); if (s->dma) { esp_do_dma(s); } else { esp_do_nodma(s); } } static void handle_s_without_atn(ESPState *s) { if (s->dma && !s->dma_enabled) { s->dma_cb = handle_s_without_atn; return; } if (esp_select(s) < 0) { return; } esp_set_phase(s, STAT_CD); s->cmdfifo_cdb_offset = 0; if (s->dma) { esp_do_dma(s); } else { esp_do_nodma(s); } } static void handle_satn_stop(ESPState *s) { if (s->dma && !s->dma_enabled) { s->dma_cb = handle_satn_stop; return; } if (esp_select(s) < 0) { return; } esp_set_phase(s, STAT_MO); s->cmdfifo_cdb_offset = 0; if (s->dma) { esp_do_dma(s); } else { esp_do_nodma(s); } } static void handle_pad(ESPState *s) { if (s->dma) { esp_do_dma(s); } else { esp_do_nodma(s); } } static void write_response(ESPState *s) { trace_esp_write_response(s->status); if (s->dma) { esp_do_dma(s); } else { esp_do_nodma(s); } } static bool esp_cdb_ready(ESPState *s) { int len = fifo8_num_used(&s->cmdfifo) - s->cmdfifo_cdb_offset; const uint8_t *pbuf; uint32_t n; int cdblen; if (len <= 0) { return false; } pbuf = fifo8_peek_buf(&s->cmdfifo, len, &n); if (n < len) { /* * In normal use the cmdfifo should never wrap, but include this check * to prevent a malicious guest from reading past the end of the * cmdfifo data buffer below */ return false; } cdblen = scsi_cdb_length((uint8_t *)&pbuf[s->cmdfifo_cdb_offset]); return cdblen < 0 ? false : (len >= cdblen); } static void esp_dma_ti_check(ESPState *s) { if (esp_get_tc(s) == 0 && fifo8_num_used(&s->fifo) < 2) { s->rregs[ESP_RINTR] |= INTR_BS; esp_raise_irq(s); } } static void esp_do_dma(ESPState *s) { uint32_t len, cmdlen; uint8_t buf[ESP_CMDFIFO_SZ]; len = esp_get_tc(s); switch (esp_get_phase(s)) { case STAT_MO: if (s->dma_memory_read) { len = MIN(len, fifo8_num_free(&s->cmdfifo)); s->dma_memory_read(s->dma_opaque, buf, len); esp_set_tc(s, esp_get_tc(s) - len); } else { len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo)); len = MIN(fifo8_num_free(&s->cmdfifo), len); } fifo8_push_all(&s->cmdfifo, buf, len); s->cmdfifo_cdb_offset += len; switch (s->rregs[ESP_CMD]) { case CMD_SELATN | CMD_DMA: if (fifo8_num_used(&s->cmdfifo) >= 1) { /* First byte received, switch to command phase */ esp_set_phase(s, STAT_CD); s->rregs[ESP_RSEQ] = SEQ_CD; s->cmdfifo_cdb_offset = 1; if (fifo8_num_used(&s->cmdfifo) > 1) { /* Process any additional command phase data */ esp_do_dma(s); } } break; case CMD_SELATNS | CMD_DMA: if (fifo8_num_used(&s->cmdfifo) == 1) { /* First byte received, stop in message out phase */ s->rregs[ESP_RSEQ] = SEQ_MO; s->cmdfifo_cdb_offset = 1; /* Raise command completion interrupt */ s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC; esp_raise_irq(s); } break; case CMD_TI | CMD_DMA: /* ATN remains asserted until TC == 0 */ if (esp_get_tc(s) == 0) { esp_set_phase(s, STAT_CD); s->rregs[ESP_CMD] = 0; s->rregs[ESP_RINTR] |= INTR_BS; esp_raise_irq(s); } break; } break; case STAT_CD: cmdlen = fifo8_num_used(&s->cmdfifo); trace_esp_do_dma(cmdlen, len); if (s->dma_memory_read) { len = MIN(len, fifo8_num_free(&s->cmdfifo)); s->dma_memory_read(s->dma_opaque, buf, len); fifo8_push_all(&s->cmdfifo, buf, len); esp_set_tc(s, esp_get_tc(s) - len); } else { len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo)); len = MIN(fifo8_num_free(&s->cmdfifo), len); fifo8_push_all(&s->cmdfifo, buf, len); } trace_esp_handle_ti_cmd(cmdlen); s->ti_size = 0; if (esp_get_tc(s) == 0) { /* Command has been received */ do_cmd(s); } break; case STAT_DO: if (!s->current_req) { return; } if (s->async_len == 0 && esp_get_tc(s) && s->ti_size) { /* Defer until data is available. */ return; } if (len > s->async_len) { len = s->async_len; } switch (s->rregs[ESP_CMD]) { case CMD_TI | CMD_DMA: if (s->dma_memory_read) { s->dma_memory_read(s->dma_opaque, s->async_buf, len); esp_set_tc(s, esp_get_tc(s) - len); } else { /* Copy FIFO data to device */ len = MIN(s->async_len, ESP_FIFO_SZ); len = MIN(len, fifo8_num_used(&s->fifo)); len = esp_fifo_pop_buf(s, s->async_buf, len); } s->async_buf += len; s->async_len -= len; s->ti_size += len; break; case CMD_PAD | CMD_DMA: /* Copy TC zero bytes into the incoming stream */ if (!s->dma_memory_read) { len = MIN(s->async_len, ESP_FIFO_SZ); len = MIN(len, fifo8_num_free(&s->fifo)); } memset(s->async_buf, 0, len); s->async_buf += len; s->async_len -= len; s->ti_size += len; break; } if (s->async_len == 0 && fifo8_num_used(&s->fifo) < 2) { /* Defer until the scsi layer has completed */ scsi_req_continue(s->current_req); return; } esp_dma_ti_check(s); break; case STAT_DI: if (!s->current_req) { return; } if (s->async_len == 0 && esp_get_tc(s) && s->ti_size) { /* Defer until data is available. */ return; } if (len > s->async_len) { len = s->async_len; } switch (s->rregs[ESP_CMD]) { case CMD_TI | CMD_DMA: if (s->dma_memory_write) { s->dma_memory_write(s->dma_opaque, s->async_buf, len); } else { /* Copy device data to FIFO */ len = MIN(len, fifo8_num_free(&s->fifo)); esp_fifo_push_buf(s, s->async_buf, len); } s->async_buf += len; s->async_len -= len; s->ti_size -= len; esp_set_tc(s, esp_get_tc(s) - len); break; case CMD_PAD | CMD_DMA: /* Drop TC bytes from the incoming stream */ if (!s->dma_memory_write) { len = MIN(len, fifo8_num_free(&s->fifo)); } s->async_buf += len; s->async_len -= len; s->ti_size -= len; esp_set_tc(s, esp_get_tc(s) - len); break; } if (s->async_len == 0 && s->ti_size == 0 && esp_get_tc(s)) { /* If the guest underflows TC then terminate SCSI request */ scsi_req_continue(s->current_req); return; } if (s->async_len == 0 && fifo8_num_used(&s->fifo) < 2) { /* Defer until the scsi layer has completed */ scsi_req_continue(s->current_req); return; } esp_dma_ti_check(s); break; case STAT_ST: switch (s->rregs[ESP_CMD]) { case CMD_ICCS | CMD_DMA: len = MIN(len, 1); if (len) { buf[0] = s->status; if (s->dma_memory_write) { s->dma_memory_write(s->dma_opaque, buf, len); } else { esp_fifo_push_buf(s, buf, len); } esp_set_tc(s, esp_get_tc(s) - len); esp_set_phase(s, STAT_MI); if (esp_get_tc(s) > 0) { /* Process any message in phase data */ esp_do_dma(s); } } break; default: /* Consume remaining data if the guest underflows TC */ if (fifo8_num_used(&s->fifo) < 2) { s->rregs[ESP_RINTR] |= INTR_BS; esp_raise_irq(s); } break; } break; case STAT_MI: switch (s->rregs[ESP_CMD]) { case CMD_ICCS | CMD_DMA: len = MIN(len, 1); if (len) { buf[0] = 0; if (s->dma_memory_write) { s->dma_memory_write(s->dma_opaque, buf, len); } else { esp_fifo_push_buf(s, buf, len); } esp_set_tc(s, esp_get_tc(s) - len); /* Raise end of command interrupt */ s->rregs[ESP_RINTR] |= INTR_FC; esp_raise_irq(s); } break; } break; } } static void esp_nodma_ti_dataout(ESPState *s) { int len; if (!s->current_req) { return; } if (s->async_len == 0) { /* Defer until data is available. */ return; } len = MIN(s->async_len, ESP_FIFO_SZ); len = MIN(len, fifo8_num_used(&s->fifo)); esp_fifo_pop_buf(s, s->async_buf, len); s->async_buf += len; s->async_len -= len; s->ti_size += len; if (s->async_len == 0) { scsi_req_continue(s->current_req); return; } s->rregs[ESP_RINTR] |= INTR_BS; esp_raise_irq(s); } static void esp_do_nodma(ESPState *s) { uint8_t buf[ESP_FIFO_SZ]; uint32_t cmdlen; int len; switch (esp_get_phase(s)) { case STAT_MO: switch (s->rregs[ESP_CMD]) { case CMD_SELATN: /* Copy FIFO into cmdfifo */ len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo)); len = MIN(fifo8_num_free(&s->cmdfifo), len); fifo8_push_all(&s->cmdfifo, buf, len); if (fifo8_num_used(&s->cmdfifo) >= 1) { /* First byte received, switch to command phase */ esp_set_phase(s, STAT_CD); s->rregs[ESP_RSEQ] = SEQ_CD; s->cmdfifo_cdb_offset = 1; if (fifo8_num_used(&s->cmdfifo) > 1) { /* Process any additional command phase data */ esp_do_nodma(s); } } break; case CMD_SELATNS: /* Copy one byte from FIFO into cmdfifo */ len = esp_fifo_pop_buf(s, buf, MIN(fifo8_num_used(&s->fifo), 1)); len = MIN(fifo8_num_free(&s->cmdfifo), len); fifo8_push_all(&s->cmdfifo, buf, len); if (fifo8_num_used(&s->cmdfifo) >= 1) { /* First byte received, stop in message out phase */ s->rregs[ESP_RSEQ] = SEQ_MO; s->cmdfifo_cdb_offset = 1; /* Raise command completion interrupt */ s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC; esp_raise_irq(s); } break; case CMD_TI: /* Copy FIFO into cmdfifo */ len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo)); len = MIN(fifo8_num_free(&s->cmdfifo), len); fifo8_push_all(&s->cmdfifo, buf, len); /* ATN remains asserted until FIFO empty */ s->cmdfifo_cdb_offset = fifo8_num_used(&s->cmdfifo); esp_set_phase(s, STAT_CD); s->rregs[ESP_CMD] = 0; s->rregs[ESP_RINTR] |= INTR_BS; esp_raise_irq(s); break; } break; case STAT_CD: switch (s->rregs[ESP_CMD]) { case CMD_TI: /* Copy FIFO into cmdfifo */ len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo)); len = MIN(fifo8_num_free(&s->cmdfifo), len); fifo8_push_all(&s->cmdfifo, buf, len); cmdlen = fifo8_num_used(&s->cmdfifo); trace_esp_handle_ti_cmd(cmdlen); /* CDB may be transferred in one or more TI commands */ if (esp_cdb_ready(s)) { /* Command has been received */ do_cmd(s); } else { /* * If data was transferred from the FIFO then raise bus * service interrupt to indicate transfer complete. Otherwise * defer until the next FIFO write. */ if (len) { /* Raise interrupt to indicate transfer complete */ s->rregs[ESP_RINTR] |= INTR_BS; esp_raise_irq(s); } } break; case CMD_SEL | CMD_DMA: case CMD_SELATN | CMD_DMA: /* Copy FIFO into cmdfifo */ len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo)); len = MIN(fifo8_num_free(&s->cmdfifo), len); fifo8_push_all(&s->cmdfifo, buf, len); /* Handle when DMA transfer is terminated by non-DMA FIFO write */ if (esp_cdb_ready(s)) { /* Command has been received */ do_cmd(s); } break; case CMD_SEL: case CMD_SELATN: /* FIFO already contain entire CDB: copy to cmdfifo and execute */ len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo)); len = MIN(fifo8_num_free(&s->cmdfifo), len); fifo8_push_all(&s->cmdfifo, buf, len); do_cmd(s); break; } break; case STAT_DO: /* Accumulate data in FIFO until non-DMA TI is executed */ break; case STAT_DI: if (!s->current_req) { return; } if (s->async_len == 0) { /* Defer until data is available. */ return; } if (fifo8_is_empty(&s->fifo)) { esp_fifo_push(s, s->async_buf[0]); s->async_buf++; s->async_len--; s->ti_size--; } if (s->async_len == 0) { scsi_req_continue(s->current_req); return; } /* If preloading the FIFO, defer until TI command issued */ if (s->rregs[ESP_CMD] != CMD_TI) { return; } s->rregs[ESP_RINTR] |= INTR_BS; esp_raise_irq(s); break; case STAT_ST: switch (s->rregs[ESP_CMD]) { case CMD_ICCS: esp_fifo_push(s, s->status); esp_set_phase(s, STAT_MI); /* Process any message in phase data */ esp_do_nodma(s); break; } break; case STAT_MI: switch (s->rregs[ESP_CMD]) { case CMD_ICCS: esp_fifo_push(s, 0); /* Raise end of command interrupt */ s->rregs[ESP_RINTR] |= INTR_FC; esp_raise_irq(s); break; } break; } } void esp_command_complete(SCSIRequest *req, size_t resid) { ESPState *s = req->hba_private; int to_device = (esp_get_phase(s) == STAT_DO); trace_esp_command_complete(); /* * Non-DMA transfers from the target will leave the last byte in * the FIFO so don't reset ti_size in this case */ if (s->dma || to_device) { if (s->ti_size != 0) { trace_esp_command_complete_unexpected(); } } s->async_len = 0; if (req->status) { trace_esp_command_complete_fail(); } s->status = req->status; /* * Switch to status phase. For non-DMA transfers from the target the last * byte is still in the FIFO */ s->ti_size = 0; switch (s->rregs[ESP_CMD]) { case CMD_SEL | CMD_DMA: case CMD_SEL: case CMD_SELATN | CMD_DMA: case CMD_SELATN: /* * No data phase for sequencer command so raise deferred bus service * and function complete interrupt */ s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC; s->rregs[ESP_RSEQ] = SEQ_CD; break; case CMD_TI | CMD_DMA: case CMD_TI: s->rregs[ESP_CMD] = 0; break; } /* Raise bus service interrupt to indicate change to STATUS phase */ esp_set_phase(s, STAT_ST); s->rregs[ESP_RINTR] |= INTR_BS; esp_raise_irq(s); if (s->current_req) { scsi_req_unref(s->current_req); s->current_req = NULL; s->current_dev = NULL; } } void esp_transfer_data(SCSIRequest *req, uint32_t len) { ESPState *s = req->hba_private; uint32_t dmalen = esp_get_tc(s); trace_esp_transfer_data(dmalen, s->ti_size); s->async_len = len; s->async_buf = scsi_req_get_buf(req); if (!s->data_ready) { s->data_ready = true; switch (s->rregs[ESP_CMD]) { case CMD_SEL | CMD_DMA: case CMD_SEL: case CMD_SELATN | CMD_DMA: case CMD_SELATN: /* * Initial incoming data xfer is complete for sequencer command * so raise deferred bus service and function complete interrupt */ s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC; s->rregs[ESP_RSEQ] = SEQ_CD; break; case CMD_SELATNS | CMD_DMA: case CMD_SELATNS: /* * Initial incoming data xfer is complete so raise command * completion interrupt */ s->rregs[ESP_RINTR] |= INTR_BS; s->rregs[ESP_RSEQ] = SEQ_MO; break; case CMD_TI | CMD_DMA: case CMD_TI: /* * Bus service interrupt raised because of initial change to * DATA phase */ s->rregs[ESP_CMD] = 0; s->rregs[ESP_RINTR] |= INTR_BS; break; } esp_raise_irq(s); } /* * Always perform the initial transfer upon reception of the next TI * command to ensure the DMA/non-DMA status of the command is correct. * It is not possible to use s->dma directly in the section below as * some OSs send non-DMA NOP commands after a DMA transfer. Hence if the * async data transfer is delayed then s->dma is set incorrectly. */ if (s->rregs[ESP_CMD] == (CMD_TI | CMD_DMA)) { /* When the SCSI layer returns more data, raise deferred INTR_BS */ esp_dma_ti_check(s); esp_do_dma(s); } else if (s->rregs[ESP_CMD] == CMD_TI) { esp_do_nodma(s); } } static void handle_ti(ESPState *s) { uint32_t dmalen; if (s->dma && !s->dma_enabled) { s->dma_cb = handle_ti; return; } if (s->dma) { dmalen = esp_get_tc(s); trace_esp_handle_ti(dmalen); esp_do_dma(s); } else { trace_esp_handle_ti(s->ti_size); esp_do_nodma(s); if (esp_get_phase(s) == STAT_DO) { esp_nodma_ti_dataout(s); } } } void esp_hard_reset(ESPState *s) { memset(s->rregs, 0, ESP_REGS); memset(s->wregs, 0, ESP_REGS); s->tchi_written = 0; s->ti_size = 0; s->async_len = 0; fifo8_reset(&s->fifo); fifo8_reset(&s->cmdfifo); s->dma = 0; s->dma_cb = NULL; s->rregs[ESP_CFG1] = 7; } static void esp_soft_reset(ESPState *s) { qemu_irq_lower(s->irq); qemu_irq_lower(s->drq_irq); esp_hard_reset(s); } static void esp_bus_reset(ESPState *s) { bus_cold_reset(BUS(&s->bus)); } static void parent_esp_reset(ESPState *s, int irq, int level) { if (level) { esp_soft_reset(s); } } static void esp_run_cmd(ESPState *s) { uint8_t cmd = s->rregs[ESP_CMD]; if (cmd & CMD_DMA) { s->dma = 1; /* Reload DMA counter. */ if (esp_get_stc(s) == 0) { esp_set_tc(s, 0x10000); } else { esp_set_tc(s, esp_get_stc(s)); } } else { s->dma = 0; } switch (cmd & CMD_CMD) { case CMD_NOP: trace_esp_mem_writeb_cmd_nop(cmd); break; case CMD_FLUSH: trace_esp_mem_writeb_cmd_flush(cmd); fifo8_reset(&s->fifo); break; case CMD_RESET: trace_esp_mem_writeb_cmd_reset(cmd); esp_soft_reset(s); break; case CMD_BUSRESET: trace_esp_mem_writeb_cmd_bus_reset(cmd); esp_bus_reset(s); if (!(s->wregs[ESP_CFG1] & CFG1_RESREPT)) { s->rregs[ESP_RINTR] |= INTR_RST; esp_raise_irq(s); } break; case CMD_TI: trace_esp_mem_writeb_cmd_ti(cmd); handle_ti(s); break; case CMD_ICCS: trace_esp_mem_writeb_cmd_iccs(cmd); write_response(s); break; case CMD_MSGACC: trace_esp_mem_writeb_cmd_msgacc(cmd); s->rregs[ESP_RINTR] |= INTR_DC; s->rregs[ESP_RSEQ] = 0; s->rregs[ESP_RFLAGS] = 0; esp_raise_irq(s); break; case CMD_PAD: trace_esp_mem_writeb_cmd_pad(cmd); handle_pad(s); break; case CMD_SATN: trace_esp_mem_writeb_cmd_satn(cmd); break; case CMD_RSTATN: trace_esp_mem_writeb_cmd_rstatn(cmd); break; case CMD_SEL: trace_esp_mem_writeb_cmd_sel(cmd); handle_s_without_atn(s); break; case CMD_SELATN: trace_esp_mem_writeb_cmd_selatn(cmd); handle_satn(s); break; case CMD_SELATNS: trace_esp_mem_writeb_cmd_selatns(cmd); handle_satn_stop(s); break; case CMD_ENSEL: trace_esp_mem_writeb_cmd_ensel(cmd); s->rregs[ESP_RINTR] = 0; break; case CMD_DISSEL: trace_esp_mem_writeb_cmd_dissel(cmd); s->rregs[ESP_RINTR] = 0; esp_raise_irq(s); break; default: trace_esp_error_unhandled_command(cmd); break; } } uint64_t esp_reg_read(ESPState *s, uint32_t saddr) { uint32_t val; switch (saddr) { case ESP_FIFO: s->rregs[ESP_FIFO] = esp_fifo_pop(s); val = s->rregs[ESP_FIFO]; break; case ESP_RINTR: /* * Clear sequence step, interrupt register and all status bits * except TC */ val = s->rregs[ESP_RINTR]; s->rregs[ESP_RINTR] = 0; esp_lower_irq(s); s->rregs[ESP_RSTAT] &= STAT_TC | 7; /* * According to the datasheet ESP_RSEQ should be cleared, but as the * emulation currently defers information transfers to the next TI * command leave it for now so that pedantic guests such as the old * Linux 2.6 driver see the correct flags before the next SCSI phase * transition. * * s->rregs[ESP_RSEQ] = SEQ_0; */ break; case ESP_TCHI: /* Return the unique id if the value has never been written */ if (!s->tchi_written) { val = s->chip_id; } else { val = s->rregs[saddr]; } break; case ESP_RFLAGS: /* Bottom 5 bits indicate number of bytes in FIFO */ val = fifo8_num_used(&s->fifo); break; default: val = s->rregs[saddr]; break; } trace_esp_mem_readb(saddr, val); return val; } void esp_reg_write(ESPState *s, uint32_t saddr, uint64_t val) { trace_esp_mem_writeb(saddr, s->wregs[saddr], val); switch (saddr) { case ESP_TCHI: s->tchi_written = true; /* fall through */ case ESP_TCLO: case ESP_TCMID: s->rregs[ESP_RSTAT] &= ~STAT_TC; break; case ESP_FIFO: if (!fifo8_is_full(&s->fifo)) { esp_fifo_push(s, val); } esp_do_nodma(s); break; case ESP_CMD: s->rregs[saddr] = val; esp_run_cmd(s); break; case ESP_WBUSID ... ESP_WSYNO: break; case ESP_CFG1: case ESP_CFG2: case ESP_CFG3: case ESP_RES3: case ESP_RES4: s->rregs[saddr] = val; break; case ESP_WCCF ... ESP_WTEST: break; default: trace_esp_error_invalid_write(val, saddr); return; } s->wregs[saddr] = val; } static bool esp_mem_accepts(void *opaque, hwaddr addr, unsigned size, bool is_write, MemTxAttrs attrs) { return (size == 1) || (is_write && size == 4); } static bool esp_is_before_version_5(void *opaque, int version_id) { ESPState *s = ESP(opaque); version_id = MIN(version_id, s->mig_version_id); return version_id < 5; } static bool esp_is_version_5(void *opaque, int version_id) { ESPState *s = ESP(opaque); version_id = MIN(version_id, s->mig_version_id); return version_id >= 5; } static bool esp_is_version_6(void *opaque, int version_id) { ESPState *s = ESP(opaque); version_id = MIN(version_id, s->mig_version_id); return version_id >= 6; } static bool esp_is_between_version_5_and_6(void *opaque, int version_id) { ESPState *s = ESP(opaque); version_id = MIN(version_id, s->mig_version_id); return version_id >= 5 && version_id <= 6; } int esp_pre_save(void *opaque) { ESPState *s = ESP(object_resolve_path_component( OBJECT(opaque), "esp")); s->mig_version_id = vmstate_esp.version_id; return 0; } static int esp_post_load(void *opaque, int version_id) { ESPState *s = ESP(opaque); int len, i; version_id = MIN(version_id, s->mig_version_id); if (version_id < 5) { esp_set_tc(s, s->mig_dma_left); /* Migrate ti_buf to fifo */ len = s->mig_ti_wptr - s->mig_ti_rptr; for (i = 0; i < len; i++) { fifo8_push(&s->fifo, s->mig_ti_buf[i]); } /* Migrate cmdbuf to cmdfifo */ for (i = 0; i < s->mig_cmdlen; i++) { fifo8_push(&s->cmdfifo, s->mig_cmdbuf[i]); } } s->mig_version_id = vmstate_esp.version_id; return 0; } const VMStateDescription vmstate_esp = { .name = "esp", .version_id = 7, .minimum_version_id = 3, .post_load = esp_post_load, .fields = (const VMStateField[]) { VMSTATE_BUFFER(rregs, ESPState), VMSTATE_BUFFER(wregs, ESPState), VMSTATE_INT32(ti_size, ESPState), VMSTATE_UINT32_TEST(mig_ti_rptr, ESPState, esp_is_before_version_5), VMSTATE_UINT32_TEST(mig_ti_wptr, ESPState, esp_is_before_version_5), VMSTATE_BUFFER_TEST(mig_ti_buf, ESPState, esp_is_before_version_5), VMSTATE_UINT32(status, ESPState), VMSTATE_UINT32_TEST(mig_deferred_status, ESPState, esp_is_before_version_5), VMSTATE_BOOL_TEST(mig_deferred_complete, ESPState, esp_is_before_version_5), VMSTATE_UINT32(dma, ESPState), VMSTATE_STATIC_BUFFER(mig_cmdbuf, ESPState, 0, esp_is_before_version_5, 0, 16), VMSTATE_STATIC_BUFFER(mig_cmdbuf, ESPState, 4, esp_is_before_version_5, 16, sizeof(typeof_field(ESPState, mig_cmdbuf))), VMSTATE_UINT32_TEST(mig_cmdlen, ESPState, esp_is_before_version_5), VMSTATE_UINT32(do_cmd, ESPState), VMSTATE_UINT32_TEST(mig_dma_left, ESPState, esp_is_before_version_5), VMSTATE_BOOL_TEST(data_ready, ESPState, esp_is_version_5), VMSTATE_UINT8_TEST(cmdfifo_cdb_offset, ESPState, esp_is_version_5), VMSTATE_FIFO8_TEST(fifo, ESPState, esp_is_version_5), VMSTATE_FIFO8_TEST(cmdfifo, ESPState, esp_is_version_5), VMSTATE_UINT8_TEST(mig_ti_cmd, ESPState, esp_is_between_version_5_and_6), VMSTATE_UINT8_TEST(lun, ESPState, esp_is_version_6), VMSTATE_BOOL(drq_state, ESPState), VMSTATE_END_OF_LIST() }, }; static void sysbus_esp_mem_write(void *opaque, hwaddr addr, uint64_t val, unsigned int size) { SysBusESPState *sysbus = opaque; ESPState *s = ESP(&sysbus->esp); uint32_t saddr; saddr = addr >> sysbus->it_shift; esp_reg_write(s, saddr, val); } static uint64_t sysbus_esp_mem_read(void *opaque, hwaddr addr, unsigned int size) { SysBusESPState *sysbus = opaque; ESPState *s = ESP(&sysbus->esp); uint32_t saddr; saddr = addr >> sysbus->it_shift; return esp_reg_read(s, saddr); } static const MemoryRegionOps sysbus_esp_mem_ops = { .read = sysbus_esp_mem_read, .write = sysbus_esp_mem_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid.accepts = esp_mem_accepts, }; static void sysbus_esp_pdma_write(void *opaque, hwaddr addr, uint64_t val, unsigned int size) { SysBusESPState *sysbus = opaque; ESPState *s = ESP(&sysbus->esp); trace_esp_pdma_write(size); switch (size) { case 1: esp_pdma_write(s, val); break; case 2: esp_pdma_write(s, val >> 8); esp_pdma_write(s, val); break; } esp_do_dma(s); } static uint64_t sysbus_esp_pdma_read(void *opaque, hwaddr addr, unsigned int size) { SysBusESPState *sysbus = opaque; ESPState *s = ESP(&sysbus->esp); uint64_t val = 0; trace_esp_pdma_read(size); switch (size) { case 1: val = esp_pdma_read(s); break; case 2: val = esp_pdma_read(s); val = (val << 8) | esp_pdma_read(s); break; } esp_do_dma(s); return val; } static void *esp_load_request(QEMUFile *f, SCSIRequest *req) { ESPState *s = container_of(req->bus, ESPState, bus); scsi_req_ref(req); s->current_req = req; return s; } static const MemoryRegionOps sysbus_esp_pdma_ops = { .read = sysbus_esp_pdma_read, .write = sysbus_esp_pdma_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid.min_access_size = 1, .valid.max_access_size = 4, .impl.min_access_size = 1, .impl.max_access_size = 2, }; static const struct SCSIBusInfo esp_scsi_info = { .tcq = false, .max_target = ESP_MAX_DEVS, .max_lun = 7, .load_request = esp_load_request, .transfer_data = esp_transfer_data, .complete = esp_command_complete, .cancel = esp_request_cancelled }; static void sysbus_esp_gpio_demux(void *opaque, int irq, int level) { SysBusESPState *sysbus = SYSBUS_ESP(opaque); ESPState *s = ESP(&sysbus->esp); switch (irq) { case 0: parent_esp_reset(s, irq, level); break; case 1: esp_dma_enable(s, irq, level); break; } } static void sysbus_esp_realize(DeviceState *dev, Error **errp) { SysBusDevice *sbd = SYS_BUS_DEVICE(dev); SysBusESPState *sysbus = SYSBUS_ESP(dev); ESPState *s = ESP(&sysbus->esp); if (!qdev_realize(DEVICE(s), NULL, errp)) { return; } sysbus_init_irq(sbd, &s->irq); sysbus_init_irq(sbd, &s->drq_irq); assert(sysbus->it_shift != -1); s->chip_id = TCHI_FAS100A; memory_region_init_io(&sysbus->iomem, OBJECT(sysbus), &sysbus_esp_mem_ops, sysbus, "esp-regs", ESP_REGS << sysbus->it_shift); sysbus_init_mmio(sbd, &sysbus->iomem); memory_region_init_io(&sysbus->pdma, OBJECT(sysbus), &sysbus_esp_pdma_ops, sysbus, "esp-pdma", 4); sysbus_init_mmio(sbd, &sysbus->pdma); qdev_init_gpio_in(dev, sysbus_esp_gpio_demux, 2); scsi_bus_init(&s->bus, sizeof(s->bus), dev, &esp_scsi_info); } static void sysbus_esp_hard_reset(DeviceState *dev) { SysBusESPState *sysbus = SYSBUS_ESP(dev); ESPState *s = ESP(&sysbus->esp); esp_hard_reset(s); } static void sysbus_esp_init(Object *obj) { SysBusESPState *sysbus = SYSBUS_ESP(obj); object_initialize_child(obj, "esp", &sysbus->esp, TYPE_ESP); } static const VMStateDescription vmstate_sysbus_esp_scsi = { .name = "sysbusespscsi", .version_id = 2, .minimum_version_id = 1, .pre_save = esp_pre_save, .fields = (const VMStateField[]) { VMSTATE_UINT8_V(esp.mig_version_id, SysBusESPState, 2), VMSTATE_STRUCT(esp, SysBusESPState, 0, vmstate_esp, ESPState), VMSTATE_END_OF_LIST() } }; static void sysbus_esp_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = sysbus_esp_realize; dc->reset = sysbus_esp_hard_reset; dc->vmsd = &vmstate_sysbus_esp_scsi; set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); } static void esp_finalize(Object *obj) { ESPState *s = ESP(obj); fifo8_destroy(&s->fifo); fifo8_destroy(&s->cmdfifo); } static void esp_init(Object *obj) { ESPState *s = ESP(obj); fifo8_create(&s->fifo, ESP_FIFO_SZ); fifo8_create(&s->cmdfifo, ESP_CMDFIFO_SZ); } static void esp_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); /* internal device for sysbusesp/pciespscsi, not user-creatable */ dc->user_creatable = false; set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); } static const TypeInfo esp_info_types[] = { { .name = TYPE_SYSBUS_ESP, .parent = TYPE_SYS_BUS_DEVICE, .instance_init = sysbus_esp_init, .instance_size = sizeof(SysBusESPState), .class_init = sysbus_esp_class_init, }, { .name = TYPE_ESP, .parent = TYPE_DEVICE, .instance_init = esp_init, .instance_finalize = esp_finalize, .instance_size = sizeof(ESPState), .class_init = esp_class_init, }, }; DEFINE_TYPES(esp_info_types)