/* * QEMU RISC-V VirtIO Board * * Copyright (c) 2017 SiFive, Inc. * * RISC-V machine with 16550a UART and VirtIO MMIO * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qemu/log.h" #include "qemu/error-report.h" #include "qapi/error.h" #include "hw/boards.h" #include "hw/loader.h" #include "hw/sysbus.h" #include "hw/qdev-properties.h" #include "hw/char/serial.h" #include "target/riscv/cpu.h" #include "hw/riscv/riscv_hart.h" #include "hw/riscv/sifive_plic.h" #include "hw/riscv/sifive_clint.h" #include "hw/riscv/sifive_test.h" #include "hw/riscv/virt.h" #include "hw/riscv/boot.h" #include "chardev/char.h" #include "sysemu/arch_init.h" #include "sysemu/device_tree.h" #include "sysemu/sysemu.h" #include "exec/address-spaces.h" #include "hw/pci/pci.h" #include "hw/pci-host/gpex.h" #include #if defined(TARGET_RISCV32) # define BIOS_FILENAME "opensbi-riscv32-virt-fw_jump.bin" #else # define BIOS_FILENAME "opensbi-riscv64-virt-fw_jump.bin" #endif static const struct MemmapEntry { hwaddr base; hwaddr size; } virt_memmap[] = { [VIRT_DEBUG] = { 0x0, 0x100 }, [VIRT_MROM] = { 0x1000, 0x11000 }, [VIRT_TEST] = { 0x100000, 0x1000 }, [VIRT_RTC] = { 0x101000, 0x1000 }, [VIRT_CLINT] = { 0x2000000, 0x10000 }, [VIRT_PLIC] = { 0xc000000, 0x4000000 }, [VIRT_UART0] = { 0x10000000, 0x100 }, [VIRT_VIRTIO] = { 0x10001000, 0x1000 }, [VIRT_FLASH] = { 0x20000000, 0x4000000 }, [VIRT_DRAM] = { 0x80000000, 0x0 }, [VIRT_PCIE_MMIO] = { 0x40000000, 0x40000000 }, [VIRT_PCIE_PIO] = { 0x03000000, 0x00010000 }, [VIRT_PCIE_ECAM] = { 0x30000000, 0x10000000 }, }; #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) static PFlashCFI01 *virt_flash_create1(RISCVVirtState *s, const char *name, const char *alias_prop_name) { /* * Create a single flash device. We use the same parameters as * the flash devices on the ARM virt board. */ DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); qdev_prop_set_uint8(dev, "width", 4); qdev_prop_set_uint8(dev, "device-width", 2); qdev_prop_set_bit(dev, "big-endian", false); qdev_prop_set_uint16(dev, "id0", 0x89); qdev_prop_set_uint16(dev, "id1", 0x18); qdev_prop_set_uint16(dev, "id2", 0x00); qdev_prop_set_uint16(dev, "id3", 0x00); qdev_prop_set_string(dev, "name", name); object_property_add_child(OBJECT(s), name, OBJECT(dev)); object_property_add_alias(OBJECT(s), alias_prop_name, OBJECT(dev), "drive"); return PFLASH_CFI01(dev); } static void virt_flash_create(RISCVVirtState *s) { s->flash[0] = virt_flash_create1(s, "virt.flash0", "pflash0"); s->flash[1] = virt_flash_create1(s, "virt.flash1", "pflash1"); } static void virt_flash_map1(PFlashCFI01 *flash, hwaddr base, hwaddr size, MemoryRegion *sysmem) { DeviceState *dev = DEVICE(flash); assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); memory_region_add_subregion(sysmem, base, sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0)); } static void virt_flash_map(RISCVVirtState *s, MemoryRegion *sysmem) { hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2; hwaddr flashbase = virt_memmap[VIRT_FLASH].base; virt_flash_map1(s->flash[0], flashbase, flashsize, sysmem); virt_flash_map1(s->flash[1], flashbase + flashsize, flashsize, sysmem); } static void create_pcie_irq_map(void *fdt, char *nodename, uint32_t plic_phandle) { int pin, dev; uint32_t full_irq_map[GPEX_NUM_IRQS * GPEX_NUM_IRQS * FDT_INT_MAP_WIDTH] = {}; uint32_t *irq_map = full_irq_map; /* This code creates a standard swizzle of interrupts such that * each device's first interrupt is based on it's PCI_SLOT number. * (See pci_swizzle_map_irq_fn()) * * We only need one entry per interrupt in the table (not one per * possible slot) seeing the interrupt-map-mask will allow the table * to wrap to any number of devices. */ for (dev = 0; dev < GPEX_NUM_IRQS; dev++) { int devfn = dev * 0x8; for (pin = 0; pin < GPEX_NUM_IRQS; pin++) { int irq_nr = PCIE_IRQ + ((pin + PCI_SLOT(devfn)) % GPEX_NUM_IRQS); int i = 0; irq_map[i] = cpu_to_be32(devfn << 8); i += FDT_PCI_ADDR_CELLS; irq_map[i] = cpu_to_be32(pin + 1); i += FDT_PCI_INT_CELLS; irq_map[i++] = cpu_to_be32(plic_phandle); i += FDT_PLIC_ADDR_CELLS; irq_map[i] = cpu_to_be32(irq_nr); irq_map += FDT_INT_MAP_WIDTH; } } qemu_fdt_setprop(fdt, nodename, "interrupt-map", full_irq_map, sizeof(full_irq_map)); qemu_fdt_setprop_cells(fdt, nodename, "interrupt-map-mask", 0x1800, 0, 0, 0x7); } static void create_fdt(RISCVVirtState *s, const struct MemmapEntry *memmap, uint64_t mem_size, const char *cmdline) { void *fdt; int cpu, i; uint32_t *cells; char *nodename; uint32_t plic_phandle, test_phandle, phandle = 1; hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2; hwaddr flashbase = virt_memmap[VIRT_FLASH].base; fdt = s->fdt = create_device_tree(&s->fdt_size); if (!fdt) { error_report("create_device_tree() failed"); exit(1); } qemu_fdt_setprop_string(fdt, "/", "model", "riscv-virtio,qemu"); qemu_fdt_setprop_string(fdt, "/", "compatible", "riscv-virtio"); qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); qemu_fdt_add_subnode(fdt, "/soc"); qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0); qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus"); qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2); qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2); nodename = g_strdup_printf("/memory@%lx", (long)memmap[VIRT_DRAM].base); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_cells(fdt, nodename, "reg", memmap[VIRT_DRAM].base >> 32, memmap[VIRT_DRAM].base, mem_size >> 32, mem_size); qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory"); g_free(nodename); qemu_fdt_add_subnode(fdt, "/cpus"); qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency", SIFIVE_CLINT_TIMEBASE_FREQ); qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0); qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1); for (cpu = s->soc.num_harts - 1; cpu >= 0; cpu--) { int cpu_phandle = phandle++; int intc_phandle; nodename = g_strdup_printf("/cpus/cpu@%d", cpu); char *intc = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu); char *isa = riscv_isa_string(&s->soc.harts[cpu]); qemu_fdt_add_subnode(fdt, nodename); #if defined(TARGET_RISCV32) qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv32"); #else qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv48"); #endif qemu_fdt_setprop_string(fdt, nodename, "riscv,isa", isa); qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv"); qemu_fdt_setprop_string(fdt, nodename, "status", "okay"); qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu); qemu_fdt_setprop_string(fdt, nodename, "device_type", "cpu"); qemu_fdt_setprop_cell(fdt, nodename, "phandle", cpu_phandle); intc_phandle = phandle++; qemu_fdt_add_subnode(fdt, intc); qemu_fdt_setprop_cell(fdt, intc, "phandle", intc_phandle); qemu_fdt_setprop_string(fdt, intc, "compatible", "riscv,cpu-intc"); qemu_fdt_setprop(fdt, intc, "interrupt-controller", NULL, 0); qemu_fdt_setprop_cell(fdt, intc, "#interrupt-cells", 1); g_free(isa); g_free(intc); g_free(nodename); } /* Add cpu-topology node */ qemu_fdt_add_subnode(fdt, "/cpus/cpu-map"); qemu_fdt_add_subnode(fdt, "/cpus/cpu-map/cluster0"); for (cpu = s->soc.num_harts - 1; cpu >= 0; cpu--) { char *core_nodename = g_strdup_printf("/cpus/cpu-map/cluster0/core%d", cpu); char *cpu_nodename = g_strdup_printf("/cpus/cpu@%d", cpu); uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, cpu_nodename); qemu_fdt_add_subnode(fdt, core_nodename); qemu_fdt_setprop_cell(fdt, core_nodename, "cpu", intc_phandle); g_free(core_nodename); g_free(cpu_nodename); } cells = g_new0(uint32_t, s->soc.num_harts * 4); for (cpu = 0; cpu < s->soc.num_harts; cpu++) { nodename = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu); uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename); cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle); cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT); cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle); cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER); g_free(nodename); } nodename = g_strdup_printf("/soc/clint@%lx", (long)memmap[VIRT_CLINT].base); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,clint0"); qemu_fdt_setprop_cells(fdt, nodename, "reg", 0x0, memmap[VIRT_CLINT].base, 0x0, memmap[VIRT_CLINT].size); qemu_fdt_setprop(fdt, nodename, "interrupts-extended", cells, s->soc.num_harts * sizeof(uint32_t) * 4); g_free(cells); g_free(nodename); plic_phandle = phandle++; cells = g_new0(uint32_t, s->soc.num_harts * 4); for (cpu = 0; cpu < s->soc.num_harts; cpu++) { nodename = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu); uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename); cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle); cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_EXT); cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle); cells[cpu * 4 + 3] = cpu_to_be32(IRQ_S_EXT); g_free(nodename); } nodename = g_strdup_printf("/soc/interrupt-controller@%lx", (long)memmap[VIRT_PLIC].base); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_cell(fdt, nodename, "#address-cells", FDT_PLIC_ADDR_CELLS); qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells", FDT_PLIC_INT_CELLS); qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,plic0"); qemu_fdt_setprop(fdt, nodename, "interrupt-controller", NULL, 0); qemu_fdt_setprop(fdt, nodename, "interrupts-extended", cells, s->soc.num_harts * sizeof(uint32_t) * 4); qemu_fdt_setprop_cells(fdt, nodename, "reg", 0x0, memmap[VIRT_PLIC].base, 0x0, memmap[VIRT_PLIC].size); qemu_fdt_setprop_cell(fdt, nodename, "riscv,ndev", VIRTIO_NDEV); qemu_fdt_setprop_cell(fdt, nodename, "phandle", plic_phandle); plic_phandle = qemu_fdt_get_phandle(fdt, nodename); g_free(cells); g_free(nodename); for (i = 0; i < VIRTIO_COUNT; i++) { nodename = g_strdup_printf("/virtio_mmio@%lx", (long)(memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size)); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_string(fdt, nodename, "compatible", "virtio,mmio"); qemu_fdt_setprop_cells(fdt, nodename, "reg", 0x0, memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size, 0x0, memmap[VIRT_VIRTIO].size); qemu_fdt_setprop_cell(fdt, nodename, "interrupt-parent", plic_phandle); qemu_fdt_setprop_cell(fdt, nodename, "interrupts", VIRTIO_IRQ + i); g_free(nodename); } nodename = g_strdup_printf("/soc/pci@%lx", (long) memmap[VIRT_PCIE_ECAM].base); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_cell(fdt, nodename, "#address-cells", FDT_PCI_ADDR_CELLS); qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells", FDT_PCI_INT_CELLS); qemu_fdt_setprop_cell(fdt, nodename, "#size-cells", 0x2); qemu_fdt_setprop_string(fdt, nodename, "compatible", "pci-host-ecam-generic"); qemu_fdt_setprop_string(fdt, nodename, "device_type", "pci"); qemu_fdt_setprop_cell(fdt, nodename, "linux,pci-domain", 0); qemu_fdt_setprop_cells(fdt, nodename, "bus-range", 0, memmap[VIRT_PCIE_ECAM].size / PCIE_MMCFG_SIZE_MIN - 1); qemu_fdt_setprop(fdt, nodename, "dma-coherent", NULL, 0); qemu_fdt_setprop_cells(fdt, nodename, "reg", 0, memmap[VIRT_PCIE_ECAM].base, 0, memmap[VIRT_PCIE_ECAM].size); qemu_fdt_setprop_sized_cells(fdt, nodename, "ranges", 1, FDT_PCI_RANGE_IOPORT, 2, 0, 2, memmap[VIRT_PCIE_PIO].base, 2, memmap[VIRT_PCIE_PIO].size, 1, FDT_PCI_RANGE_MMIO, 2, memmap[VIRT_PCIE_MMIO].base, 2, memmap[VIRT_PCIE_MMIO].base, 2, memmap[VIRT_PCIE_MMIO].size); create_pcie_irq_map(fdt, nodename, plic_phandle); g_free(nodename); test_phandle = phandle++; nodename = g_strdup_printf("/test@%lx", (long)memmap[VIRT_TEST].base); qemu_fdt_add_subnode(fdt, nodename); { const char compat[] = "sifive,test1\0sifive,test0\0syscon"; qemu_fdt_setprop(fdt, nodename, "compatible", compat, sizeof(compat)); } qemu_fdt_setprop_cells(fdt, nodename, "reg", 0x0, memmap[VIRT_TEST].base, 0x0, memmap[VIRT_TEST].size); qemu_fdt_setprop_cell(fdt, nodename, "phandle", test_phandle); test_phandle = qemu_fdt_get_phandle(fdt, nodename); g_free(nodename); nodename = g_strdup_printf("/reboot"); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_string(fdt, nodename, "compatible", "syscon-reboot"); qemu_fdt_setprop_cell(fdt, nodename, "regmap", test_phandle); qemu_fdt_setprop_cell(fdt, nodename, "offset", 0x0); qemu_fdt_setprop_cell(fdt, nodename, "value", FINISHER_RESET); g_free(nodename); nodename = g_strdup_printf("/poweroff"); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_string(fdt, nodename, "compatible", "syscon-poweroff"); qemu_fdt_setprop_cell(fdt, nodename, "regmap", test_phandle); qemu_fdt_setprop_cell(fdt, nodename, "offset", 0x0); qemu_fdt_setprop_cell(fdt, nodename, "value", FINISHER_PASS); g_free(nodename); nodename = g_strdup_printf("/uart@%lx", (long)memmap[VIRT_UART0].base); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_string(fdt, nodename, "compatible", "ns16550a"); qemu_fdt_setprop_cells(fdt, nodename, "reg", 0x0, memmap[VIRT_UART0].base, 0x0, memmap[VIRT_UART0].size); qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency", 3686400); qemu_fdt_setprop_cell(fdt, nodename, "interrupt-parent", plic_phandle); qemu_fdt_setprop_cell(fdt, nodename, "interrupts", UART0_IRQ); qemu_fdt_add_subnode(fdt, "/chosen"); qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", nodename); if (cmdline) { qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline); } g_free(nodename); nodename = g_strdup_printf("/rtc@%lx", (long)memmap[VIRT_RTC].base); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_string(fdt, nodename, "compatible", "google,goldfish-rtc"); qemu_fdt_setprop_cells(fdt, nodename, "reg", 0x0, memmap[VIRT_RTC].base, 0x0, memmap[VIRT_RTC].size); qemu_fdt_setprop_cell(fdt, nodename, "interrupt-parent", plic_phandle); qemu_fdt_setprop_cell(fdt, nodename, "interrupts", RTC_IRQ); g_free(nodename); nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); qemu_fdt_add_subnode(s->fdt, nodename); qemu_fdt_setprop_string(s->fdt, nodename, "compatible", "cfi-flash"); qemu_fdt_setprop_sized_cells(s->fdt, nodename, "reg", 2, flashbase, 2, flashsize, 2, flashbase + flashsize, 2, flashsize); qemu_fdt_setprop_cell(s->fdt, nodename, "bank-width", 4); g_free(nodename); } static inline DeviceState *gpex_pcie_init(MemoryRegion *sys_mem, hwaddr ecam_base, hwaddr ecam_size, hwaddr mmio_base, hwaddr mmio_size, hwaddr pio_base, DeviceState *plic, bool link_up) { DeviceState *dev; MemoryRegion *ecam_alias, *ecam_reg; MemoryRegion *mmio_alias, *mmio_reg; qemu_irq irq; int i; dev = qdev_new(TYPE_GPEX_HOST); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); ecam_alias = g_new0(MemoryRegion, 1); ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", ecam_reg, 0, ecam_size); memory_region_add_subregion(get_system_memory(), ecam_base, ecam_alias); mmio_alias = g_new0(MemoryRegion, 1); mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", mmio_reg, mmio_base, mmio_size); memory_region_add_subregion(get_system_memory(), mmio_base, mmio_alias); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, pio_base); for (i = 0; i < GPEX_NUM_IRQS; i++) { irq = qdev_get_gpio_in(plic, PCIE_IRQ + i); sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, irq); gpex_set_irq_num(GPEX_HOST(dev), i, PCIE_IRQ + i); } return dev; } static void virt_machine_init(MachineState *machine) { const struct MemmapEntry *memmap = virt_memmap; RISCVVirtState *s = RISCV_VIRT_MACHINE(machine); MemoryRegion *system_memory = get_system_memory(); MemoryRegion *main_mem = g_new(MemoryRegion, 1); MemoryRegion *mask_rom = g_new(MemoryRegion, 1); char *plic_hart_config; size_t plic_hart_config_len; target_ulong start_addr = memmap[VIRT_DRAM].base; int i; unsigned int smp_cpus = machine->smp.cpus; /* Initialize SOC */ object_initialize_child(OBJECT(machine), "soc", &s->soc, TYPE_RISCV_HART_ARRAY); object_property_set_str(OBJECT(&s->soc), machine->cpu_type, "cpu-type", &error_abort); object_property_set_int(OBJECT(&s->soc), smp_cpus, "num-harts", &error_abort); sysbus_realize(SYS_BUS_DEVICE(&s->soc), &error_abort); /* register system main memory (actual RAM) */ memory_region_init_ram(main_mem, NULL, "riscv_virt_board.ram", machine->ram_size, &error_fatal); memory_region_add_subregion(system_memory, memmap[VIRT_DRAM].base, main_mem); /* create device tree */ create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline); /* boot rom */ memory_region_init_rom(mask_rom, NULL, "riscv_virt_board.mrom", memmap[VIRT_MROM].size, &error_fatal); memory_region_add_subregion(system_memory, memmap[VIRT_MROM].base, mask_rom); riscv_find_and_load_firmware(machine, BIOS_FILENAME, memmap[VIRT_DRAM].base, NULL); if (machine->kernel_filename) { uint64_t kernel_entry = riscv_load_kernel(machine->kernel_filename, NULL); if (machine->initrd_filename) { hwaddr start; hwaddr end = riscv_load_initrd(machine->initrd_filename, machine->ram_size, kernel_entry, &start); qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-start", start); qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end", end); } } if (drive_get(IF_PFLASH, 0, 0)) { /* * Pflash was supplied, let's overwrite the address we jump to after * reset to the base of the flash. */ start_addr = virt_memmap[VIRT_FLASH].base; } /* reset vector */ uint32_t reset_vec[8] = { 0x00000297, /* 1: auipc t0, %pcrel_hi(dtb) */ 0x02028593, /* addi a1, t0, %pcrel_lo(1b) */ 0xf1402573, /* csrr a0, mhartid */ #if defined(TARGET_RISCV32) 0x0182a283, /* lw t0, 24(t0) */ #elif defined(TARGET_RISCV64) 0x0182b283, /* ld t0, 24(t0) */ #endif 0x00028067, /* jr t0 */ 0x00000000, start_addr, /* start: .dword */ 0x00000000, /* dtb: */ }; /* copy in the reset vector in little_endian byte order */ for (i = 0; i < sizeof(reset_vec) >> 2; i++) { reset_vec[i] = cpu_to_le32(reset_vec[i]); } rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec), memmap[VIRT_MROM].base, &address_space_memory); /* copy in the device tree */ if (fdt_pack(s->fdt) || fdt_totalsize(s->fdt) > memmap[VIRT_MROM].size - sizeof(reset_vec)) { error_report("not enough space to store device-tree"); exit(1); } qemu_fdt_dumpdtb(s->fdt, fdt_totalsize(s->fdt)); rom_add_blob_fixed_as("mrom.fdt", s->fdt, fdt_totalsize(s->fdt), memmap[VIRT_MROM].base + sizeof(reset_vec), &address_space_memory); /* create PLIC hart topology configuration string */ plic_hart_config_len = (strlen(VIRT_PLIC_HART_CONFIG) + 1) * smp_cpus; plic_hart_config = g_malloc0(plic_hart_config_len); for (i = 0; i < smp_cpus; i++) { if (i != 0) { strncat(plic_hart_config, ",", plic_hart_config_len); } strncat(plic_hart_config, VIRT_PLIC_HART_CONFIG, plic_hart_config_len); plic_hart_config_len -= (strlen(VIRT_PLIC_HART_CONFIG) + 1); } /* MMIO */ s->plic = sifive_plic_create(memmap[VIRT_PLIC].base, plic_hart_config, VIRT_PLIC_NUM_SOURCES, VIRT_PLIC_NUM_PRIORITIES, VIRT_PLIC_PRIORITY_BASE, VIRT_PLIC_PENDING_BASE, VIRT_PLIC_ENABLE_BASE, VIRT_PLIC_ENABLE_STRIDE, VIRT_PLIC_CONTEXT_BASE, VIRT_PLIC_CONTEXT_STRIDE, memmap[VIRT_PLIC].size); sifive_clint_create(memmap[VIRT_CLINT].base, memmap[VIRT_CLINT].size, smp_cpus, SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE, true); sifive_test_create(memmap[VIRT_TEST].base); for (i = 0; i < VIRTIO_COUNT; i++) { sysbus_create_simple("virtio-mmio", memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size, qdev_get_gpio_in(DEVICE(s->plic), VIRTIO_IRQ + i)); } gpex_pcie_init(system_memory, memmap[VIRT_PCIE_ECAM].base, memmap[VIRT_PCIE_ECAM].size, memmap[VIRT_PCIE_MMIO].base, memmap[VIRT_PCIE_MMIO].size, memmap[VIRT_PCIE_PIO].base, DEVICE(s->plic), true); serial_mm_init(system_memory, memmap[VIRT_UART0].base, 0, qdev_get_gpio_in(DEVICE(s->plic), UART0_IRQ), 399193, serial_hd(0), DEVICE_LITTLE_ENDIAN); sysbus_create_simple("goldfish_rtc", memmap[VIRT_RTC].base, qdev_get_gpio_in(DEVICE(s->plic), RTC_IRQ)); virt_flash_create(s); for (i = 0; i < ARRAY_SIZE(s->flash); i++) { /* Map legacy -drive if=pflash to machine properties */ pflash_cfi01_legacy_drive(s->flash[i], drive_get(IF_PFLASH, 0, i)); } virt_flash_map(s, system_memory); g_free(plic_hart_config); } static void virt_machine_instance_init(Object *obj) { } static void virt_machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "RISC-V VirtIO board"; mc->init = virt_machine_init; mc->max_cpus = 8; mc->default_cpu_type = VIRT_CPU; mc->pci_allow_0_address = true; } static const TypeInfo virt_machine_typeinfo = { .name = MACHINE_TYPE_NAME("virt"), .parent = TYPE_MACHINE, .class_init = virt_machine_class_init, .instance_init = virt_machine_instance_init, .instance_size = sizeof(RISCVVirtState), }; static void virt_machine_init_register_types(void) { type_register_static(&virt_machine_typeinfo); } type_init(virt_machine_init_register_types)