/* * QEMU RISC-V Spike Board * * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu * Copyright (c) 2017-2018 SiFive, Inc. * * This provides a RISC-V Board with the following devices: * * 0) HTIF Console and Poweroff * 1) CLINT (Timer and IPI) * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "qemu/osdep.h" #include "qemu/error-report.h" #include "qapi/error.h" #include "hw/boards.h" #include "hw/loader.h" #include "hw/sysbus.h" #include "target/riscv/cpu.h" #include "hw/riscv/riscv_hart.h" #include "hw/riscv/spike.h" #include "hw/riscv/boot.h" #include "hw/riscv/numa.h" #include "hw/char/riscv_htif.h" #include "hw/intc/riscv_aclint.h" #include "chardev/char.h" #include "sysemu/device_tree.h" #include "sysemu/sysemu.h" #include static const MemMapEntry spike_memmap[] = { [SPIKE_MROM] = { 0x1000, 0xf000 }, [SPIKE_HTIF] = { 0x1000000, 0x1000 }, [SPIKE_CLINT] = { 0x2000000, 0x10000 }, [SPIKE_DRAM] = { 0x80000000, 0x0 }, }; static void create_fdt(SpikeState *s, const MemMapEntry *memmap, bool is_32_bit, bool htif_custom_base) { void *fdt; int fdt_size; uint64_t addr, size; unsigned long clint_addr; int cpu, socket; MachineState *ms = MACHINE(s); uint32_t *clint_cells; uint32_t cpu_phandle, intc_phandle, phandle = 1; char *mem_name, *clint_name, *clust_name; char *core_name, *cpu_name, *intc_name; static const char * const clint_compat[2] = { "sifive,clint0", "riscv,clint0" }; fdt = ms->fdt = create_device_tree(&fdt_size); if (!fdt) { error_report("create_device_tree() failed"); exit(1); } qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu"); qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev"); qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); qemu_fdt_add_subnode(fdt, "/htif"); qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0"); if (htif_custom_base) { qemu_fdt_setprop_cells(fdt, "/htif", "reg", 0x0, memmap[SPIKE_HTIF].base, 0x0, memmap[SPIKE_HTIF].size); } qemu_fdt_add_subnode(fdt, "/soc"); qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0); qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus"); qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2); qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2); qemu_fdt_add_subnode(fdt, "/cpus"); qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency", RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ); qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0); qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1); qemu_fdt_add_subnode(fdt, "/cpus/cpu-map"); for (socket = (riscv_socket_count(ms) - 1); socket >= 0; socket--) { clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket); qemu_fdt_add_subnode(fdt, clust_name); clint_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4); for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) { cpu_phandle = phandle++; cpu_name = g_strdup_printf("/cpus/cpu@%d", s->soc[socket].hartid_base + cpu); qemu_fdt_add_subnode(fdt, cpu_name); if (is_32_bit) { qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32"); } else { qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48"); } riscv_isa_write_fdt(&s->soc[socket].harts[cpu], fdt, cpu_name); qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv"); qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay"); qemu_fdt_setprop_cell(fdt, cpu_name, "reg", s->soc[socket].hartid_base + cpu); qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu"); riscv_socket_fdt_write_id(ms, cpu_name, socket); qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle); intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name); qemu_fdt_add_subnode(fdt, intc_name); intc_phandle = phandle++; qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle); qemu_fdt_setprop_string(fdt, intc_name, "compatible", "riscv,cpu-intc"); qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0); qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1); clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle); clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT); clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle); clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER); core_name = g_strdup_printf("%s/core%d", clust_name, cpu); qemu_fdt_add_subnode(fdt, core_name); qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle); g_free(core_name); g_free(intc_name); g_free(cpu_name); } addr = memmap[SPIKE_DRAM].base + riscv_socket_mem_offset(ms, socket); size = riscv_socket_mem_size(ms, socket); mem_name = g_strdup_printf("/memory@%lx", (long)addr); qemu_fdt_add_subnode(fdt, mem_name); qemu_fdt_setprop_cells(fdt, mem_name, "reg", addr >> 32, addr, size >> 32, size); qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory"); riscv_socket_fdt_write_id(ms, mem_name, socket); g_free(mem_name); clint_addr = memmap[SPIKE_CLINT].base + (memmap[SPIKE_CLINT].size * socket); clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr); qemu_fdt_add_subnode(fdt, clint_name); qemu_fdt_setprop_string_array(fdt, clint_name, "compatible", (char **)&clint_compat, ARRAY_SIZE(clint_compat)); qemu_fdt_setprop_cells(fdt, clint_name, "reg", 0x0, clint_addr, 0x0, memmap[SPIKE_CLINT].size); qemu_fdt_setprop(fdt, clint_name, "interrupts-extended", clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4); riscv_socket_fdt_write_id(ms, clint_name, socket); g_free(clint_name); g_free(clint_cells); g_free(clust_name); } riscv_socket_fdt_write_distance_matrix(ms); qemu_fdt_add_subnode(fdt, "/chosen"); qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", "/htif"); } static bool spike_test_elf_image(char *filename) { Error *err = NULL; load_elf_hdr(filename, NULL, NULL, &err); if (err) { error_free(err); return false; } else { return true; } } static void spike_board_init(MachineState *machine) { const MemMapEntry *memmap = spike_memmap; SpikeState *s = SPIKE_MACHINE(machine); MemoryRegion *system_memory = get_system_memory(); MemoryRegion *mask_rom = g_new(MemoryRegion, 1); target_ulong firmware_end_addr = memmap[SPIKE_DRAM].base; hwaddr firmware_load_addr = memmap[SPIKE_DRAM].base; target_ulong kernel_start_addr; char *firmware_name; uint32_t fdt_load_addr; uint64_t kernel_entry; char *soc_name; int i, base_hartid, hart_count; bool htif_custom_base = false; /* Check socket count limit */ if (SPIKE_SOCKETS_MAX < riscv_socket_count(machine)) { error_report("number of sockets/nodes should be less than %d", SPIKE_SOCKETS_MAX); exit(1); } /* Initialize sockets */ for (i = 0; i < riscv_socket_count(machine); i++) { if (!riscv_socket_check_hartids(machine, i)) { error_report("discontinuous hartids in socket%d", i); exit(1); } base_hartid = riscv_socket_first_hartid(machine, i); if (base_hartid < 0) { error_report("can't find hartid base for socket%d", i); exit(1); } hart_count = riscv_socket_hart_count(machine, i); if (hart_count < 0) { error_report("can't find hart count for socket%d", i); exit(1); } soc_name = g_strdup_printf("soc%d", i); object_initialize_child(OBJECT(machine), soc_name, &s->soc[i], TYPE_RISCV_HART_ARRAY); g_free(soc_name); object_property_set_str(OBJECT(&s->soc[i]), "cpu-type", machine->cpu_type, &error_abort); object_property_set_int(OBJECT(&s->soc[i]), "hartid-base", base_hartid, &error_abort); object_property_set_int(OBJECT(&s->soc[i]), "num-harts", hart_count, &error_abort); sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_fatal); /* Core Local Interruptor (timer and IPI) for each socket */ riscv_aclint_swi_create( memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size, base_hartid, hart_count, false); riscv_aclint_mtimer_create( memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size + RISCV_ACLINT_SWI_SIZE, RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count, RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME, RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, false); } /* register system main memory (actual RAM) */ memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base, machine->ram); /* boot rom */ memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom", memmap[SPIKE_MROM].size, &error_fatal); memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base, mask_rom); /* Find firmware */ firmware_name = riscv_find_firmware(machine->firmware, riscv_default_firmware_name(&s->soc[0])); /* * Test the given firmware or kernel file to see if it is an ELF image. * If it is an ELF, we assume it contains the symbols required for * the HTIF console, otherwise we fall back to use the custom base * passed from device tree for the HTIF console. */ if (!firmware_name && !machine->kernel_filename) { htif_custom_base = true; } else { if (firmware_name) { htif_custom_base = !spike_test_elf_image(firmware_name); } if (!htif_custom_base && machine->kernel_filename) { htif_custom_base = !spike_test_elf_image(machine->kernel_filename); } } /* Load firmware */ if (firmware_name) { firmware_end_addr = riscv_load_firmware(firmware_name, &firmware_load_addr, htif_symbol_callback); g_free(firmware_name); } /* Create device tree */ create_fdt(s, memmap, riscv_is_32bit(&s->soc[0]), htif_custom_base); /* Load kernel */ if (machine->kernel_filename) { kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0], firmware_end_addr); kernel_entry = riscv_load_kernel(machine, &s->soc[0], kernel_start_addr, true, htif_symbol_callback); } else { /* * If dynamic firmware is used, it doesn't know where is the next mode * if kernel argument is not set. */ kernel_entry = 0; } fdt_load_addr = riscv_compute_fdt_addr(memmap[SPIKE_DRAM].base, memmap[SPIKE_DRAM].size, machine); riscv_load_fdt(fdt_load_addr, machine->fdt); /* load the reset vector */ riscv_setup_rom_reset_vec(machine, &s->soc[0], firmware_load_addr, memmap[SPIKE_MROM].base, memmap[SPIKE_MROM].size, kernel_entry, fdt_load_addr); /* initialize HTIF using symbols found in load_kernel */ htif_mm_init(system_memory, serial_hd(0), memmap[SPIKE_HTIF].base, htif_custom_base); } static void spike_set_signature(Object *obj, const char *val, Error **errp) { sig_file = g_strdup(val); } static void spike_machine_instance_init(Object *obj) { } static void spike_machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "RISC-V Spike board"; mc->init = spike_board_init; mc->max_cpus = SPIKE_CPUS_MAX; mc->is_default = true; mc->default_cpu_type = TYPE_RISCV_CPU_BASE; mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids; mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props; mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id; mc->numa_mem_supported = true; /* platform instead of architectural choice */ mc->cpu_cluster_has_numa_boundary = true; mc->default_ram_id = "riscv.spike.ram"; object_class_property_add_str(oc, "signature", NULL, spike_set_signature); object_class_property_set_description(oc, "signature", "File to write ACT test signature"); object_class_property_add_uint8_ptr(oc, "signature-granularity", &line_size, OBJ_PROP_FLAG_WRITE); object_class_property_set_description(oc, "signature-granularity", "Size of each line in ACT signature " "file"); } static const TypeInfo spike_machine_typeinfo = { .name = MACHINE_TYPE_NAME("spike"), .parent = TYPE_MACHINE, .class_init = spike_machine_class_init, .instance_init = spike_machine_instance_init, .instance_size = sizeof(SpikeState), }; static void spike_machine_init_register_types(void) { type_register_static(&spike_machine_typeinfo); } type_init(spike_machine_init_register_types)