/* * QEMU RISC-V Board Compatible with SiFive Freedom U SDK * * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu * Copyright (c) 2017 SiFive, Inc. * Copyright (c) 2019 Bin Meng * * Provides a board compatible with the SiFive Freedom U SDK: * * 0) UART * 1) CLINT (Core Level Interruptor) * 2) PLIC (Platform Level Interrupt Controller) * 3) PRCI (Power, Reset, Clock, Interrupt) * 4) GPIO (General Purpose Input/Output Controller) * 5) OTP (One-Time Programmable) memory with stored serial number * 6) GEM (Gigabit Ethernet Controller) and management block * * This board currently generates devicetree dynamically that indicates at least * two harts and up to five harts. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qemu/error-report.h" #include "qapi/error.h" #include "qapi/visitor.h" #include "hw/boards.h" #include "hw/irq.h" #include "hw/loader.h" #include "hw/sysbus.h" #include "hw/char/serial.h" #include "hw/cpu/cluster.h" #include "hw/misc/unimp.h" #include "target/riscv/cpu.h" #include "hw/riscv/riscv_hart.h" #include "hw/riscv/sifive_plic.h" #include "hw/riscv/sifive_clint.h" #include "hw/riscv/sifive_uart.h" #include "hw/riscv/sifive_u.h" #include "hw/riscv/boot.h" #include "chardev/char.h" #include "net/eth.h" #include "sysemu/arch_init.h" #include "sysemu/device_tree.h" #include "sysemu/runstate.h" #include "sysemu/sysemu.h" #include #if defined(TARGET_RISCV32) # define BIOS_FILENAME "opensbi-riscv32-generic-fw_dynamic.bin" #else # define BIOS_FILENAME "opensbi-riscv64-generic-fw_dynamic.bin" #endif static const struct MemmapEntry { hwaddr base; hwaddr size; } sifive_u_memmap[] = { [SIFIVE_U_DEBUG] = { 0x0, 0x100 }, [SIFIVE_U_MROM] = { 0x1000, 0xf000 }, [SIFIVE_U_CLINT] = { 0x2000000, 0x10000 }, [SIFIVE_U_L2CC] = { 0x2010000, 0x1000 }, [SIFIVE_U_L2LIM] = { 0x8000000, 0x2000000 }, [SIFIVE_U_PLIC] = { 0xc000000, 0x4000000 }, [SIFIVE_U_PRCI] = { 0x10000000, 0x1000 }, [SIFIVE_U_UART0] = { 0x10010000, 0x1000 }, [SIFIVE_U_UART1] = { 0x10011000, 0x1000 }, [SIFIVE_U_GPIO] = { 0x10060000, 0x1000 }, [SIFIVE_U_OTP] = { 0x10070000, 0x1000 }, [SIFIVE_U_GEM] = { 0x10090000, 0x2000 }, [SIFIVE_U_GEM_MGMT] = { 0x100a0000, 0x1000 }, [SIFIVE_U_DMC] = { 0x100b0000, 0x10000 }, [SIFIVE_U_FLASH0] = { 0x20000000, 0x10000000 }, [SIFIVE_U_DRAM] = { 0x80000000, 0x0 }, }; #define OTP_SERIAL 1 #define GEM_REVISION 0x10070109 static void create_fdt(SiFiveUState *s, const struct MemmapEntry *memmap, uint64_t mem_size, const char *cmdline) { MachineState *ms = MACHINE(qdev_get_machine()); void *fdt; int cpu; uint32_t *cells; char *nodename; char ethclk_names[] = "pclk\0hclk"; uint32_t plic_phandle, prci_phandle, gpio_phandle, phandle = 1; uint32_t hfclk_phandle, rtcclk_phandle, phy_phandle; fdt = s->fdt = create_device_tree(&s->fdt_size); if (!fdt) { error_report("create_device_tree() failed"); exit(1); } qemu_fdt_setprop_string(fdt, "/", "model", "SiFive HiFive Unleashed A00"); qemu_fdt_setprop_string(fdt, "/", "compatible", "sifive,hifive-unleashed-a00"); qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); qemu_fdt_add_subnode(fdt, "/soc"); qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0); qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus"); qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2); qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2); hfclk_phandle = phandle++; nodename = g_strdup_printf("/hfclk"); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_cell(fdt, nodename, "phandle", hfclk_phandle); qemu_fdt_setprop_string(fdt, nodename, "clock-output-names", "hfclk"); qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency", SIFIVE_U_HFCLK_FREQ); qemu_fdt_setprop_string(fdt, nodename, "compatible", "fixed-clock"); qemu_fdt_setprop_cell(fdt, nodename, "#clock-cells", 0x0); g_free(nodename); rtcclk_phandle = phandle++; nodename = g_strdup_printf("/rtcclk"); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_cell(fdt, nodename, "phandle", rtcclk_phandle); qemu_fdt_setprop_string(fdt, nodename, "clock-output-names", "rtcclk"); qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency", SIFIVE_U_RTCCLK_FREQ); qemu_fdt_setprop_string(fdt, nodename, "compatible", "fixed-clock"); qemu_fdt_setprop_cell(fdt, nodename, "#clock-cells", 0x0); g_free(nodename); nodename = g_strdup_printf("/memory@%lx", (long)memmap[SIFIVE_U_DRAM].base); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_cells(fdt, nodename, "reg", memmap[SIFIVE_U_DRAM].base >> 32, memmap[SIFIVE_U_DRAM].base, mem_size >> 32, mem_size); qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory"); g_free(nodename); qemu_fdt_add_subnode(fdt, "/cpus"); qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency", SIFIVE_CLINT_TIMEBASE_FREQ); qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0); qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1); for (cpu = ms->smp.cpus - 1; cpu >= 0; cpu--) { int cpu_phandle = phandle++; nodename = g_strdup_printf("/cpus/cpu@%d", cpu); char *intc = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu); char *isa; qemu_fdt_add_subnode(fdt, nodename); /* cpu 0 is the management hart that does not have mmu */ if (cpu != 0) { #if defined(TARGET_RISCV32) qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv32"); #else qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv48"); #endif isa = riscv_isa_string(&s->soc.u_cpus.harts[cpu - 1]); } else { isa = riscv_isa_string(&s->soc.e_cpus.harts[0]); } qemu_fdt_setprop_string(fdt, nodename, "riscv,isa", isa); qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv"); qemu_fdt_setprop_string(fdt, nodename, "status", "okay"); qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu); qemu_fdt_setprop_string(fdt, nodename, "device_type", "cpu"); qemu_fdt_add_subnode(fdt, intc); qemu_fdt_setprop_cell(fdt, intc, "phandle", cpu_phandle); qemu_fdt_setprop_string(fdt, intc, "compatible", "riscv,cpu-intc"); qemu_fdt_setprop(fdt, intc, "interrupt-controller", NULL, 0); qemu_fdt_setprop_cell(fdt, intc, "#interrupt-cells", 1); g_free(isa); g_free(intc); g_free(nodename); } cells = g_new0(uint32_t, ms->smp.cpus * 4); for (cpu = 0; cpu < ms->smp.cpus; cpu++) { nodename = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu); uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename); cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle); cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT); cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle); cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER); g_free(nodename); } nodename = g_strdup_printf("/soc/clint@%lx", (long)memmap[SIFIVE_U_CLINT].base); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,clint0"); qemu_fdt_setprop_cells(fdt, nodename, "reg", 0x0, memmap[SIFIVE_U_CLINT].base, 0x0, memmap[SIFIVE_U_CLINT].size); qemu_fdt_setprop(fdt, nodename, "interrupts-extended", cells, ms->smp.cpus * sizeof(uint32_t) * 4); g_free(cells); g_free(nodename); nodename = g_strdup_printf("/soc/otp@%lx", (long)memmap[SIFIVE_U_OTP].base); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_cell(fdt, nodename, "fuse-count", SIFIVE_U_OTP_REG_SIZE); qemu_fdt_setprop_cells(fdt, nodename, "reg", 0x0, memmap[SIFIVE_U_OTP].base, 0x0, memmap[SIFIVE_U_OTP].size); qemu_fdt_setprop_string(fdt, nodename, "compatible", "sifive,fu540-c000-otp"); g_free(nodename); prci_phandle = phandle++; nodename = g_strdup_printf("/soc/clock-controller@%lx", (long)memmap[SIFIVE_U_PRCI].base); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_cell(fdt, nodename, "phandle", prci_phandle); qemu_fdt_setprop_cell(fdt, nodename, "#clock-cells", 0x1); qemu_fdt_setprop_cells(fdt, nodename, "clocks", hfclk_phandle, rtcclk_phandle); qemu_fdt_setprop_cells(fdt, nodename, "reg", 0x0, memmap[SIFIVE_U_PRCI].base, 0x0, memmap[SIFIVE_U_PRCI].size); qemu_fdt_setprop_string(fdt, nodename, "compatible", "sifive,fu540-c000-prci"); g_free(nodename); plic_phandle = phandle++; cells = g_new0(uint32_t, ms->smp.cpus * 4 - 2); for (cpu = 0; cpu < ms->smp.cpus; cpu++) { nodename = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu); uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename); /* cpu 0 is the management hart that does not have S-mode */ if (cpu == 0) { cells[0] = cpu_to_be32(intc_phandle); cells[1] = cpu_to_be32(IRQ_M_EXT); } else { cells[cpu * 4 - 2] = cpu_to_be32(intc_phandle); cells[cpu * 4 - 1] = cpu_to_be32(IRQ_M_EXT); cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle); cells[cpu * 4 + 1] = cpu_to_be32(IRQ_S_EXT); } g_free(nodename); } nodename = g_strdup_printf("/soc/interrupt-controller@%lx", (long)memmap[SIFIVE_U_PLIC].base); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells", 1); qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,plic0"); qemu_fdt_setprop(fdt, nodename, "interrupt-controller", NULL, 0); qemu_fdt_setprop(fdt, nodename, "interrupts-extended", cells, (ms->smp.cpus * 4 - 2) * sizeof(uint32_t)); qemu_fdt_setprop_cells(fdt, nodename, "reg", 0x0, memmap[SIFIVE_U_PLIC].base, 0x0, memmap[SIFIVE_U_PLIC].size); qemu_fdt_setprop_cell(fdt, nodename, "riscv,ndev", 0x35); qemu_fdt_setprop_cell(fdt, nodename, "phandle", plic_phandle); plic_phandle = qemu_fdt_get_phandle(fdt, nodename); g_free(cells); g_free(nodename); gpio_phandle = phandle++; nodename = g_strdup_printf("/soc/gpio@%lx", (long)memmap[SIFIVE_U_GPIO].base); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_cell(fdt, nodename, "phandle", gpio_phandle); qemu_fdt_setprop_cells(fdt, nodename, "clocks", prci_phandle, PRCI_CLK_TLCLK); qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells", 2); qemu_fdt_setprop(fdt, nodename, "interrupt-controller", NULL, 0); qemu_fdt_setprop_cell(fdt, nodename, "#gpio-cells", 2); qemu_fdt_setprop(fdt, nodename, "gpio-controller", NULL, 0); qemu_fdt_setprop_cells(fdt, nodename, "reg", 0x0, memmap[SIFIVE_U_GPIO].base, 0x0, memmap[SIFIVE_U_GPIO].size); qemu_fdt_setprop_cells(fdt, nodename, "interrupts", SIFIVE_U_GPIO_IRQ0, SIFIVE_U_GPIO_IRQ1, SIFIVE_U_GPIO_IRQ2, SIFIVE_U_GPIO_IRQ3, SIFIVE_U_GPIO_IRQ4, SIFIVE_U_GPIO_IRQ5, SIFIVE_U_GPIO_IRQ6, SIFIVE_U_GPIO_IRQ7, SIFIVE_U_GPIO_IRQ8, SIFIVE_U_GPIO_IRQ9, SIFIVE_U_GPIO_IRQ10, SIFIVE_U_GPIO_IRQ11, SIFIVE_U_GPIO_IRQ12, SIFIVE_U_GPIO_IRQ13, SIFIVE_U_GPIO_IRQ14, SIFIVE_U_GPIO_IRQ15); qemu_fdt_setprop_cell(fdt, nodename, "interrupt-parent", plic_phandle); qemu_fdt_setprop_string(fdt, nodename, "compatible", "sifive,gpio0"); g_free(nodename); nodename = g_strdup_printf("/gpio-restart"); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_cells(fdt, nodename, "gpios", gpio_phandle, 10, 1); qemu_fdt_setprop_string(fdt, nodename, "compatible", "gpio-restart"); g_free(nodename); nodename = g_strdup_printf("/soc/cache-controller@%lx", (long)memmap[SIFIVE_U_L2CC].base); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_cells(fdt, nodename, "reg", 0x0, memmap[SIFIVE_U_L2CC].base, 0x0, memmap[SIFIVE_U_L2CC].size); qemu_fdt_setprop_cells(fdt, nodename, "interrupts", SIFIVE_U_L2CC_IRQ0, SIFIVE_U_L2CC_IRQ1, SIFIVE_U_L2CC_IRQ2); qemu_fdt_setprop_cell(fdt, nodename, "interrupt-parent", plic_phandle); qemu_fdt_setprop(fdt, nodename, "cache-unified", NULL, 0); qemu_fdt_setprop_cell(fdt, nodename, "cache-size", 2097152); qemu_fdt_setprop_cell(fdt, nodename, "cache-sets", 1024); qemu_fdt_setprop_cell(fdt, nodename, "cache-level", 2); qemu_fdt_setprop_cell(fdt, nodename, "cache-block-size", 64); qemu_fdt_setprop_string(fdt, nodename, "compatible", "sifive,fu540-c000-ccache"); g_free(nodename); phy_phandle = phandle++; nodename = g_strdup_printf("/soc/ethernet@%lx", (long)memmap[SIFIVE_U_GEM].base); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_string(fdt, nodename, "compatible", "sifive,fu540-c000-gem"); qemu_fdt_setprop_cells(fdt, nodename, "reg", 0x0, memmap[SIFIVE_U_GEM].base, 0x0, memmap[SIFIVE_U_GEM].size, 0x0, memmap[SIFIVE_U_GEM_MGMT].base, 0x0, memmap[SIFIVE_U_GEM_MGMT].size); qemu_fdt_setprop_string(fdt, nodename, "reg-names", "control"); qemu_fdt_setprop_string(fdt, nodename, "phy-mode", "gmii"); qemu_fdt_setprop_cell(fdt, nodename, "phy-handle", phy_phandle); qemu_fdt_setprop_cell(fdt, nodename, "interrupt-parent", plic_phandle); qemu_fdt_setprop_cell(fdt, nodename, "interrupts", SIFIVE_U_GEM_IRQ); qemu_fdt_setprop_cells(fdt, nodename, "clocks", prci_phandle, PRCI_CLK_GEMGXLPLL, prci_phandle, PRCI_CLK_GEMGXLPLL); qemu_fdt_setprop(fdt, nodename, "clock-names", ethclk_names, sizeof(ethclk_names)); qemu_fdt_setprop(fdt, nodename, "local-mac-address", s->soc.gem.conf.macaddr.a, ETH_ALEN); qemu_fdt_setprop_cell(fdt, nodename, "#address-cells", 1); qemu_fdt_setprop_cell(fdt, nodename, "#size-cells", 0); qemu_fdt_add_subnode(fdt, "/aliases"); qemu_fdt_setprop_string(fdt, "/aliases", "ethernet0", nodename); g_free(nodename); nodename = g_strdup_printf("/soc/ethernet@%lx/ethernet-phy@0", (long)memmap[SIFIVE_U_GEM].base); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_cell(fdt, nodename, "phandle", phy_phandle); qemu_fdt_setprop_cell(fdt, nodename, "reg", 0x0); g_free(nodename); nodename = g_strdup_printf("/soc/serial@%lx", (long)memmap[SIFIVE_U_UART0].base); qemu_fdt_add_subnode(fdt, nodename); qemu_fdt_setprop_string(fdt, nodename, "compatible", "sifive,uart0"); qemu_fdt_setprop_cells(fdt, nodename, "reg", 0x0, memmap[SIFIVE_U_UART0].base, 0x0, memmap[SIFIVE_U_UART0].size); qemu_fdt_setprop_cells(fdt, nodename, "clocks", prci_phandle, PRCI_CLK_TLCLK); qemu_fdt_setprop_cell(fdt, nodename, "interrupt-parent", plic_phandle); qemu_fdt_setprop_cell(fdt, nodename, "interrupts", SIFIVE_U_UART0_IRQ); qemu_fdt_add_subnode(fdt, "/chosen"); qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", nodename); if (cmdline) { qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline); } qemu_fdt_setprop_string(fdt, "/aliases", "serial0", nodename); g_free(nodename); } static void sifive_u_machine_reset(void *opaque, int n, int level) { /* gpio pin active low triggers reset */ if (!level) { qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); } } static void sifive_u_machine_init(MachineState *machine) { const struct MemmapEntry *memmap = sifive_u_memmap; SiFiveUState *s = RISCV_U_MACHINE(machine); MemoryRegion *system_memory = get_system_memory(); MemoryRegion *main_mem = g_new(MemoryRegion, 1); MemoryRegion *flash0 = g_new(MemoryRegion, 1); target_ulong start_addr = memmap[SIFIVE_U_DRAM].base; uint32_t start_addr_hi32 = 0x00000000; int i; uint32_t fdt_load_addr; uint64_t kernel_entry; /* Initialize SoC */ object_initialize_child(OBJECT(machine), "soc", &s->soc, TYPE_RISCV_U_SOC); object_property_set_uint(OBJECT(&s->soc), "serial", s->serial, &error_abort); qdev_realize(DEVICE(&s->soc), NULL, &error_abort); /* register RAM */ memory_region_init_ram(main_mem, NULL, "riscv.sifive.u.ram", machine->ram_size, &error_fatal); memory_region_add_subregion(system_memory, memmap[SIFIVE_U_DRAM].base, main_mem); /* register QSPI0 Flash */ memory_region_init_ram(flash0, NULL, "riscv.sifive.u.flash0", memmap[SIFIVE_U_FLASH0].size, &error_fatal); memory_region_add_subregion(system_memory, memmap[SIFIVE_U_FLASH0].base, flash0); /* register gpio-restart */ qdev_connect_gpio_out(DEVICE(&(s->soc.gpio)), 10, qemu_allocate_irq(sifive_u_machine_reset, NULL, 0)); /* create device tree */ create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline); if (s->start_in_flash) { /* * If start_in_flash property is given, assign s->msel to a value * that representing booting from QSPI0 memory-mapped flash. * * This also means that when both start_in_flash and msel properties * are given, start_in_flash takes the precedence over msel. * * Note this is to keep backward compatibility not to break existing * users that use start_in_flash property. */ s->msel = MSEL_MEMMAP_QSPI0_FLASH; } switch (s->msel) { case MSEL_MEMMAP_QSPI0_FLASH: start_addr = memmap[SIFIVE_U_FLASH0].base; break; case MSEL_L2LIM_QSPI0_FLASH: case MSEL_L2LIM_QSPI2_SD: start_addr = memmap[SIFIVE_U_L2LIM].base; break; default: start_addr = memmap[SIFIVE_U_DRAM].base; break; } riscv_find_and_load_firmware(machine, BIOS_FILENAME, start_addr, NULL); if (machine->kernel_filename) { kernel_entry = riscv_load_kernel(machine->kernel_filename, NULL); if (machine->initrd_filename) { hwaddr start; hwaddr end = riscv_load_initrd(machine->initrd_filename, machine->ram_size, kernel_entry, &start); qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-start", start); qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end", end); } } else { /* * If dynamic firmware is used, it doesn't know where is the next mode * if kernel argument is not set. */ kernel_entry = 0; } /* Compute the fdt load address in dram */ fdt_load_addr = riscv_load_fdt(memmap[SIFIVE_U_DRAM].base, machine->ram_size, s->fdt); #if defined(TARGET_RISCV64) start_addr_hi32 = start_addr >> 32; #endif /* reset vector */ uint32_t reset_vec[11] = { s->msel, /* MSEL pin state */ 0x00000297, /* 1: auipc t0, %pcrel_hi(fw_dyn) */ 0x02828613, /* addi a2, t0, %pcrel_lo(1b) */ 0xf1402573, /* csrr a0, mhartid */ #if defined(TARGET_RISCV32) 0x0202a583, /* lw a1, 32(t0) */ 0x0182a283, /* lw t0, 24(t0) */ #elif defined(TARGET_RISCV64) 0x0202b583, /* ld a1, 32(t0) */ 0x0182b283, /* ld t0, 24(t0) */ #endif 0x00028067, /* jr t0 */ start_addr, /* start: .dword */ start_addr_hi32, fdt_load_addr, /* fdt_laddr: .dword */ 0x00000000, /* fw_dyn: */ }; /* copy in the reset vector in little_endian byte order */ for (i = 0; i < ARRAY_SIZE(reset_vec); i++) { reset_vec[i] = cpu_to_le32(reset_vec[i]); } rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec), memmap[SIFIVE_U_MROM].base, &address_space_memory); riscv_rom_copy_firmware_info(memmap[SIFIVE_U_MROM].base, memmap[SIFIVE_U_MROM].size, sizeof(reset_vec), kernel_entry); } static bool sifive_u_machine_get_start_in_flash(Object *obj, Error **errp) { SiFiveUState *s = RISCV_U_MACHINE(obj); return s->start_in_flash; } static void sifive_u_machine_set_start_in_flash(Object *obj, bool value, Error **errp) { SiFiveUState *s = RISCV_U_MACHINE(obj); s->start_in_flash = value; } static void sifive_u_machine_get_uint32_prop(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { visit_type_uint32(v, name, (uint32_t *)opaque, errp); } static void sifive_u_machine_set_uint32_prop(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { visit_type_uint32(v, name, (uint32_t *)opaque, errp); } static void sifive_u_machine_instance_init(Object *obj) { SiFiveUState *s = RISCV_U_MACHINE(obj); s->start_in_flash = false; object_property_add_bool(obj, "start-in-flash", sifive_u_machine_get_start_in_flash, sifive_u_machine_set_start_in_flash); object_property_set_description(obj, "start-in-flash", "Set on to tell QEMU's ROM to jump to " "flash. Otherwise QEMU will jump to DRAM " "or L2LIM depending on the msel value"); s->msel = 0; object_property_add(obj, "msel", "uint32", sifive_u_machine_get_uint32_prop, sifive_u_machine_set_uint32_prop, NULL, &s->msel); object_property_set_description(obj, "msel", "Mode Select (MSEL[3:0]) pin state"); s->serial = OTP_SERIAL; object_property_add(obj, "serial", "uint32", sifive_u_machine_get_uint32_prop, sifive_u_machine_set_uint32_prop, NULL, &s->serial); object_property_set_description(obj, "serial", "Board serial number"); } static void sifive_u_machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "RISC-V Board compatible with SiFive U SDK"; mc->init = sifive_u_machine_init; mc->max_cpus = SIFIVE_U_MANAGEMENT_CPU_COUNT + SIFIVE_U_COMPUTE_CPU_COUNT; mc->min_cpus = SIFIVE_U_MANAGEMENT_CPU_COUNT + 1; mc->default_cpus = mc->min_cpus; } static const TypeInfo sifive_u_machine_typeinfo = { .name = MACHINE_TYPE_NAME("sifive_u"), .parent = TYPE_MACHINE, .class_init = sifive_u_machine_class_init, .instance_init = sifive_u_machine_instance_init, .instance_size = sizeof(SiFiveUState), }; static void sifive_u_machine_init_register_types(void) { type_register_static(&sifive_u_machine_typeinfo); } type_init(sifive_u_machine_init_register_types) static void sifive_u_soc_instance_init(Object *obj) { MachineState *ms = MACHINE(qdev_get_machine()); SiFiveUSoCState *s = RISCV_U_SOC(obj); object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER); qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0); object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus, TYPE_RISCV_HART_ARRAY); qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1); qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0); qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type", SIFIVE_E_CPU); qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", 0x1004); object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER); qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1); object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus, TYPE_RISCV_HART_ARRAY); qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1); qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1); qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type", SIFIVE_U_CPU); qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", 0x1004); object_initialize_child(obj, "prci", &s->prci, TYPE_SIFIVE_U_PRCI); object_initialize_child(obj, "otp", &s->otp, TYPE_SIFIVE_U_OTP); object_initialize_child(obj, "gem", &s->gem, TYPE_CADENCE_GEM); object_initialize_child(obj, "gpio", &s->gpio, TYPE_SIFIVE_GPIO); } static void sifive_u_soc_realize(DeviceState *dev, Error **errp) { MachineState *ms = MACHINE(qdev_get_machine()); SiFiveUSoCState *s = RISCV_U_SOC(dev); const struct MemmapEntry *memmap = sifive_u_memmap; MemoryRegion *system_memory = get_system_memory(); MemoryRegion *mask_rom = g_new(MemoryRegion, 1); MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1); char *plic_hart_config; size_t plic_hart_config_len; int i; NICInfo *nd = &nd_table[0]; sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort); sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort); /* * The cluster must be realized after the RISC-V hart array container, * as the container's CPU object is only created on realize, and the * CPU must exist and have been parented into the cluster before the * cluster is realized. */ qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort); qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort); /* boot rom */ memory_region_init_rom(mask_rom, OBJECT(dev), "riscv.sifive.u.mrom", memmap[SIFIVE_U_MROM].size, &error_fatal); memory_region_add_subregion(system_memory, memmap[SIFIVE_U_MROM].base, mask_rom); /* * Add L2-LIM at reset size. * This should be reduced in size as the L2 Cache Controller WayEnable * register is incremented. Unfortunately I don't see a nice (or any) way * to handle reducing or blocking out the L2 LIM while still allowing it * be re returned to all enabled after a reset. For the time being, just * leave it enabled all the time. This won't break anything, but will be * too generous to misbehaving guests. */ memory_region_init_ram(l2lim_mem, NULL, "riscv.sifive.u.l2lim", memmap[SIFIVE_U_L2LIM].size, &error_fatal); memory_region_add_subregion(system_memory, memmap[SIFIVE_U_L2LIM].base, l2lim_mem); /* create PLIC hart topology configuration string */ plic_hart_config_len = (strlen(SIFIVE_U_PLIC_HART_CONFIG) + 1) * ms->smp.cpus; plic_hart_config = g_malloc0(plic_hart_config_len); for (i = 0; i < ms->smp.cpus; i++) { if (i != 0) { strncat(plic_hart_config, "," SIFIVE_U_PLIC_HART_CONFIG, plic_hart_config_len); } else { strncat(plic_hart_config, "M", plic_hart_config_len); } plic_hart_config_len -= (strlen(SIFIVE_U_PLIC_HART_CONFIG) + 1); } /* MMIO */ s->plic = sifive_plic_create(memmap[SIFIVE_U_PLIC].base, plic_hart_config, 0, SIFIVE_U_PLIC_NUM_SOURCES, SIFIVE_U_PLIC_NUM_PRIORITIES, SIFIVE_U_PLIC_PRIORITY_BASE, SIFIVE_U_PLIC_PENDING_BASE, SIFIVE_U_PLIC_ENABLE_BASE, SIFIVE_U_PLIC_ENABLE_STRIDE, SIFIVE_U_PLIC_CONTEXT_BASE, SIFIVE_U_PLIC_CONTEXT_STRIDE, memmap[SIFIVE_U_PLIC].size); g_free(plic_hart_config); sifive_uart_create(system_memory, memmap[SIFIVE_U_UART0].base, serial_hd(0), qdev_get_gpio_in(DEVICE(s->plic), SIFIVE_U_UART0_IRQ)); sifive_uart_create(system_memory, memmap[SIFIVE_U_UART1].base, serial_hd(1), qdev_get_gpio_in(DEVICE(s->plic), SIFIVE_U_UART1_IRQ)); sifive_clint_create(memmap[SIFIVE_U_CLINT].base, memmap[SIFIVE_U_CLINT].size, 0, ms->smp.cpus, SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE, SIFIVE_CLINT_TIMEBASE_FREQ, false); if (!sysbus_realize(SYS_BUS_DEVICE(&s->prci), errp)) { return; } sysbus_mmio_map(SYS_BUS_DEVICE(&s->prci), 0, memmap[SIFIVE_U_PRCI].base); qdev_prop_set_uint32(DEVICE(&s->gpio), "ngpio", 16); if (!sysbus_realize(SYS_BUS_DEVICE(&s->gpio), errp)) { return; } sysbus_mmio_map(SYS_BUS_DEVICE(&s->gpio), 0, memmap[SIFIVE_U_GPIO].base); /* Pass all GPIOs to the SOC layer so they are available to the board */ qdev_pass_gpios(DEVICE(&s->gpio), dev, NULL); /* Connect GPIO interrupts to the PLIC */ for (i = 0; i < 16; i++) { sysbus_connect_irq(SYS_BUS_DEVICE(&s->gpio), i, qdev_get_gpio_in(DEVICE(s->plic), SIFIVE_U_GPIO_IRQ0 + i)); } qdev_prop_set_uint32(DEVICE(&s->otp), "serial", s->serial); if (!sysbus_realize(SYS_BUS_DEVICE(&s->otp), errp)) { return; } sysbus_mmio_map(SYS_BUS_DEVICE(&s->otp), 0, memmap[SIFIVE_U_OTP].base); /* FIXME use qdev NIC properties instead of nd_table[] */ if (nd->used) { qemu_check_nic_model(nd, TYPE_CADENCE_GEM); qdev_set_nic_properties(DEVICE(&s->gem), nd); } object_property_set_int(OBJECT(&s->gem), "revision", GEM_REVISION, &error_abort); if (!sysbus_realize(SYS_BUS_DEVICE(&s->gem), errp)) { return; } sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem), 0, memmap[SIFIVE_U_GEM].base); sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem), 0, qdev_get_gpio_in(DEVICE(s->plic), SIFIVE_U_GEM_IRQ)); create_unimplemented_device("riscv.sifive.u.gem-mgmt", memmap[SIFIVE_U_GEM_MGMT].base, memmap[SIFIVE_U_GEM_MGMT].size); create_unimplemented_device("riscv.sifive.u.dmc", memmap[SIFIVE_U_DMC].base, memmap[SIFIVE_U_DMC].size); create_unimplemented_device("riscv.sifive.u.l2cc", memmap[SIFIVE_U_L2CC].base, memmap[SIFIVE_U_L2CC].size); } static Property sifive_u_soc_props[] = { DEFINE_PROP_UINT32("serial", SiFiveUSoCState, serial, OTP_SERIAL), DEFINE_PROP_END_OF_LIST() }; static void sifive_u_soc_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); device_class_set_props(dc, sifive_u_soc_props); dc->realize = sifive_u_soc_realize; /* Reason: Uses serial_hds in realize function, thus can't be used twice */ dc->user_creatable = false; } static const TypeInfo sifive_u_soc_type_info = { .name = TYPE_RISCV_U_SOC, .parent = TYPE_DEVICE, .instance_size = sizeof(SiFiveUSoCState), .instance_init = sifive_u_soc_instance_init, .class_init = sifive_u_soc_class_init, }; static void sifive_u_soc_register_types(void) { type_register_static(&sifive_u_soc_type_info); } type_init(sifive_u_soc_register_types)