/* * QEMU PowerPC sPAPR IRQ interface * * Copyright (c) 2018, IBM Corporation. * * This code is licensed under the GPL version 2 or later. See the * COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qemu/error-report.h" #include "qapi/error.h" #include "hw/ppc/spapr.h" #include "hw/ppc/spapr_xive.h" #include "hw/ppc/xics.h" #include "hw/ppc/xics_spapr.h" #include "sysemu/kvm.h" #include "trace.h" void spapr_irq_msi_init(sPAPRMachineState *spapr, uint32_t nr_msis) { spapr->irq_map_nr = nr_msis; spapr->irq_map = bitmap_new(spapr->irq_map_nr); } int spapr_irq_msi_alloc(sPAPRMachineState *spapr, uint32_t num, bool align, Error **errp) { int irq; /* * The 'align_mask' parameter of bitmap_find_next_zero_area() * should be one less than a power of 2; 0 means no * alignment. Adapt the 'align' value of the former allocator * to fit the requirements of bitmap_find_next_zero_area() */ align -= 1; irq = bitmap_find_next_zero_area(spapr->irq_map, spapr->irq_map_nr, 0, num, align); if (irq == spapr->irq_map_nr) { error_setg(errp, "can't find a free %d-IRQ block", num); return -1; } bitmap_set(spapr->irq_map, irq, num); return irq + SPAPR_IRQ_MSI; } void spapr_irq_msi_free(sPAPRMachineState *spapr, int irq, uint32_t num) { bitmap_clear(spapr->irq_map, irq - SPAPR_IRQ_MSI, num); } void spapr_irq_msi_reset(sPAPRMachineState *spapr) { bitmap_clear(spapr->irq_map, 0, spapr->irq_map_nr); } /* * XICS IRQ backend. */ static ICSState *spapr_ics_create(sPAPRMachineState *spapr, const char *type_ics, int nr_irqs, Error **errp) { Error *local_err = NULL; Object *obj; obj = object_new(type_ics); object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort); object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr), &error_abort); object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err); if (local_err) { goto error; } object_property_set_bool(obj, true, "realized", &local_err); if (local_err) { goto error; } return ICS_BASE(obj); error: error_propagate(errp, local_err); return NULL; } static void spapr_irq_init_xics(sPAPRMachineState *spapr, Error **errp) { MachineState *machine = MACHINE(spapr); int nr_irqs = spapr->irq->nr_irqs; Error *local_err = NULL; if (kvm_enabled()) { if (machine_kernel_irqchip_allowed(machine) && !xics_kvm_init(spapr, &local_err)) { spapr->icp_type = TYPE_KVM_ICP; spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, &local_err); } if (machine_kernel_irqchip_required(machine) && !spapr->ics) { error_prepend(&local_err, "kernel_irqchip requested but unavailable: "); goto error; } error_free(local_err); local_err = NULL; } if (!spapr->ics) { xics_spapr_init(spapr); spapr->icp_type = TYPE_ICP; spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, &local_err); } error: error_propagate(errp, local_err); } #define ICS_IRQ_FREE(ics, srcno) \ (!((ics)->irqs[(srcno)].flags & (XICS_FLAGS_IRQ_MASK))) static int spapr_irq_claim_xics(sPAPRMachineState *spapr, int irq, bool lsi, Error **errp) { ICSState *ics = spapr->ics; assert(ics); if (!ics_valid_irq(ics, irq)) { error_setg(errp, "IRQ %d is invalid", irq); return -1; } if (!ICS_IRQ_FREE(ics, irq - ics->offset)) { error_setg(errp, "IRQ %d is not free", irq); return -1; } ics_set_irq_type(ics, irq - ics->offset, lsi); return 0; } static void spapr_irq_free_xics(sPAPRMachineState *spapr, int irq, int num) { ICSState *ics = spapr->ics; uint32_t srcno = irq - ics->offset; int i; if (ics_valid_irq(ics, irq)) { trace_spapr_irq_free(0, irq, num); for (i = srcno; i < srcno + num; ++i) { if (ICS_IRQ_FREE(ics, i)) { trace_spapr_irq_free_warn(0, i); } memset(&ics->irqs[i], 0, sizeof(ICSIRQState)); } } } static qemu_irq spapr_qirq_xics(sPAPRMachineState *spapr, int irq) { ICSState *ics = spapr->ics; uint32_t srcno = irq - ics->offset; if (ics_valid_irq(ics, irq)) { return spapr->qirqs[srcno]; } return NULL; } static void spapr_irq_print_info_xics(sPAPRMachineState *spapr, Monitor *mon) { CPUState *cs; CPU_FOREACH(cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); icp_pic_print_info(cpu->icp, mon); } ics_pic_print_info(spapr->ics, mon); } static void spapr_irq_cpu_intc_create_xics(sPAPRMachineState *spapr, PowerPCCPU *cpu, Error **errp) { Error *local_err = NULL; Object *obj; obj = icp_create(OBJECT(cpu), spapr->icp_type, XICS_FABRIC(spapr), &local_err); if (local_err) { error_propagate(errp, local_err); return; } cpu->icp = ICP(obj); } static int spapr_irq_post_load_xics(sPAPRMachineState *spapr, int version_id) { if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) { CPUState *cs; CPU_FOREACH(cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); icp_resend(cpu->icp); } } return 0; } static void spapr_irq_set_irq_xics(void *opaque, int srcno, int val) { sPAPRMachineState *spapr = opaque; MachineState *machine = MACHINE(opaque); if (kvm_enabled() && machine_kernel_irqchip_allowed(machine)) { ics_kvm_set_irq(spapr->ics, srcno, val); } else { ics_simple_set_irq(spapr->ics, srcno, val); } } static void spapr_irq_reset_xics(sPAPRMachineState *spapr, Error **errp) { /* TODO: create the KVM XICS device */ } #define SPAPR_IRQ_XICS_NR_IRQS 0x1000 #define SPAPR_IRQ_XICS_NR_MSIS \ (XICS_IRQ_BASE + SPAPR_IRQ_XICS_NR_IRQS - SPAPR_IRQ_MSI) sPAPRIrq spapr_irq_xics = { .nr_irqs = SPAPR_IRQ_XICS_NR_IRQS, .nr_msis = SPAPR_IRQ_XICS_NR_MSIS, .ov5 = SPAPR_OV5_XIVE_LEGACY, .init = spapr_irq_init_xics, .claim = spapr_irq_claim_xics, .free = spapr_irq_free_xics, .qirq = spapr_qirq_xics, .print_info = spapr_irq_print_info_xics, .dt_populate = spapr_dt_xics, .cpu_intc_create = spapr_irq_cpu_intc_create_xics, .post_load = spapr_irq_post_load_xics, .reset = spapr_irq_reset_xics, .set_irq = spapr_irq_set_irq_xics, }; /* * XIVE IRQ backend. */ static void spapr_irq_init_xive(sPAPRMachineState *spapr, Error **errp) { MachineState *machine = MACHINE(spapr); uint32_t nr_servers = spapr_max_server_number(spapr); DeviceState *dev; int i; /* KVM XIVE device not yet available */ if (kvm_enabled()) { if (machine_kernel_irqchip_required(machine)) { error_setg(errp, "kernel_irqchip requested. no KVM XIVE support"); return; } } dev = qdev_create(NULL, TYPE_SPAPR_XIVE); qdev_prop_set_uint32(dev, "nr-irqs", spapr->irq->nr_irqs); /* * 8 XIVE END structures per CPU. One for each available priority */ qdev_prop_set_uint32(dev, "nr-ends", nr_servers << 3); qdev_init_nofail(dev); spapr->xive = SPAPR_XIVE(dev); /* Enable the CPU IPIs */ for (i = 0; i < nr_servers; ++i) { spapr_xive_irq_claim(spapr->xive, SPAPR_IRQ_IPI + i, false); } spapr_xive_hcall_init(spapr); } static int spapr_irq_claim_xive(sPAPRMachineState *spapr, int irq, bool lsi, Error **errp) { if (!spapr_xive_irq_claim(spapr->xive, irq, lsi)) { error_setg(errp, "IRQ %d is invalid", irq); return -1; } return 0; } static void spapr_irq_free_xive(sPAPRMachineState *spapr, int irq, int num) { int i; for (i = irq; i < irq + num; ++i) { spapr_xive_irq_free(spapr->xive, i); } } static qemu_irq spapr_qirq_xive(sPAPRMachineState *spapr, int irq) { sPAPRXive *xive = spapr->xive; if (irq >= xive->nr_irqs) { return NULL; } /* The sPAPR machine/device should have claimed the IRQ before */ assert(xive_eas_is_valid(&xive->eat[irq])); return spapr->qirqs[irq]; } static void spapr_irq_print_info_xive(sPAPRMachineState *spapr, Monitor *mon) { CPUState *cs; CPU_FOREACH(cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); xive_tctx_pic_print_info(cpu->tctx, mon); } spapr_xive_pic_print_info(spapr->xive, mon); } static void spapr_irq_cpu_intc_create_xive(sPAPRMachineState *spapr, PowerPCCPU *cpu, Error **errp) { Error *local_err = NULL; Object *obj; obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(spapr->xive), &local_err); if (local_err) { error_propagate(errp, local_err); return; } cpu->tctx = XIVE_TCTX(obj); /* * (TCG) Early setting the OS CAM line for hotplugged CPUs as they * don't beneficiate from the reset of the XIVE IRQ backend */ spapr_xive_set_tctx_os_cam(cpu->tctx); } static int spapr_irq_post_load_xive(sPAPRMachineState *spapr, int version_id) { return 0; } static void spapr_irq_reset_xive(sPAPRMachineState *spapr, Error **errp) { CPUState *cs; CPU_FOREACH(cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); /* (TCG) Set the OS CAM line of the thread interrupt context. */ spapr_xive_set_tctx_os_cam(cpu->tctx); } /* Activate the XIVE MMIOs */ spapr_xive_mmio_set_enabled(spapr->xive, true); } static void spapr_irq_set_irq_xive(void *opaque, int srcno, int val) { sPAPRMachineState *spapr = opaque; xive_source_set_irq(&spapr->xive->source, srcno, val); } /* * XIVE uses the full IRQ number space. Set it to 8K to be compatible * with XICS. */ #define SPAPR_IRQ_XIVE_NR_IRQS 0x2000 #define SPAPR_IRQ_XIVE_NR_MSIS (SPAPR_IRQ_XIVE_NR_IRQS - SPAPR_IRQ_MSI) sPAPRIrq spapr_irq_xive = { .nr_irqs = SPAPR_IRQ_XIVE_NR_IRQS, .nr_msis = SPAPR_IRQ_XIVE_NR_MSIS, .ov5 = SPAPR_OV5_XIVE_EXPLOIT, .init = spapr_irq_init_xive, .claim = spapr_irq_claim_xive, .free = spapr_irq_free_xive, .qirq = spapr_qirq_xive, .print_info = spapr_irq_print_info_xive, .dt_populate = spapr_dt_xive, .cpu_intc_create = spapr_irq_cpu_intc_create_xive, .post_load = spapr_irq_post_load_xive, .reset = spapr_irq_reset_xive, .set_irq = spapr_irq_set_irq_xive, }; /* * Dual XIVE and XICS IRQ backend. * * Both interrupt mode, XIVE and XICS, objects are created but the * machine starts in legacy interrupt mode (XICS). It can be changed * by the CAS negotiation process and, in that case, the new mode is * activated after an extra machine reset. */ /* * Returns the sPAPR IRQ backend negotiated by CAS. XICS is the * default. */ static sPAPRIrq *spapr_irq_current(sPAPRMachineState *spapr) { return spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT) ? &spapr_irq_xive : &spapr_irq_xics; } static void spapr_irq_init_dual(sPAPRMachineState *spapr, Error **errp) { MachineState *machine = MACHINE(spapr); Error *local_err = NULL; if (kvm_enabled() && machine_kernel_irqchip_allowed(machine)) { error_setg(errp, "No KVM support for the 'dual' machine"); return; } spapr_irq_xics.init(spapr, &local_err); if (local_err) { error_propagate(errp, local_err); return; } /* * Align the XICS and the XIVE IRQ number space under QEMU. * * However, the XICS KVM device still considers that the IRQ * numbers should start at XICS_IRQ_BASE (0x1000). Either we * should introduce a KVM device ioctl to set the offset or ignore * the lower 4K numbers when using the get/set ioctl of the XICS * KVM device. The second option seems the least intrusive. */ spapr->ics->offset = 0; spapr_irq_xive.init(spapr, &local_err); if (local_err) { error_propagate(errp, local_err); return; } } static int spapr_irq_claim_dual(sPAPRMachineState *spapr, int irq, bool lsi, Error **errp) { Error *local_err = NULL; int ret; ret = spapr_irq_xics.claim(spapr, irq, lsi, &local_err); if (local_err) { error_propagate(errp, local_err); return ret; } ret = spapr_irq_xive.claim(spapr, irq, lsi, &local_err); if (local_err) { error_propagate(errp, local_err); return ret; } return ret; } static void spapr_irq_free_dual(sPAPRMachineState *spapr, int irq, int num) { spapr_irq_xics.free(spapr, irq, num); spapr_irq_xive.free(spapr, irq, num); } static qemu_irq spapr_qirq_dual(sPAPRMachineState *spapr, int irq) { sPAPRXive *xive = spapr->xive; ICSState *ics = spapr->ics; if (irq >= spapr->irq->nr_irqs) { return NULL; } /* * The IRQ number should have been claimed under both interrupt * controllers. */ assert(!ICS_IRQ_FREE(ics, irq - ics->offset)); assert(xive_eas_is_valid(&xive->eat[irq])); return spapr->qirqs[irq]; } static void spapr_irq_print_info_dual(sPAPRMachineState *spapr, Monitor *mon) { spapr_irq_current(spapr)->print_info(spapr, mon); } static void spapr_irq_dt_populate_dual(sPAPRMachineState *spapr, uint32_t nr_servers, void *fdt, uint32_t phandle) { spapr_irq_current(spapr)->dt_populate(spapr, nr_servers, fdt, phandle); } static void spapr_irq_cpu_intc_create_dual(sPAPRMachineState *spapr, PowerPCCPU *cpu, Error **errp) { Error *local_err = NULL; spapr_irq_xive.cpu_intc_create(spapr, cpu, &local_err); if (local_err) { error_propagate(errp, local_err); return; } spapr_irq_xics.cpu_intc_create(spapr, cpu, errp); } static int spapr_irq_post_load_dual(sPAPRMachineState *spapr, int version_id) { /* * Force a reset of the XIVE backend after migration. The machine * defaults to XICS at startup. */ if (spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { spapr_irq_xive.reset(spapr, &error_fatal); } return spapr_irq_current(spapr)->post_load(spapr, version_id); } static void spapr_irq_reset_dual(sPAPRMachineState *spapr, Error **errp) { /* * Deactivate the XIVE MMIOs. The XIVE backend will reenable them * if selected. */ spapr_xive_mmio_set_enabled(spapr->xive, false); spapr_irq_current(spapr)->reset(spapr, errp); } static void spapr_irq_set_irq_dual(void *opaque, int srcno, int val) { sPAPRMachineState *spapr = opaque; spapr_irq_current(spapr)->set_irq(spapr, srcno, val); } /* * Define values in sync with the XIVE and XICS backend */ #define SPAPR_IRQ_DUAL_NR_IRQS 0x2000 #define SPAPR_IRQ_DUAL_NR_MSIS (SPAPR_IRQ_DUAL_NR_IRQS - SPAPR_IRQ_MSI) sPAPRIrq spapr_irq_dual = { .nr_irqs = SPAPR_IRQ_DUAL_NR_IRQS, .nr_msis = SPAPR_IRQ_DUAL_NR_MSIS, .ov5 = SPAPR_OV5_XIVE_BOTH, .init = spapr_irq_init_dual, .claim = spapr_irq_claim_dual, .free = spapr_irq_free_dual, .qirq = spapr_qirq_dual, .print_info = spapr_irq_print_info_dual, .dt_populate = spapr_irq_dt_populate_dual, .cpu_intc_create = spapr_irq_cpu_intc_create_dual, .post_load = spapr_irq_post_load_dual, .reset = spapr_irq_reset_dual, .set_irq = spapr_irq_set_irq_dual }; /* * sPAPR IRQ frontend routines for devices */ void spapr_irq_init(sPAPRMachineState *spapr, Error **errp) { /* Initialize the MSI IRQ allocator. */ if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { spapr_irq_msi_init(spapr, spapr->irq->nr_msis); } spapr->irq->init(spapr, errp); spapr->qirqs = qemu_allocate_irqs(spapr->irq->set_irq, spapr, spapr->irq->nr_irqs); } int spapr_irq_claim(sPAPRMachineState *spapr, int irq, bool lsi, Error **errp) { return spapr->irq->claim(spapr, irq, lsi, errp); } void spapr_irq_free(sPAPRMachineState *spapr, int irq, int num) { spapr->irq->free(spapr, irq, num); } qemu_irq spapr_qirq(sPAPRMachineState *spapr, int irq) { return spapr->irq->qirq(spapr, irq); } int spapr_irq_post_load(sPAPRMachineState *spapr, int version_id) { return spapr->irq->post_load(spapr, version_id); } void spapr_irq_reset(sPAPRMachineState *spapr, Error **errp) { if (spapr->irq->reset) { spapr->irq->reset(spapr, errp); } } /* * XICS legacy routines - to deprecate one day */ static int ics_find_free_block(ICSState *ics, int num, int alignnum) { int first, i; for (first = 0; first < ics->nr_irqs; first += alignnum) { if (num > (ics->nr_irqs - first)) { return -1; } for (i = first; i < first + num; ++i) { if (!ICS_IRQ_FREE(ics, i)) { break; } } if (i == (first + num)) { return first; } } return -1; } int spapr_irq_find(sPAPRMachineState *spapr, int num, bool align, Error **errp) { ICSState *ics = spapr->ics; int first = -1; assert(ics); /* * MSIMesage::data is used for storing VIRQ so * it has to be aligned to num to support multiple * MSI vectors. MSI-X is not affected by this. * The hint is used for the first IRQ, the rest should * be allocated continuously. */ if (align) { assert((num == 1) || (num == 2) || (num == 4) || (num == 8) || (num == 16) || (num == 32)); first = ics_find_free_block(ics, num, num); } else { first = ics_find_free_block(ics, num, 1); } if (first < 0) { error_setg(errp, "can't find a free %d-IRQ block", num); return -1; } return first + ics->offset; } #define SPAPR_IRQ_XICS_LEGACY_NR_IRQS 0x400 sPAPRIrq spapr_irq_xics_legacy = { .nr_irqs = SPAPR_IRQ_XICS_LEGACY_NR_IRQS, .nr_msis = SPAPR_IRQ_XICS_LEGACY_NR_IRQS, .ov5 = SPAPR_OV5_XIVE_LEGACY, .init = spapr_irq_init_xics, .claim = spapr_irq_claim_xics, .free = spapr_irq_free_xics, .qirq = spapr_qirq_xics, .print_info = spapr_irq_print_info_xics, .dt_populate = spapr_dt_xics, .cpu_intc_create = spapr_irq_cpu_intc_create_xics, .post_load = spapr_irq_post_load_xics, .set_irq = spapr_irq_set_irq_xics, };