/* * QEMU generic PowerPC hardware System Emulator * * Copyright (c) 2003-2007 Jocelyn Mayer * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "hw/irq.h" #include "hw/ppc/ppc.h" #include "hw/ppc/ppc_e500.h" #include "qemu/timer.h" #include "sysemu/cpus.h" #include "qemu/log.h" #include "qemu/main-loop.h" #include "qemu/error-report.h" #include "sysemu/kvm.h" #include "sysemu/replay.h" #include "sysemu/runstate.h" #include "kvm_ppc.h" #include "migration/vmstate.h" #include "trace.h" static void cpu_ppc_tb_stop (CPUPPCState *env); static void cpu_ppc_tb_start (CPUPPCState *env); void ppc_set_irq(PowerPCCPU *cpu, int irq, int level) { CPUPPCState *env = &cpu->env; unsigned int old_pending; /* We may already have the BQL if coming from the reset path */ BQL_LOCK_GUARD(); old_pending = env->pending_interrupts; if (level) { env->pending_interrupts |= irq; } else { env->pending_interrupts &= ~irq; } if (old_pending != env->pending_interrupts) { ppc_maybe_interrupt(env); if (kvm_enabled()) { kvmppc_set_interrupt(cpu, irq, level); } } trace_ppc_irq_set_exit(env, irq, level, env->pending_interrupts, CPU(cpu)->interrupt_request); } /* PowerPC 6xx / 7xx internal IRQ controller */ static void ppc6xx_set_irq(void *opaque, int pin, int level) { PowerPCCPU *cpu = opaque; CPUPPCState *env = &cpu->env; int cur_level; trace_ppc_irq_set(env, pin, level); cur_level = (env->irq_input_state >> pin) & 1; /* Don't generate spurious events */ if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { CPUState *cs = CPU(cpu); switch (pin) { case PPC6xx_INPUT_TBEN: /* Level sensitive - active high */ trace_ppc_irq_set_state("time base", level); if (level) { cpu_ppc_tb_start(env); } else { cpu_ppc_tb_stop(env); } break; case PPC6xx_INPUT_INT: /* Level sensitive - active high */ trace_ppc_irq_set_state("external IRQ", level); ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); break; case PPC6xx_INPUT_SMI: /* Level sensitive - active high */ trace_ppc_irq_set_state("SMI IRQ", level); ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level); break; case PPC6xx_INPUT_MCP: /* Negative edge sensitive */ /* XXX: TODO: actual reaction may depends on HID0 status * 603/604/740/750: check HID0[EMCP] */ if (cur_level == 1 && level == 0) { trace_ppc_irq_set_state("machine check", 1); ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1); } break; case PPC6xx_INPUT_CKSTP_IN: /* Level sensitive - active low */ /* XXX: TODO: relay the signal to CKSTP_OUT pin */ /* XXX: Note that the only way to restart the CPU is to reset it */ if (level) { trace_ppc_irq_cpu("stop"); cs->halted = 1; } break; case PPC6xx_INPUT_HRESET: /* Level sensitive - active low */ if (level) { trace_ppc_irq_reset("CPU"); cpu_interrupt(cs, CPU_INTERRUPT_RESET); } break; case PPC6xx_INPUT_SRESET: trace_ppc_irq_set_state("RESET IRQ", level); ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level); break; default: g_assert_not_reached(); } if (level) env->irq_input_state |= 1 << pin; else env->irq_input_state &= ~(1 << pin); } } void ppc6xx_irq_init(PowerPCCPU *cpu) { qdev_init_gpio_in(DEVICE(cpu), ppc6xx_set_irq, PPC6xx_INPUT_NB); } #if defined(TARGET_PPC64) /* PowerPC 970 internal IRQ controller */ static void ppc970_set_irq(void *opaque, int pin, int level) { PowerPCCPU *cpu = opaque; CPUPPCState *env = &cpu->env; int cur_level; trace_ppc_irq_set(env, pin, level); cur_level = (env->irq_input_state >> pin) & 1; /* Don't generate spurious events */ if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { CPUState *cs = CPU(cpu); switch (pin) { case PPC970_INPUT_INT: /* Level sensitive - active high */ trace_ppc_irq_set_state("external IRQ", level); ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); break; case PPC970_INPUT_THINT: /* Level sensitive - active high */ trace_ppc_irq_set_state("SMI IRQ", level); ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level); break; case PPC970_INPUT_MCP: /* Negative edge sensitive */ /* XXX: TODO: actual reaction may depends on HID0 status * 603/604/740/750: check HID0[EMCP] */ if (cur_level == 1 && level == 0) { trace_ppc_irq_set_state("machine check", 1); ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1); } break; case PPC970_INPUT_CKSTP: /* Level sensitive - active low */ /* XXX: TODO: relay the signal to CKSTP_OUT pin */ if (level) { trace_ppc_irq_cpu("stop"); cs->halted = 1; } else { trace_ppc_irq_cpu("restart"); cs->halted = 0; qemu_cpu_kick(cs); } break; case PPC970_INPUT_HRESET: /* Level sensitive - active low */ if (level) { cpu_interrupt(cs, CPU_INTERRUPT_RESET); } break; case PPC970_INPUT_SRESET: trace_ppc_irq_set_state("RESET IRQ", level); ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level); break; case PPC970_INPUT_TBEN: trace_ppc_irq_set_state("TBEN IRQ", level); /* XXX: TODO */ break; default: g_assert_not_reached(); } if (level) env->irq_input_state |= 1 << pin; else env->irq_input_state &= ~(1 << pin); } } void ppc970_irq_init(PowerPCCPU *cpu) { qdev_init_gpio_in(DEVICE(cpu), ppc970_set_irq, PPC970_INPUT_NB); } /* POWER7 internal IRQ controller */ static void power7_set_irq(void *opaque, int pin, int level) { PowerPCCPU *cpu = opaque; trace_ppc_irq_set(&cpu->env, pin, level); switch (pin) { case POWER7_INPUT_INT: /* Level sensitive - active high */ trace_ppc_irq_set_state("external IRQ", level); ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); break; default: g_assert_not_reached(); } } void ppcPOWER7_irq_init(PowerPCCPU *cpu) { qdev_init_gpio_in(DEVICE(cpu), power7_set_irq, POWER7_INPUT_NB); } /* POWER9 internal IRQ controller */ static void power9_set_irq(void *opaque, int pin, int level) { PowerPCCPU *cpu = opaque; trace_ppc_irq_set(&cpu->env, pin, level); switch (pin) { case POWER9_INPUT_INT: /* Level sensitive - active high */ trace_ppc_irq_set_state("external IRQ", level); ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); break; case POWER9_INPUT_HINT: /* Level sensitive - active high */ trace_ppc_irq_set_state("HV external IRQ", level); ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level); break; default: g_assert_not_reached(); return; } } void ppcPOWER9_irq_init(PowerPCCPU *cpu) { qdev_init_gpio_in(DEVICE(cpu), power9_set_irq, POWER9_INPUT_NB); } #endif /* defined(TARGET_PPC64) */ void ppc40x_core_reset(PowerPCCPU *cpu) { CPUPPCState *env = &cpu->env; target_ulong dbsr; qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n"); cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET); dbsr = env->spr[SPR_40x_DBSR]; dbsr &= ~0x00000300; dbsr |= 0x00000100; env->spr[SPR_40x_DBSR] = dbsr; } void ppc40x_chip_reset(PowerPCCPU *cpu) { CPUPPCState *env = &cpu->env; target_ulong dbsr; qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n"); cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET); /* XXX: TODO reset all internal peripherals */ dbsr = env->spr[SPR_40x_DBSR]; dbsr &= ~0x00000300; dbsr |= 0x00000200; env->spr[SPR_40x_DBSR] = dbsr; } void ppc40x_system_reset(PowerPCCPU *cpu) { qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n"); qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); } void store_40x_dbcr0(CPUPPCState *env, uint32_t val) { PowerPCCPU *cpu = env_archcpu(env); bql_lock(); switch ((val >> 28) & 0x3) { case 0x0: /* No action */ break; case 0x1: /* Core reset */ ppc40x_core_reset(cpu); break; case 0x2: /* Chip reset */ ppc40x_chip_reset(cpu); break; case 0x3: /* System reset */ ppc40x_system_reset(cpu); break; } bql_unlock(); } /* PowerPC 40x internal IRQ controller */ static void ppc40x_set_irq(void *opaque, int pin, int level) { PowerPCCPU *cpu = opaque; CPUPPCState *env = &cpu->env; int cur_level; trace_ppc_irq_set(env, pin, level); cur_level = (env->irq_input_state >> pin) & 1; /* Don't generate spurious events */ if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { CPUState *cs = CPU(cpu); switch (pin) { case PPC40x_INPUT_RESET_SYS: if (level) { trace_ppc_irq_reset("system"); ppc40x_system_reset(cpu); } break; case PPC40x_INPUT_RESET_CHIP: if (level) { trace_ppc_irq_reset("chip"); ppc40x_chip_reset(cpu); } break; case PPC40x_INPUT_RESET_CORE: /* XXX: TODO: update DBSR[MRR] */ if (level) { trace_ppc_irq_reset("core"); ppc40x_core_reset(cpu); } break; case PPC40x_INPUT_CINT: /* Level sensitive - active high */ trace_ppc_irq_set_state("critical IRQ", level); ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level); break; case PPC40x_INPUT_INT: /* Level sensitive - active high */ trace_ppc_irq_set_state("external IRQ", level); ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); break; case PPC40x_INPUT_HALT: /* Level sensitive - active low */ if (level) { trace_ppc_irq_cpu("stop"); cs->halted = 1; } else { trace_ppc_irq_cpu("restart"); cs->halted = 0; qemu_cpu_kick(cs); } break; case PPC40x_INPUT_DEBUG: /* Level sensitive - active high */ trace_ppc_irq_set_state("debug pin", level); ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level); break; default: g_assert_not_reached(); } if (level) env->irq_input_state |= 1 << pin; else env->irq_input_state &= ~(1 << pin); } } void ppc40x_irq_init(PowerPCCPU *cpu) { qdev_init_gpio_in(DEVICE(cpu), ppc40x_set_irq, PPC40x_INPUT_NB); } /* PowerPC E500 internal IRQ controller */ static void ppce500_set_irq(void *opaque, int pin, int level) { PowerPCCPU *cpu = opaque; CPUPPCState *env = &cpu->env; int cur_level; trace_ppc_irq_set(env, pin, level); cur_level = (env->irq_input_state >> pin) & 1; /* Don't generate spurious events */ if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { switch (pin) { case PPCE500_INPUT_MCK: if (level) { trace_ppc_irq_reset("system"); qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); } break; case PPCE500_INPUT_RESET_CORE: if (level) { trace_ppc_irq_reset("core"); ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level); } break; case PPCE500_INPUT_CINT: /* Level sensitive - active high */ trace_ppc_irq_set_state("critical IRQ", level); ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level); break; case PPCE500_INPUT_INT: /* Level sensitive - active high */ trace_ppc_irq_set_state("core IRQ", level); ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level); break; case PPCE500_INPUT_DEBUG: /* Level sensitive - active high */ trace_ppc_irq_set_state("debug pin", level); ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level); break; default: g_assert_not_reached(); } if (level) env->irq_input_state |= 1 << pin; else env->irq_input_state &= ~(1 << pin); } } void ppce500_irq_init(PowerPCCPU *cpu) { qdev_init_gpio_in(DEVICE(cpu), ppce500_set_irq, PPCE500_INPUT_NB); } /* Enable or Disable the E500 EPR capability */ void ppce500_set_mpic_proxy(bool enabled) { CPUState *cs; CPU_FOREACH(cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); cpu->env.mpic_proxy = enabled; if (kvm_enabled()) { kvmppc_set_mpic_proxy(cpu, enabled); } } } /*****************************************************************************/ /* PowerPC time base and decrementer emulation */ /* * Conversion between QEMU_CLOCK_VIRTUAL ns and timebase (TB) ticks: * TB ticks are arrived at by multiplying tb_freq then dividing by * ns per second, and rounding down. TB ticks drive all clocks and * timers in the target machine. * * Converting TB intervals to ns for the purpose of setting a * QEMU_CLOCK_VIRTUAL timer should go the other way, but rounding * up. Rounding down could cause the timer to fire before the TB * value has been reached. */ static uint64_t ns_to_tb(uint32_t freq, int64_t clock) { return muldiv64(clock, freq, NANOSECONDS_PER_SECOND); } /* virtual clock in TB ticks, not adjusted by TB offset */ static int64_t tb_to_ns_round_up(uint32_t freq, uint64_t tb) { return muldiv64_round_up(tb, NANOSECONDS_PER_SECOND, freq); } uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset) { /* TB time in tb periods */ return ns_to_tb(tb_env->tb_freq, vmclk) + tb_offset; } uint64_t cpu_ppc_load_tbl (CPUPPCState *env) { ppc_tb_t *tb_env = env->tb_env; uint64_t tb; if (kvm_enabled()) { return env->spr[SPR_TBL]; } tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); trace_ppc_tb_load(tb); return tb; } static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env) { ppc_tb_t *tb_env = env->tb_env; uint64_t tb; tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset); trace_ppc_tb_load(tb); return tb >> 32; } uint32_t cpu_ppc_load_tbu (CPUPPCState *env) { if (kvm_enabled()) { return env->spr[SPR_TBU]; } return _cpu_ppc_load_tbu(env); } static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t *tb_offsetp, uint64_t value) { *tb_offsetp = value - ns_to_tb(tb_env->tb_freq, vmclk); trace_ppc_tb_store(value, *tb_offsetp); } void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value) { ppc_tb_t *tb_env = env->tb_env; int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); uint64_t tb; tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset); tb &= 0xFFFFFFFF00000000ULL; cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, tb | (uint64_t)value); } static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value) { ppc_tb_t *tb_env = env->tb_env; int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); uint64_t tb; tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset); tb &= 0x00000000FFFFFFFFULL; cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, ((uint64_t)value << 32) | tb); } void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value) { _cpu_ppc_store_tbu(env, value); } uint64_t cpu_ppc_load_atbl (CPUPPCState *env) { ppc_tb_t *tb_env = env->tb_env; uint64_t tb; tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); trace_ppc_tb_load(tb); return tb; } uint32_t cpu_ppc_load_atbu (CPUPPCState *env) { ppc_tb_t *tb_env = env->tb_env; uint64_t tb; tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset); trace_ppc_tb_load(tb); return tb >> 32; } void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value) { ppc_tb_t *tb_env = env->tb_env; int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); uint64_t tb; tb = cpu_ppc_get_tb(tb_env, clock, tb_env->atb_offset); tb &= 0xFFFFFFFF00000000ULL; cpu_ppc_store_tb(tb_env, clock, &tb_env->atb_offset, tb | (uint64_t)value); } void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value) { ppc_tb_t *tb_env = env->tb_env; int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); uint64_t tb; tb = cpu_ppc_get_tb(tb_env, clock, tb_env->atb_offset); tb &= 0x00000000FFFFFFFFULL; cpu_ppc_store_tb(tb_env, clock, &tb_env->atb_offset, ((uint64_t)value << 32) | tb); } void cpu_ppc_increase_tb_by_offset(CPUPPCState *env, int64_t offset) { env->tb_env->tb_offset += offset; } void cpu_ppc_decrease_tb_by_offset(CPUPPCState *env, int64_t offset) { env->tb_env->tb_offset -= offset; } uint64_t cpu_ppc_load_vtb(CPUPPCState *env) { ppc_tb_t *tb_env = env->tb_env; return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->vtb_offset); } void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value) { ppc_tb_t *tb_env = env->tb_env; cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), &tb_env->vtb_offset, value); } void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value) { ppc_tb_t *tb_env = env->tb_env; int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); uint64_t tb; tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset); tb &= 0xFFFFFFUL; tb |= (value & ~0xFFFFFFUL); cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, tb); } static void cpu_ppc_tb_stop (CPUPPCState *env) { ppc_tb_t *tb_env = env->tb_env; uint64_t tb, atb, vmclk; /* If the time base is already frozen, do nothing */ if (tb_env->tb_freq != 0) { vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); /* Get the time base */ tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset); /* Get the alternate time base */ atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset); /* Store the time base value (ie compute the current offset) */ cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb); /* Store the alternate time base value (compute the current offset) */ cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb); /* Set the time base frequency to zero */ tb_env->tb_freq = 0; /* Now, the time bases are frozen to tb_offset / atb_offset value */ } } static void cpu_ppc_tb_start (CPUPPCState *env) { ppc_tb_t *tb_env = env->tb_env; uint64_t tb, atb, vmclk; /* If the time base is not frozen, do nothing */ if (tb_env->tb_freq == 0) { vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); /* Get the time base from tb_offset */ tb = tb_env->tb_offset; /* Get the alternate time base from atb_offset */ atb = tb_env->atb_offset; /* Restore the tb frequency from the decrementer frequency */ tb_env->tb_freq = tb_env->decr_freq; /* Store the time base value */ cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb); /* Store the alternate time base value */ cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb); } } bool ppc_decr_clear_on_delivery(CPUPPCState *env) { ppc_tb_t *tb_env = env->tb_env; int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL; return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED); } static inline int64_t __cpu_ppc_load_decr(CPUPPCState *env, int64_t now, uint64_t next) { ppc_tb_t *tb_env = env->tb_env; uint64_t n; int64_t decr; n = ns_to_tb(tb_env->decr_freq, now); if (next > n && tb_env->flags & PPC_TIMER_BOOKE) { decr = 0; } else { decr = next - n; } trace_ppc_decr_load(decr); return decr; } static target_ulong _cpu_ppc_load_decr(CPUPPCState *env, int64_t now) { ppc_tb_t *tb_env = env->tb_env; uint64_t decr; decr = __cpu_ppc_load_decr(env, now, tb_env->decr_next); /* * If large decrementer is enabled then the decrementer is signed extended * to 64 bits, otherwise it is a 32 bit value. */ if (env->spr[SPR_LPCR] & LPCR_LD) { PowerPCCPU *cpu = env_archcpu(env); PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); return sextract64(decr, 0, pcc->lrg_decr_bits); } return (uint32_t) decr; } target_ulong cpu_ppc_load_decr(CPUPPCState *env) { if (kvm_enabled()) { return env->spr[SPR_DECR]; } else { return _cpu_ppc_load_decr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); } } static target_ulong _cpu_ppc_load_hdecr(CPUPPCState *env, int64_t now) { PowerPCCPU *cpu = env_archcpu(env); PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); ppc_tb_t *tb_env = env->tb_env; uint64_t hdecr; hdecr = __cpu_ppc_load_decr(env, now, tb_env->hdecr_next); /* * If we have a large decrementer (POWER9 or later) then hdecr is sign * extended to 64 bits, otherwise it is 32 bits. */ if (pcc->lrg_decr_bits > 32) { return sextract64(hdecr, 0, pcc->lrg_decr_bits); } return (uint32_t) hdecr; } target_ulong cpu_ppc_load_hdecr(CPUPPCState *env) { return _cpu_ppc_load_hdecr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); } uint64_t cpu_ppc_load_purr (CPUPPCState *env) { ppc_tb_t *tb_env = env->tb_env; return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->purr_offset); } /* When decrementer expires, * all we need to do is generate or queue a CPU exception */ static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu) { /* Raise it */ trace_ppc_decr_excp("raise"); ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1); } static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu) { ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0); } static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu) { CPUPPCState *env = &cpu->env; /* Raise it */ trace_ppc_decr_excp("raise HV"); /* The architecture specifies that we don't deliver HDEC * interrupts in a PM state. Not only they don't cause a * wakeup but they also get effectively discarded. */ if (!env->resume_as_sreset) { ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1); } } static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu) { ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0); } static void __cpu_ppc_store_decr(PowerPCCPU *cpu, int64_t now, uint64_t *nextp, QEMUTimer *timer, void (*raise_excp)(void *), void (*lower_excp)(PowerPCCPU *), uint32_t flags, target_ulong decr, target_ulong value, int nr_bits) { CPUPPCState *env = &cpu->env; ppc_tb_t *tb_env = env->tb_env; uint64_t next; int64_t signed_value; int64_t signed_decr; /* Truncate value to decr_width and sign extend for simplicity */ value = extract64(value, 0, nr_bits); decr = extract64(decr, 0, nr_bits); signed_value = sextract64(value, 0, nr_bits); signed_decr = sextract64(decr, 0, nr_bits); trace_ppc_decr_store(nr_bits, decr, value); /* * Calculate the next decrementer event and set a timer. * decr_next is in timebase units to keep rounding simple. Note it is * not adjusted by tb_offset because if TB changes via tb_offset changing, * decrementer does not change, so not directly comparable with TB. */ next = ns_to_tb(tb_env->decr_freq, now) + value; *nextp = next; /* nextp is in timebase units */ /* * Going from 1 -> 0 or 0 -> -1 is the event to generate a DEC interrupt. * * On MSB level based DEC implementations the MSB always means the interrupt * is pending, so raise it on those. * * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers * an edge interrupt, so raise it here too. */ if (((flags & PPC_DECR_UNDERFLOW_LEVEL) && signed_value < 0) || ((flags & PPC_DECR_UNDERFLOW_TRIGGERED) && signed_value < 0 && signed_decr >= 0)) { (*raise_excp)(cpu); return; } /* On MSB level based systems a 0 for the MSB stops interrupt delivery */ if (signed_value >= 0 && (flags & PPC_DECR_UNDERFLOW_LEVEL)) { (*lower_excp)(cpu); } /* Adjust timer */ timer_mod(timer, tb_to_ns_round_up(tb_env->decr_freq, next)); } static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, int64_t now, target_ulong decr, target_ulong value, int nr_bits) { ppc_tb_t *tb_env = cpu->env.tb_env; __cpu_ppc_store_decr(cpu, now, &tb_env->decr_next, tb_env->decr_timer, tb_env->decr_timer->cb, &cpu_ppc_decr_lower, tb_env->flags, decr, value, nr_bits); } void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value) { PowerPCCPU *cpu = env_archcpu(env); PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); int64_t now; target_ulong decr; int nr_bits = 32; if (kvm_enabled()) { /* KVM handles decrementer exceptions, we don't need our own timer */ return; } if (env->spr[SPR_LPCR] & LPCR_LD) { nr_bits = pcc->lrg_decr_bits; } now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); decr = _cpu_ppc_load_decr(env, now); _cpu_ppc_store_decr(cpu, now, decr, value, nr_bits); } static void cpu_ppc_decr_cb(void *opaque) { PowerPCCPU *cpu = opaque; cpu_ppc_decr_excp(cpu); } static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, int64_t now, target_ulong hdecr, target_ulong value, int nr_bits) { ppc_tb_t *tb_env = cpu->env.tb_env; if (tb_env->hdecr_timer != NULL) { /* HDECR (Book3S 64bit) is edge-based, not level like DECR */ __cpu_ppc_store_decr(cpu, now, &tb_env->hdecr_next, tb_env->hdecr_timer, tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower, PPC_DECR_UNDERFLOW_TRIGGERED, hdecr, value, nr_bits); } } void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value) { PowerPCCPU *cpu = env_archcpu(env); PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); int64_t now; target_ulong hdecr; now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); hdecr = _cpu_ppc_load_hdecr(env, now); _cpu_ppc_store_hdecr(cpu, now, hdecr, value, pcc->lrg_decr_bits); } static void cpu_ppc_hdecr_cb(void *opaque) { PowerPCCPU *cpu = opaque; cpu_ppc_hdecr_excp(cpu); } static void _cpu_ppc_store_purr(CPUPPCState *env, int64_t now, uint64_t value) { ppc_tb_t *tb_env = env->tb_env; cpu_ppc_store_tb(tb_env, now, &tb_env->purr_offset, value); } void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value) { _cpu_ppc_store_purr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), value); } static void timebase_save(PPCTimebase *tb) { uint64_t ticks = cpu_get_host_ticks(); PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); if (!first_ppc_cpu->env.tb_env) { error_report("No timebase object"); return; } if (replay_mode == REPLAY_MODE_NONE) { /* not used anymore, we keep it for compatibility */ tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST); } else { /* simpler for record-replay to avoid this event, compat not needed */ tb->time_of_the_day_ns = 0; } /* * tb_offset is only expected to be changed by QEMU so * there is no need to update it from KVM here */ tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset; tb->runstate_paused = runstate_check(RUN_STATE_PAUSED) || runstate_check(RUN_STATE_SAVE_VM); } static void timebase_load(PPCTimebase *tb) { CPUState *cpu; PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); int64_t tb_off_adj, tb_off; unsigned long freq; if (!first_ppc_cpu->env.tb_env) { error_report("No timebase object"); return; } freq = first_ppc_cpu->env.tb_env->tb_freq; tb_off_adj = tb->guest_timebase - cpu_get_host_ticks(); tb_off = first_ppc_cpu->env.tb_env->tb_offset; trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off, (tb_off_adj - tb_off) / freq); /* Set new offset to all CPUs */ CPU_FOREACH(cpu) { PowerPCCPU *pcpu = POWERPC_CPU(cpu); pcpu->env.tb_env->tb_offset = tb_off_adj; kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset); } } void cpu_ppc_clock_vm_state_change(void *opaque, bool running, RunState state) { PPCTimebase *tb = opaque; if (running) { timebase_load(tb); } else { timebase_save(tb); } } /* * When migrating a running guest, read the clock just * before migration, so that the guest clock counts * during the events between: * * * vm_stop() * * * * pre_save() * * This reduces clock difference on migration from 5s * to 0.1s (when max_downtime == 5s), because sending the * final pages of memory (which happens between vm_stop() * and pre_save()) takes max_downtime. */ static int timebase_pre_save(void *opaque) { PPCTimebase *tb = opaque; /* guest_timebase won't be overridden in case of paused guest or savevm */ if (!tb->runstate_paused) { timebase_save(tb); } return 0; } const VMStateDescription vmstate_ppc_timebase = { .name = "timebase", .version_id = 1, .minimum_version_id = 1, .pre_save = timebase_pre_save, .fields = (const VMStateField []) { VMSTATE_UINT64(guest_timebase, PPCTimebase), VMSTATE_INT64(time_of_the_day_ns, PPCTimebase), VMSTATE_END_OF_LIST() }, }; /* Set up (once) timebase frequency (in Hz) */ void cpu_ppc_tb_init(CPUPPCState *env, uint32_t freq) { PowerPCCPU *cpu = env_archcpu(env); ppc_tb_t *tb_env; tb_env = g_new0(ppc_tb_t, 1); env->tb_env = tb_env; tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED; if (is_book3s_arch2x(env)) { /* All Book3S 64bit CPUs implement level based DEC logic */ tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL; } /* Create new timer */ tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu); if (env->has_hv_mode && !cpu->vhyp) { tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb, cpu); } else { tb_env->hdecr_timer = NULL; } tb_env->tb_freq = freq; tb_env->decr_freq = freq; } void cpu_ppc_tb_reset(CPUPPCState *env) { PowerPCCPU *cpu = env_archcpu(env); ppc_tb_t *tb_env = env->tb_env; timer_del(tb_env->decr_timer); ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0); tb_env->decr_next = 0; if (tb_env->hdecr_timer != NULL) { timer_del(tb_env->hdecr_timer); ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0); tb_env->hdecr_next = 0; } /* * There is a bug in Linux 2.4 kernels: * if a decrementer exception is pending when it enables msr_ee at startup, * it's not ready to handle it... */ cpu_ppc_store_decr(env, -1); cpu_ppc_store_hdecr(env, -1); cpu_ppc_store_purr(env, 0x0000000000000000ULL); } void cpu_ppc_tb_free(CPUPPCState *env) { timer_free(env->tb_env->decr_timer); timer_free(env->tb_env->hdecr_timer); g_free(env->tb_env); } /* cpu_ppc_hdecr_init may be used if the timer is not used by HDEC emulation */ void cpu_ppc_hdecr_init(CPUPPCState *env) { PowerPCCPU *cpu = env_archcpu(env); assert(env->tb_env->hdecr_timer == NULL); env->tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb, cpu); } void cpu_ppc_hdecr_exit(CPUPPCState *env) { PowerPCCPU *cpu = env_archcpu(env); timer_free(env->tb_env->hdecr_timer); env->tb_env->hdecr_timer = NULL; cpu_ppc_hdecr_lower(cpu); } /*****************************************************************************/ /* PowerPC 40x timers */ /* PIT, FIT & WDT */ typedef struct ppc40x_timer_t ppc40x_timer_t; struct ppc40x_timer_t { uint64_t pit_reload; /* PIT auto-reload value */ uint64_t fit_next; /* Tick for next FIT interrupt */ QEMUTimer *fit_timer; uint64_t wdt_next; /* Tick for next WDT interrupt */ QEMUTimer *wdt_timer; /* 405 have the PIT, 440 have a DECR. */ unsigned int decr_excp; }; /* Fixed interval timer */ static void cpu_4xx_fit_cb (void *opaque) { PowerPCCPU *cpu = opaque; CPUPPCState *env = &cpu->env; ppc_tb_t *tb_env; ppc40x_timer_t *ppc40x_timer; uint64_t now, next; tb_env = env->tb_env; ppc40x_timer = tb_env->opaque; now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) { case 0: next = 1 << 9; break; case 1: next = 1 << 13; break; case 2: next = 1 << 17; break; case 3: next = 1 << 21; break; default: /* Cannot occur, but makes gcc happy */ return; } next = now + tb_to_ns_round_up(tb_env->tb_freq, next); timer_mod(ppc40x_timer->fit_timer, next); env->spr[SPR_40x_TSR] |= 1 << 26; if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) { ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1); } trace_ppc4xx_fit((int)((env->spr[SPR_40x_TCR] >> 23) & 0x1), env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); } /* Programmable interval timer */ static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp) { ppc40x_timer_t *ppc40x_timer; uint64_t now, next; ppc40x_timer = tb_env->opaque; if (ppc40x_timer->pit_reload <= 1 || !((env->spr[SPR_40x_TCR] >> 26) & 0x1) || (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) { /* Stop PIT */ trace_ppc4xx_pit_stop(); timer_del(tb_env->decr_timer); } else { trace_ppc4xx_pit_start(ppc40x_timer->pit_reload); now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); if (is_excp) { tb_env->decr_next += ppc40x_timer->pit_reload; } else { tb_env->decr_next = ns_to_tb(tb_env->decr_freq, now) + ppc40x_timer->pit_reload; } next = tb_to_ns_round_up(tb_env->decr_freq, tb_env->decr_next); timer_mod(tb_env->decr_timer, next); } } static void cpu_4xx_pit_cb (void *opaque) { PowerPCCPU *cpu = opaque; CPUPPCState *env = &cpu->env; ppc_tb_t *tb_env; ppc40x_timer_t *ppc40x_timer; tb_env = env->tb_env; ppc40x_timer = tb_env->opaque; env->spr[SPR_40x_TSR] |= 1 << 27; if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) { ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1); } start_stop_pit(env, tb_env, 1); trace_ppc4xx_pit((int)((env->spr[SPR_40x_TCR] >> 22) & 0x1), (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1), env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR], ppc40x_timer->pit_reload); } /* Watchdog timer */ static void cpu_4xx_wdt_cb (void *opaque) { PowerPCCPU *cpu = opaque; CPUPPCState *env = &cpu->env; ppc_tb_t *tb_env; ppc40x_timer_t *ppc40x_timer; uint64_t now, next; tb_env = env->tb_env; ppc40x_timer = tb_env->opaque; now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) { case 0: next = 1 << 17; break; case 1: next = 1 << 21; break; case 2: next = 1 << 25; break; case 3: next = 1 << 29; break; default: /* Cannot occur, but makes gcc happy */ return; } next = now + tb_to_ns_round_up(tb_env->decr_freq, next); trace_ppc4xx_wdt(env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) { case 0x0: case 0x1: timer_mod(ppc40x_timer->wdt_timer, next); ppc40x_timer->wdt_next = next; env->spr[SPR_40x_TSR] |= 1U << 31; break; case 0x2: timer_mod(ppc40x_timer->wdt_timer, next); ppc40x_timer->wdt_next = next; env->spr[SPR_40x_TSR] |= 1 << 30; if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) { ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1); } break; case 0x3: env->spr[SPR_40x_TSR] &= ~0x30000000; env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000; switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) { case 0x0: /* No reset */ break; case 0x1: /* Core reset */ ppc40x_core_reset(cpu); break; case 0x2: /* Chip reset */ ppc40x_chip_reset(cpu); break; case 0x3: /* System reset */ ppc40x_system_reset(cpu); break; } } } void store_40x_pit (CPUPPCState *env, target_ulong val) { ppc_tb_t *tb_env; ppc40x_timer_t *ppc40x_timer; tb_env = env->tb_env; ppc40x_timer = tb_env->opaque; trace_ppc40x_store_pit(val); ppc40x_timer->pit_reload = val; start_stop_pit(env, tb_env, 0); } target_ulong load_40x_pit (CPUPPCState *env) { return cpu_ppc_load_decr(env); } void store_40x_tsr(CPUPPCState *env, target_ulong val) { PowerPCCPU *cpu = env_archcpu(env); trace_ppc40x_store_tcr(val); env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000); if (val & 0x80000000) { ppc_set_irq(cpu, PPC_INTERRUPT_PIT, 0); } } void store_40x_tcr(CPUPPCState *env, target_ulong val) { PowerPCCPU *cpu = env_archcpu(env); ppc_tb_t *tb_env; trace_ppc40x_store_tsr(val); tb_env = env->tb_env; env->spr[SPR_40x_TCR] = val & 0xFFC00000; start_stop_pit(env, tb_env, 1); cpu_4xx_wdt_cb(cpu); } static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq) { CPUPPCState *env = opaque; ppc_tb_t *tb_env = env->tb_env; trace_ppc40x_set_tb_clk(freq); tb_env->tb_freq = freq; tb_env->decr_freq = freq; /* XXX: we should also update all timers */ } clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq, unsigned int decr_excp) { ppc_tb_t *tb_env; ppc40x_timer_t *ppc40x_timer; PowerPCCPU *cpu = env_archcpu(env); trace_ppc40x_timers_init(freq); tb_env = g_new0(ppc_tb_t, 1); ppc40x_timer = g_new0(ppc40x_timer_t, 1); env->tb_env = tb_env; tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED; tb_env->tb_freq = freq; tb_env->decr_freq = freq; tb_env->opaque = ppc40x_timer; /* We use decr timer for PIT */ tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, cpu); ppc40x_timer->fit_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, cpu); ppc40x_timer->wdt_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, cpu); ppc40x_timer->decr_excp = decr_excp; return &ppc_40x_set_tb_clk; } /*****************************************************************************/ /* Embedded PowerPC Device Control Registers */ typedef struct ppc_dcrn_t ppc_dcrn_t; struct ppc_dcrn_t { dcr_read_cb dcr_read; dcr_write_cb dcr_write; void *opaque; }; /* XXX: on 460, DCR addresses are 32 bits wide, * using DCRIPR to get the 22 upper bits of the DCR address */ #define DCRN_NB 1024 struct ppc_dcr_t { ppc_dcrn_t dcrn[DCRN_NB]; int (*read_error)(int dcrn); int (*write_error)(int dcrn); }; int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp) { ppc_dcrn_t *dcr; if (dcrn < 0 || dcrn >= DCRN_NB) goto error; dcr = &dcr_env->dcrn[dcrn]; if (dcr->dcr_read == NULL) goto error; *valp = (*dcr->dcr_read)(dcr->opaque, dcrn); trace_ppc_dcr_read(dcrn, *valp); return 0; error: if (dcr_env->read_error != NULL) return (*dcr_env->read_error)(dcrn); return -1; } int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val) { ppc_dcrn_t *dcr; if (dcrn < 0 || dcrn >= DCRN_NB) goto error; dcr = &dcr_env->dcrn[dcrn]; if (dcr->dcr_write == NULL) goto error; trace_ppc_dcr_write(dcrn, val); (*dcr->dcr_write)(dcr->opaque, dcrn, val); return 0; error: if (dcr_env->write_error != NULL) return (*dcr_env->write_error)(dcrn); return -1; } int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque, dcr_read_cb dcr_read, dcr_write_cb dcr_write) { ppc_dcr_t *dcr_env; ppc_dcrn_t *dcr; dcr_env = env->dcr_env; if (dcr_env == NULL) return -1; if (dcrn < 0 || dcrn >= DCRN_NB) return -1; dcr = &dcr_env->dcrn[dcrn]; if (dcr->opaque != NULL || dcr->dcr_read != NULL || dcr->dcr_write != NULL) return -1; dcr->opaque = opaque; dcr->dcr_read = dcr_read; dcr->dcr_write = dcr_write; return 0; } int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn), int (*write_error)(int dcrn)) { ppc_dcr_t *dcr_env; dcr_env = g_new0(ppc_dcr_t, 1); dcr_env->read_error = read_error; dcr_env->write_error = write_error; env->dcr_env = dcr_env; return 0; } /*****************************************************************************/ int ppc_cpu_pir(PowerPCCPU *cpu) { CPUPPCState *env = &cpu->env; return env->spr_cb[SPR_PIR].default_value; } int ppc_cpu_tir(PowerPCCPU *cpu) { CPUPPCState *env = &cpu->env; return env->spr_cb[SPR_TIR].default_value; } PowerPCCPU *ppc_get_vcpu_by_pir(int pir) { CPUState *cs; CPU_FOREACH(cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); if (ppc_cpu_pir(cpu) == pir) { return cpu; } } return NULL; } void ppc_irq_reset(PowerPCCPU *cpu) { CPUPPCState *env = &cpu->env; env->irq_input_state = 0; if (kvm_enabled()) { kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0); } }