/* * QEMU PowerPC PowerNV LPC controller * * Copyright (c) 2016, IBM Corporation. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "target/ppc/cpu.h" #include "qapi/error.h" #include "qemu/log.h" #include "qemu/module.h" #include "hw/irq.h" #include "hw/isa/isa.h" #include "hw/qdev-properties.h" #include "hw/ppc/pnv.h" #include "hw/ppc/pnv_chip.h" #include "hw/ppc/pnv_lpc.h" #include "hw/ppc/pnv_xscom.h" #include "hw/ppc/fdt.h" #include enum { ECCB_CTL = 0, ECCB_RESET = 1, ECCB_STAT = 2, ECCB_DATA = 3, }; /* OPB Master LS registers */ #define OPB_MASTER_LS_ROUTE0 0x8 #define OPB_MASTER_LS_ROUTE1 0xC #define OPB_MASTER_LS_IRQ_STAT 0x50 #define OPB_MASTER_IRQ_LPC 0x00000800 #define OPB_MASTER_LS_IRQ_MASK 0x54 #define OPB_MASTER_LS_IRQ_POL 0x58 #define OPB_MASTER_LS_IRQ_INPUT 0x5c /* LPC HC registers */ #define LPC_HC_FW_SEG_IDSEL 0x24 #define LPC_HC_FW_RD_ACC_SIZE 0x28 #define LPC_HC_FW_RD_1B 0x00000000 #define LPC_HC_FW_RD_2B 0x01000000 #define LPC_HC_FW_RD_4B 0x02000000 #define LPC_HC_FW_RD_16B 0x04000000 #define LPC_HC_FW_RD_128B 0x07000000 #define LPC_HC_IRQSER_CTRL 0x30 #define LPC_HC_IRQSER_EN 0x80000000 #define LPC_HC_IRQSER_QMODE 0x40000000 #define LPC_HC_IRQSER_START_MASK 0x03000000 #define LPC_HC_IRQSER_START_4CLK 0x00000000 #define LPC_HC_IRQSER_START_6CLK 0x01000000 #define LPC_HC_IRQSER_START_8CLK 0x02000000 #define LPC_HC_IRQSER_AUTO_CLEAR 0x00800000 #define LPC_HC_IRQMASK 0x34 /* same bit defs as LPC_HC_IRQSTAT */ #define LPC_HC_IRQSTAT 0x38 #define LPC_HC_IRQ_SERIRQ0 0x80000000 /* all bits down to ... */ #define LPC_HC_IRQ_SERIRQ16 0x00008000 /* IRQ16=IOCHK#, IRQ2=SMI# */ #define LPC_HC_IRQ_SERIRQ_ALL 0xffff8000 #define LPC_HC_IRQ_LRESET 0x00000400 #define LPC_HC_IRQ_SYNC_ABNORM_ERR 0x00000080 #define LPC_HC_IRQ_SYNC_NORESP_ERR 0x00000040 #define LPC_HC_IRQ_SYNC_NORM_ERR 0x00000020 #define LPC_HC_IRQ_SYNC_TIMEOUT_ERR 0x00000010 #define LPC_HC_IRQ_SYNC_TARG_TAR_ERR 0x00000008 #define LPC_HC_IRQ_SYNC_BM_TAR_ERR 0x00000004 #define LPC_HC_IRQ_SYNC_BM0_REQ 0x00000002 #define LPC_HC_IRQ_SYNC_BM1_REQ 0x00000001 #define LPC_HC_ERROR_ADDRESS 0x40 #define LPC_OPB_SIZE 0x100000000ull #define ISA_IO_SIZE 0x00010000 #define ISA_MEM_SIZE 0x10000000 #define ISA_FW_SIZE 0x10000000 #define LPC_IO_OPB_ADDR 0xd0010000 #define LPC_IO_OPB_SIZE 0x00010000 #define LPC_MEM_OPB_ADDR 0xe0000000 #define LPC_MEM_OPB_SIZE 0x10000000 #define LPC_FW_OPB_ADDR 0xf0000000 #define LPC_FW_OPB_SIZE 0x10000000 #define LPC_OPB_REGS_OPB_ADDR 0xc0010000 #define LPC_OPB_REGS_OPB_SIZE 0x00000060 #define LPC_OPB_REGS_OPBA_ADDR 0xc0011000 #define LPC_OPB_REGS_OPBA_SIZE 0x00000008 #define LPC_HC_REGS_OPB_ADDR 0xc0012000 #define LPC_HC_REGS_OPB_SIZE 0x00000100 static int pnv_lpc_dt_xscom(PnvXScomInterface *dev, void *fdt, int xscom_offset) { const char compat[] = "ibm,power8-lpc\0ibm,lpc"; char *name; int offset; uint32_t lpc_pcba = PNV_XSCOM_LPC_BASE; uint32_t reg[] = { cpu_to_be32(lpc_pcba), cpu_to_be32(PNV_XSCOM_LPC_SIZE) }; name = g_strdup_printf("isa@%x", lpc_pcba); offset = fdt_add_subnode(fdt, xscom_offset, name); _FDT(offset); g_free(name); _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg)))); _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2))); _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1))); _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat)))); return 0; } /* POWER9 only */ int pnv_dt_lpc(PnvChip *chip, void *fdt, int root_offset, uint64_t lpcm_addr, uint64_t lpcm_size) { const char compat[] = "ibm,power9-lpcm-opb\0simple-bus"; const char lpc_compat[] = "ibm,power9-lpc\0ibm,lpc"; char *name; int offset, lpcm_offset; uint32_t opb_ranges[8] = { 0, cpu_to_be32(lpcm_addr >> 32), cpu_to_be32((uint32_t)lpcm_addr), cpu_to_be32(lpcm_size / 2), cpu_to_be32(lpcm_size / 2), cpu_to_be32(lpcm_addr >> 32), cpu_to_be32(lpcm_size / 2), cpu_to_be32(lpcm_size / 2), }; uint32_t opb_reg[4] = { cpu_to_be32(lpcm_addr >> 32), cpu_to_be32((uint32_t)lpcm_addr), cpu_to_be32(lpcm_size >> 32), cpu_to_be32((uint32_t)lpcm_size), }; uint32_t lpc_ranges[12] = { 0, 0, cpu_to_be32(LPC_MEM_OPB_ADDR), cpu_to_be32(LPC_MEM_OPB_SIZE), cpu_to_be32(1), 0, cpu_to_be32(LPC_IO_OPB_ADDR), cpu_to_be32(LPC_IO_OPB_SIZE), cpu_to_be32(3), 0, cpu_to_be32(LPC_FW_OPB_ADDR), cpu_to_be32(LPC_FW_OPB_SIZE), }; uint32_t reg[2]; /* * OPB bus */ name = g_strdup_printf("lpcm-opb@%"PRIx64, lpcm_addr); lpcm_offset = fdt_add_subnode(fdt, root_offset, name); _FDT(lpcm_offset); g_free(name); _FDT((fdt_setprop(fdt, lpcm_offset, "reg", opb_reg, sizeof(opb_reg)))); _FDT((fdt_setprop_cell(fdt, lpcm_offset, "#address-cells", 1))); _FDT((fdt_setprop_cell(fdt, lpcm_offset, "#size-cells", 1))); _FDT((fdt_setprop(fdt, lpcm_offset, "compatible", compat, sizeof(compat)))); _FDT((fdt_setprop_cell(fdt, lpcm_offset, "ibm,chip-id", chip->chip_id))); _FDT((fdt_setprop(fdt, lpcm_offset, "ranges", opb_ranges, sizeof(opb_ranges)))); /* * OPB Master registers */ name = g_strdup_printf("opb-master@%x", LPC_OPB_REGS_OPB_ADDR); offset = fdt_add_subnode(fdt, lpcm_offset, name); _FDT(offset); g_free(name); reg[0] = cpu_to_be32(LPC_OPB_REGS_OPB_ADDR); reg[1] = cpu_to_be32(LPC_OPB_REGS_OPB_SIZE); _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg)))); _FDT((fdt_setprop_string(fdt, offset, "compatible", "ibm,power9-lpcm-opb-master"))); /* * OPB arbitrer registers */ name = g_strdup_printf("opb-arbitrer@%x", LPC_OPB_REGS_OPBA_ADDR); offset = fdt_add_subnode(fdt, lpcm_offset, name); _FDT(offset); g_free(name); reg[0] = cpu_to_be32(LPC_OPB_REGS_OPBA_ADDR); reg[1] = cpu_to_be32(LPC_OPB_REGS_OPBA_SIZE); _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg)))); _FDT((fdt_setprop_string(fdt, offset, "compatible", "ibm,power9-lpcm-opb-arbiter"))); /* * LPC Host Controller registers */ name = g_strdup_printf("lpc-controller@%x", LPC_HC_REGS_OPB_ADDR); offset = fdt_add_subnode(fdt, lpcm_offset, name); _FDT(offset); g_free(name); reg[0] = cpu_to_be32(LPC_HC_REGS_OPB_ADDR); reg[1] = cpu_to_be32(LPC_HC_REGS_OPB_SIZE); _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg)))); _FDT((fdt_setprop_string(fdt, offset, "compatible", "ibm,power9-lpc-controller"))); name = g_strdup_printf("lpc@0"); offset = fdt_add_subnode(fdt, lpcm_offset, name); _FDT(offset); g_free(name); _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2))); _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1))); _FDT((fdt_setprop(fdt, offset, "compatible", lpc_compat, sizeof(lpc_compat)))); _FDT((fdt_setprop(fdt, offset, "ranges", lpc_ranges, sizeof(lpc_ranges)))); return 0; } /* * These read/write handlers of the OPB address space should be common * with the P9 LPC Controller which uses direct MMIOs. * * TODO: rework to use address_space_stq() and address_space_ldq() * instead. */ bool pnv_lpc_opb_read(PnvLpcController *lpc, uint32_t addr, uint8_t *data, int sz) { /* XXX Handle access size limits and FW read caching here */ return !address_space_read(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED, data, sz); } bool pnv_lpc_opb_write(PnvLpcController *lpc, uint32_t addr, uint8_t *data, int sz) { /* XXX Handle access size limits here */ return !address_space_write(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED, data, sz); } #define ECCB_CTL_READ PPC_BIT(15) #define ECCB_CTL_SZ_LSH (63 - 7) #define ECCB_CTL_SZ_MASK PPC_BITMASK(4, 7) #define ECCB_CTL_ADDR_MASK PPC_BITMASK(32, 63) #define ECCB_STAT_OP_DONE PPC_BIT(52) #define ECCB_STAT_OP_ERR PPC_BIT(52) #define ECCB_STAT_RD_DATA_LSH (63 - 37) #define ECCB_STAT_RD_DATA_MASK (0xffffffff << ECCB_STAT_RD_DATA_LSH) static void pnv_lpc_do_eccb(PnvLpcController *lpc, uint64_t cmd) { /* XXX Check for magic bits at the top, addr size etc... */ unsigned int sz = (cmd & ECCB_CTL_SZ_MASK) >> ECCB_CTL_SZ_LSH; uint32_t opb_addr = cmd & ECCB_CTL_ADDR_MASK; uint8_t data[8]; bool success; if (sz > sizeof(data)) { qemu_log_mask(LOG_GUEST_ERROR, "ECCB: invalid operation at @0x%08x size %d\n", opb_addr, sz); return; } if (cmd & ECCB_CTL_READ) { success = pnv_lpc_opb_read(lpc, opb_addr, data, sz); if (success) { lpc->eccb_stat_reg = ECCB_STAT_OP_DONE | (((uint64_t)data[0]) << 24 | ((uint64_t)data[1]) << 16 | ((uint64_t)data[2]) << 8 | ((uint64_t)data[3])) << ECCB_STAT_RD_DATA_LSH; } else { lpc->eccb_stat_reg = ECCB_STAT_OP_DONE | (0xffffffffull << ECCB_STAT_RD_DATA_LSH); } } else { data[0] = lpc->eccb_data_reg >> 24; data[1] = lpc->eccb_data_reg >> 16; data[2] = lpc->eccb_data_reg >> 8; data[3] = lpc->eccb_data_reg; success = pnv_lpc_opb_write(lpc, opb_addr, data, sz); lpc->eccb_stat_reg = ECCB_STAT_OP_DONE; } /* XXX Which error bit (if any) to signal OPB error ? */ } static uint64_t pnv_lpc_xscom_read(void *opaque, hwaddr addr, unsigned size) { PnvLpcController *lpc = PNV_LPC(opaque); uint32_t offset = addr >> 3; uint64_t val = 0; switch (offset & 3) { case ECCB_CTL: case ECCB_RESET: val = 0; break; case ECCB_STAT: val = lpc->eccb_stat_reg; lpc->eccb_stat_reg = 0; break; case ECCB_DATA: val = ((uint64_t)lpc->eccb_data_reg) << 32; break; } return val; } static void pnv_lpc_xscom_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { PnvLpcController *lpc = PNV_LPC(opaque); uint32_t offset = addr >> 3; switch (offset & 3) { case ECCB_CTL: pnv_lpc_do_eccb(lpc, val); break; case ECCB_RESET: /* XXXX */ break; case ECCB_STAT: break; case ECCB_DATA: lpc->eccb_data_reg = val >> 32; break; } } static const MemoryRegionOps pnv_lpc_xscom_ops = { .read = pnv_lpc_xscom_read, .write = pnv_lpc_xscom_write, .valid.min_access_size = 8, .valid.max_access_size = 8, .impl.min_access_size = 8, .impl.max_access_size = 8, .endianness = DEVICE_BIG_ENDIAN, }; static uint64_t pnv_lpc_mmio_read(void *opaque, hwaddr addr, unsigned size) { PnvLpcController *lpc = PNV_LPC(opaque); uint64_t val = 0; uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK; MemTxResult result; switch (size) { case 4: val = address_space_ldl(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED, &result); break; case 1: val = address_space_ldub(&lpc->opb_as, opb_addr, MEMTXATTRS_UNSPECIFIED, &result); break; default: qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%" HWADDR_PRIx " invalid size %d\n", addr, size); return 0; } if (result != MEMTX_OK) { qemu_log_mask(LOG_GUEST_ERROR, "OPB read failed at @0x%" HWADDR_PRIx "\n", addr); } return val; } static void pnv_lpc_mmio_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { PnvLpcController *lpc = PNV_LPC(opaque); uint32_t opb_addr = addr & ECCB_CTL_ADDR_MASK; MemTxResult result; switch (size) { case 4: address_space_stl(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED, &result); break; case 1: address_space_stb(&lpc->opb_as, opb_addr, val, MEMTXATTRS_UNSPECIFIED, &result); break; default: qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%" HWADDR_PRIx " invalid size %d\n", addr, size); return; } if (result != MEMTX_OK) { qemu_log_mask(LOG_GUEST_ERROR, "OPB write failed at @0x%" HWADDR_PRIx "\n", addr); } } static const MemoryRegionOps pnv_lpc_mmio_ops = { .read = pnv_lpc_mmio_read, .write = pnv_lpc_mmio_write, .impl = { .min_access_size = 1, .max_access_size = 4, }, .endianness = DEVICE_BIG_ENDIAN, }; /* Program the POWER9 LPC irq to PSI serirq routing table */ static void pnv_lpc_eval_serirq_routes(PnvLpcController *lpc) { int irq; if (!lpc->psi_has_serirq) { if ((lpc->opb_irq_route0 & PPC_BITMASK32(8, 13)) || (lpc->opb_irq_route1 & PPC_BITMASK32(4, 31))) { qemu_log_mask(LOG_GUEST_ERROR, "OPB: setting serirq routing on POWER8 system, ignoring.\n"); } return; } /* * Each of the ISA irqs is routed to one of the 4 SERIRQ irqs with 2 * bits, split across 2 OPB registers. */ for (irq = 0; irq <= 13; irq++) { int serirq = extract32(lpc->opb_irq_route1, PPC_BIT32_NR(5 + irq * 2), 2); lpc->irq_to_serirq_route[irq] = serirq; } for (irq = 14; irq < ISA_NUM_IRQS; irq++) { int serirq = extract32(lpc->opb_irq_route0, PPC_BIT32_NR(9 + (irq - 14) * 2), 2); lpc->irq_to_serirq_route[irq] = serirq; } } static void pnv_lpc_eval_irqs(PnvLpcController *lpc) { uint32_t active_irqs = 0; if (lpc->lpc_hc_irqstat & PPC_BITMASK32(16, 31)) { qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented irqs in IRQSTAT: " "0x%08"PRIx32"\n", lpc->lpc_hc_irqstat); } if (lpc->lpc_hc_irqser_ctrl & LPC_HC_IRQSER_EN) { active_irqs = lpc->lpc_hc_irqstat & lpc->lpc_hc_irqmask; } /* Reflect the interrupt */ if (!lpc->psi_has_serirq) { /* * POWER8 ORs all irqs together (also with LPCHC internal interrupt * sources) and outputs a single line that raises the PSI LPCHC irq * which then latches an OPB IRQ status register that sends the irq * to PSI. * * We don't honor the polarity register, it's pointless and unused * anyway */ if (active_irqs) { lpc->opb_irq_input |= OPB_MASTER_IRQ_LPC; } else { lpc->opb_irq_input &= ~OPB_MASTER_IRQ_LPC; } /* Update OPB internal latch */ lpc->opb_irq_stat |= lpc->opb_irq_input & lpc->opb_irq_mask; qemu_set_irq(lpc->psi_irq_lpchc, lpc->opb_irq_stat != 0); } else { /* * POWER9 and POWER10 have routing fields in OPB master registers that * send LPC irqs to 4 output lines that raise the PSI SERIRQ irqs. * These don't appear to get latched into an OPB register like the * LPCHC irqs. * * POWER9 LPC controller internal irqs still go via the OPB * and LPCHC PSI irqs like P8, but we have no such internal sources * modelled yet. */ bool serirq_out[4] = { false, false, false, false }; int irq; for (irq = 0; irq < ISA_NUM_IRQS; irq++) { if (active_irqs & (LPC_HC_IRQ_SERIRQ0 >> irq)) { serirq_out[lpc->irq_to_serirq_route[irq]] = true; } } qemu_set_irq(lpc->psi_irq_serirq[0], serirq_out[0]); qemu_set_irq(lpc->psi_irq_serirq[1], serirq_out[1]); qemu_set_irq(lpc->psi_irq_serirq[2], serirq_out[2]); qemu_set_irq(lpc->psi_irq_serirq[3], serirq_out[3]); } } static uint64_t lpc_hc_read(void *opaque, hwaddr addr, unsigned size) { PnvLpcController *lpc = opaque; uint64_t val = 0xfffffffffffffffful; switch (addr) { case LPC_HC_FW_SEG_IDSEL: val = lpc->lpc_hc_fw_seg_idsel; break; case LPC_HC_FW_RD_ACC_SIZE: val = lpc->lpc_hc_fw_rd_acc_size; break; case LPC_HC_IRQSER_CTRL: val = lpc->lpc_hc_irqser_ctrl; break; case LPC_HC_IRQMASK: val = lpc->lpc_hc_irqmask; break; case LPC_HC_IRQSTAT: val = lpc->lpc_hc_irqstat; break; case LPC_HC_ERROR_ADDRESS: val = lpc->lpc_hc_error_addr; break; default: qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%" HWADDR_PRIx "\n", addr); } return val; } static void lpc_hc_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { PnvLpcController *lpc = opaque; /* XXX Filter out reserved bits */ switch (addr) { case LPC_HC_FW_SEG_IDSEL: /* XXX Actually figure out how that works as this impact * memory regions/aliases */ lpc->lpc_hc_fw_seg_idsel = val; break; case LPC_HC_FW_RD_ACC_SIZE: lpc->lpc_hc_fw_rd_acc_size = val; break; case LPC_HC_IRQSER_CTRL: lpc->lpc_hc_irqser_ctrl = val; pnv_lpc_eval_irqs(lpc); break; case LPC_HC_IRQMASK: lpc->lpc_hc_irqmask = val; pnv_lpc_eval_irqs(lpc); break; case LPC_HC_IRQSTAT: /* * This register is write-to-clear for the IRQSER (LPC device IRQ) * status. However if the device has not de-asserted its interrupt * that will just raise this IRQ status bit again. Model this by * keeping track of the inputs and only clearing if the inputs are * deasserted. */ lpc->lpc_hc_irqstat &= ~(val & ~lpc->lpc_hc_irq_inputs); pnv_lpc_eval_irqs(lpc); break; case LPC_HC_ERROR_ADDRESS: break; default: qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: 0x%" HWADDR_PRIx "\n", addr); } } static const MemoryRegionOps lpc_hc_ops = { .read = lpc_hc_read, .write = lpc_hc_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, .impl = { .min_access_size = 4, .max_access_size = 4, }, }; static uint64_t opb_master_read(void *opaque, hwaddr addr, unsigned size) { PnvLpcController *lpc = opaque; uint64_t val = 0xfffffffffffffffful; switch (addr) { case OPB_MASTER_LS_ROUTE0: val = lpc->opb_irq_route0; break; case OPB_MASTER_LS_ROUTE1: val = lpc->opb_irq_route1; break; case OPB_MASTER_LS_IRQ_STAT: val = lpc->opb_irq_stat; break; case OPB_MASTER_LS_IRQ_MASK: val = lpc->opb_irq_mask; break; case OPB_MASTER_LS_IRQ_POL: val = lpc->opb_irq_pol; break; case OPB_MASTER_LS_IRQ_INPUT: val = lpc->opb_irq_input; break; default: qemu_log_mask(LOG_UNIMP, "OPBM: read on unimplemented register: 0x%" HWADDR_PRIx "\n", addr); } return val; } static void opb_master_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { PnvLpcController *lpc = opaque; switch (addr) { case OPB_MASTER_LS_ROUTE0: lpc->opb_irq_route0 = val; pnv_lpc_eval_serirq_routes(lpc); pnv_lpc_eval_irqs(lpc); break; case OPB_MASTER_LS_ROUTE1: lpc->opb_irq_route1 = val; pnv_lpc_eval_serirq_routes(lpc); pnv_lpc_eval_irqs(lpc); break; case OPB_MASTER_LS_IRQ_STAT: lpc->opb_irq_stat &= ~val; pnv_lpc_eval_irqs(lpc); break; case OPB_MASTER_LS_IRQ_MASK: lpc->opb_irq_mask = val; pnv_lpc_eval_irqs(lpc); break; case OPB_MASTER_LS_IRQ_POL: lpc->opb_irq_pol = val; pnv_lpc_eval_irqs(lpc); break; case OPB_MASTER_LS_IRQ_INPUT: /* Read only */ break; default: qemu_log_mask(LOG_UNIMP, "OPBM: write on unimplemented register: 0x%" HWADDR_PRIx " val=0x%08"PRIx64"\n", addr, val); } } static const MemoryRegionOps opb_master_ops = { .read = opb_master_read, .write = opb_master_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, .impl = { .min_access_size = 4, .max_access_size = 4, }, }; static void pnv_lpc_power8_realize(DeviceState *dev, Error **errp) { PnvLpcController *lpc = PNV_LPC(dev); PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev); Error *local_err = NULL; plc->parent_realize(dev, &local_err); if (local_err) { error_propagate(errp, local_err); return; } /* P8 uses a XSCOM region for LPC registers */ pnv_xscom_region_init(&lpc->xscom_regs, OBJECT(lpc), &pnv_lpc_xscom_ops, lpc, "xscom-lpc", PNV_XSCOM_LPC_SIZE); } static void pnv_lpc_power8_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass); PnvLpcClass *plc = PNV_LPC_CLASS(klass); dc->desc = "PowerNV LPC Controller POWER8"; xdc->dt_xscom = pnv_lpc_dt_xscom; device_class_set_parent_realize(dc, pnv_lpc_power8_realize, &plc->parent_realize); } static const TypeInfo pnv_lpc_power8_info = { .name = TYPE_PNV8_LPC, .parent = TYPE_PNV_LPC, .class_init = pnv_lpc_power8_class_init, .interfaces = (InterfaceInfo[]) { { TYPE_PNV_XSCOM_INTERFACE }, { } } }; static void pnv_lpc_power9_realize(DeviceState *dev, Error **errp) { PnvLpcController *lpc = PNV_LPC(dev); PnvLpcClass *plc = PNV_LPC_GET_CLASS(dev); Error *local_err = NULL; object_property_set_bool(OBJECT(lpc), "psi-serirq", true, &error_abort); plc->parent_realize(dev, &local_err); if (local_err) { error_propagate(errp, local_err); return; } /* P9 uses a MMIO region */ memory_region_init_io(&lpc->xscom_regs, OBJECT(lpc), &pnv_lpc_mmio_ops, lpc, "lpcm", PNV9_LPCM_SIZE); /* P9 LPC routes ISA irqs to 4 PSI SERIRQ lines */ qdev_init_gpio_out_named(dev, lpc->psi_irq_serirq, "SERIRQ", 4); } static void pnv_lpc_power9_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PnvLpcClass *plc = PNV_LPC_CLASS(klass); dc->desc = "PowerNV LPC Controller POWER9"; device_class_set_parent_realize(dc, pnv_lpc_power9_realize, &plc->parent_realize); } static const TypeInfo pnv_lpc_power9_info = { .name = TYPE_PNV9_LPC, .parent = TYPE_PNV_LPC, .class_init = pnv_lpc_power9_class_init, }; static void pnv_lpc_power10_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->desc = "PowerNV LPC Controller POWER10"; } static const TypeInfo pnv_lpc_power10_info = { .name = TYPE_PNV10_LPC, .parent = TYPE_PNV9_LPC, .class_init = pnv_lpc_power10_class_init, }; static void pnv_lpc_realize(DeviceState *dev, Error **errp) { PnvLpcController *lpc = PNV_LPC(dev); /* Reg inits */ lpc->lpc_hc_fw_rd_acc_size = LPC_HC_FW_RD_4B; /* Create address space and backing MR for the OPB bus */ memory_region_init(&lpc->opb_mr, OBJECT(dev), "lpc-opb", 0x100000000ull); address_space_init(&lpc->opb_as, &lpc->opb_mr, "lpc-opb"); /* Create ISA IO and Mem space regions which are the root of * the ISA bus (ie, ISA address spaces). We don't create a * separate one for FW which we alias to memory. */ memory_region_init(&lpc->isa_io, OBJECT(dev), "isa-io", ISA_IO_SIZE); memory_region_init(&lpc->isa_mem, OBJECT(dev), "isa-mem", ISA_MEM_SIZE); memory_region_init(&lpc->isa_fw, OBJECT(dev), "isa-fw", ISA_FW_SIZE); /* Create windows from the OPB space to the ISA space */ memory_region_init_alias(&lpc->opb_isa_io, OBJECT(dev), "lpc-isa-io", &lpc->isa_io, 0, LPC_IO_OPB_SIZE); memory_region_add_subregion(&lpc->opb_mr, LPC_IO_OPB_ADDR, &lpc->opb_isa_io); memory_region_init_alias(&lpc->opb_isa_mem, OBJECT(dev), "lpc-isa-mem", &lpc->isa_mem, 0, LPC_MEM_OPB_SIZE); memory_region_add_subregion(&lpc->opb_mr, LPC_MEM_OPB_ADDR, &lpc->opb_isa_mem); memory_region_init_alias(&lpc->opb_isa_fw, OBJECT(dev), "lpc-isa-fw", &lpc->isa_fw, 0, LPC_FW_OPB_SIZE); memory_region_add_subregion(&lpc->opb_mr, LPC_FW_OPB_ADDR, &lpc->opb_isa_fw); /* Create MMIO regions for LPC HC and OPB registers */ memory_region_init_io(&lpc->opb_master_regs, OBJECT(dev), &opb_master_ops, lpc, "lpc-opb-master", LPC_OPB_REGS_OPB_SIZE); lpc->opb_master_regs.disable_reentrancy_guard = true; memory_region_add_subregion(&lpc->opb_mr, LPC_OPB_REGS_OPB_ADDR, &lpc->opb_master_regs); memory_region_init_io(&lpc->lpc_hc_regs, OBJECT(dev), &lpc_hc_ops, lpc, "lpc-hc", LPC_HC_REGS_OPB_SIZE); /* xscom writes to lpc-hc. As such mark lpc-hc re-entrancy safe */ lpc->lpc_hc_regs.disable_reentrancy_guard = true; memory_region_add_subregion(&lpc->opb_mr, LPC_HC_REGS_OPB_ADDR, &lpc->lpc_hc_regs); qdev_init_gpio_out_named(dev, &lpc->psi_irq_lpchc, "LPCHC", 1); } static Property pnv_lpc_properties[] = { DEFINE_PROP_BOOL("psi-serirq", PnvLpcController, psi_has_serirq, false), DEFINE_PROP_END_OF_LIST(), }; static void pnv_lpc_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); device_class_set_props(dc, pnv_lpc_properties); dc->realize = pnv_lpc_realize; dc->desc = "PowerNV LPC Controller"; dc->user_creatable = false; } static const TypeInfo pnv_lpc_info = { .name = TYPE_PNV_LPC, .parent = TYPE_DEVICE, .instance_size = sizeof(PnvLpcController), .class_init = pnv_lpc_class_init, .class_size = sizeof(PnvLpcClass), .abstract = true, }; static void pnv_lpc_register_types(void) { type_register_static(&pnv_lpc_info); type_register_static(&pnv_lpc_power8_info); type_register_static(&pnv_lpc_power9_info); type_register_static(&pnv_lpc_power10_info); } type_init(pnv_lpc_register_types) /* If we don't use the built-in LPC interrupt deserializer, we need * to provide a set of qirqs for the ISA bus or things will go bad. * * Most machines using pre-Naples chips (without said deserializer) * have a CPLD that will collect the SerIRQ and shoot them as a * single level interrupt to the P8 chip. So let's setup a hook * for doing just that. */ static void pnv_lpc_isa_irq_handler_cpld(void *opaque, int n, int level) { PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); uint32_t old_state = pnv->cpld_irqstate; PnvLpcController *lpc = PNV_LPC(opaque); if (level) { pnv->cpld_irqstate |= 1u << n; } else { pnv->cpld_irqstate &= ~(1u << n); } if (pnv->cpld_irqstate != old_state) { qemu_set_irq(lpc->psi_irq_lpchc, pnv->cpld_irqstate != 0); } } static void pnv_lpc_isa_irq_handler(void *opaque, int n, int level) { PnvLpcController *lpc = PNV_LPC(opaque); uint32_t irq_bit = LPC_HC_IRQ_SERIRQ0 >> n; if (level) { lpc->lpc_hc_irq_inputs |= irq_bit; /* * The LPC HC in Naples and later latches LPC IRQ into a bit field in * the IRQSTAT register, and that drives the PSI IRQ to the IC. * Software clears this bit manually (see LPC_HC_IRQSTAT handler). */ lpc->lpc_hc_irqstat |= irq_bit; pnv_lpc_eval_irqs(lpc); } else { lpc->lpc_hc_irq_inputs &= ~irq_bit; /* POWER9 adds an auto-clear mode that clears IRQSTAT bits on EOI */ if (lpc->psi_has_serirq && (lpc->lpc_hc_irqser_ctrl & LPC_HC_IRQSER_AUTO_CLEAR)) { lpc->lpc_hc_irqstat &= ~irq_bit; pnv_lpc_eval_irqs(lpc); } } } ISABus *pnv_lpc_isa_create(PnvLpcController *lpc, bool use_cpld, Error **errp) { Error *local_err = NULL; ISABus *isa_bus; qemu_irq *irqs; qemu_irq_handler handler; /* let isa_bus_new() create its own bridge on SysBus otherwise * devices specified on the command line won't find the bus and * will fail to create. */ isa_bus = isa_bus_new(NULL, &lpc->isa_mem, &lpc->isa_io, &local_err); if (local_err) { error_propagate(errp, local_err); return NULL; } /* Not all variants have a working serial irq decoder. If not, * handling of LPC interrupts becomes a platform issue (some * platforms have a CPLD to do it). */ if (use_cpld) { handler = pnv_lpc_isa_irq_handler_cpld; } else { handler = pnv_lpc_isa_irq_handler; } /* POWER has a 17th irq, QEMU only implements the 16 regular device irqs */ irqs = qemu_allocate_irqs(handler, lpc, ISA_NUM_IRQS); isa_bus_register_input_irqs(isa_bus, irqs); return isa_bus; }