/* * QEMU PowerPC PowerNV machine model * * Copyright (c) 2016, IBM Corporation. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qemu/datadir.h" #include "qemu/units.h" #include "qemu/cutils.h" #include "qapi/error.h" #include "sysemu/qtest.h" #include "sysemu/sysemu.h" #include "sysemu/numa.h" #include "sysemu/reset.h" #include "sysemu/runstate.h" #include "sysemu/cpus.h" #include "sysemu/device_tree.h" #include "sysemu/hw_accel.h" #include "target/ppc/cpu.h" #include "hw/ppc/fdt.h" #include "hw/ppc/ppc.h" #include "hw/ppc/pnv.h" #include "hw/ppc/pnv_core.h" #include "hw/loader.h" #include "hw/nmi.h" #include "qapi/visitor.h" #include "hw/intc/intc.h" #include "hw/ipmi/ipmi.h" #include "target/ppc/mmu-hash64.h" #include "hw/pci/msi.h" #include "hw/pci-host/pnv_phb.h" #include "hw/pci-host/pnv_phb3.h" #include "hw/pci-host/pnv_phb4.h" #include "hw/ppc/xics.h" #include "hw/qdev-properties.h" #include "hw/ppc/pnv_chip.h" #include "hw/ppc/pnv_xscom.h" #include "hw/ppc/pnv_pnor.h" #include "hw/isa/isa.h" #include "hw/char/serial-isa.h" #include "hw/rtc/mc146818rtc.h" #include #define FDT_MAX_SIZE (1 * MiB) #define FW_FILE_NAME "skiboot.lid" #define FW_LOAD_ADDR 0x0 #define FW_MAX_SIZE (16 * MiB) #define KERNEL_LOAD_ADDR 0x20000000 #define KERNEL_MAX_SIZE (128 * MiB) #define INITRD_LOAD_ADDR 0x28000000 #define INITRD_MAX_SIZE (128 * MiB) static const char *pnv_chip_core_typename(const PnvChip *o) { const char *chip_type = object_class_get_name(object_get_class(OBJECT(o))); int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX); char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type); const char *core_type = object_class_get_name(object_class_by_name(s)); g_free(s); return core_type; } /* * On Power Systems E880 (POWER8), the max cpus (threads) should be : * 4 * 4 sockets * 12 cores * 8 threads = 1536 * Let's make it 2^11 */ #define MAX_CPUS 2048 /* * Memory nodes are created by hostboot, one for each range of memory * that has a different "affinity". In practice, it means one range * per chip. */ static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size) { char *mem_name; uint64_t mem_reg_property[2]; int off; mem_reg_property[0] = cpu_to_be64(start); mem_reg_property[1] = cpu_to_be64(size); mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start); off = fdt_add_subnode(fdt, 0, mem_name); g_free(mem_name); _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, sizeof(mem_reg_property)))); _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id))); } static int get_cpus_node(void *fdt) { int cpus_offset = fdt_path_offset(fdt, "/cpus"); if (cpus_offset < 0) { cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); if (cpus_offset) { _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); } } _FDT(cpus_offset); return cpus_offset; } /* * The PowerNV cores (and threads) need to use real HW ids and not an * incremental index like it has been done on other platforms. This HW * id is stored in the CPU PIR, it is used to create cpu nodes in the * device tree, used in XSCOM to address cores and in interrupt * servers. */ static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt) { PowerPCCPU *cpu = pc->threads[0]; CPUState *cs = CPU(cpu); DeviceClass *dc = DEVICE_GET_CLASS(cs); int smt_threads = CPU_CORE(pc)->nr_threads; CPUPPCState *env = &cpu->env; PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip); uint32_t *servers_prop; int i; uint32_t pir, tir; uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 0xffffffff, 0xffffffff}; uint32_t tbfreq = PNV_TIMEBASE_FREQ; uint32_t cpufreq = 1000000000; uint32_t page_sizes_prop[64]; size_t page_sizes_prop_size; int offset; char *nodename; int cpus_offset = get_cpus_node(fdt); pnv_cc->get_pir_tir(chip, pc->hwid, 0, &pir, &tir); /* Only one DT node per (big) core */ g_assert(tir == 0); nodename = g_strdup_printf("%s@%x", dc->fw_name, pir); offset = fdt_add_subnode(fdt, cpus_offset, nodename); _FDT(offset); g_free(nodename); _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id))); _FDT((fdt_setprop_cell(fdt, offset, "reg", pir))); _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir))); _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", env->dcache_line_size))); _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", env->dcache_line_size))); _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", env->icache_line_size))); _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", env->icache_line_size))); if (pcc->l1_dcache_size) { _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", pcc->l1_dcache_size))); } else { warn_report("Unknown L1 dcache size for cpu"); } if (pcc->l1_icache_size) { _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", pcc->l1_icache_size))); } else { warn_report("Unknown L1 icache size for cpu"); } _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); if (ppc_has_spr(cpu, SPR_PURR)) { _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); } if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", segs, sizeof(segs)))); } /* * Advertise VMX/VSX (vector extensions) if available * 0 / no property == no vector extensions * 1 == VMX / Altivec available * 2 == VSX available */ if (env->insns_flags & PPC_ALTIVEC) { uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); } /* * Advertise DFP (Decimal Floating Point) if available * 0 / no property == no DFP * 1 == DFP available */ if (env->insns_flags2 & PPC2_DFP) { _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); } page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, sizeof(page_sizes_prop)); if (page_sizes_prop_size) { _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", page_sizes_prop, page_sizes_prop_size))); } /* Build interrupt servers properties */ if (pc->big_core) { servers_prop = g_new(uint32_t, smt_threads * 2); for (i = 0; i < smt_threads; i++) { pnv_cc->get_pir_tir(chip, pc->hwid, i, &pir, NULL); servers_prop[i * 2] = cpu_to_be32(pir); pnv_cc->get_pir_tir(chip, pc->hwid + 1, i, &pir, NULL); servers_prop[i * 2 + 1] = cpu_to_be32(pir); } _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", servers_prop, sizeof(*servers_prop) * smt_threads * 2))); } else { servers_prop = g_new(uint32_t, smt_threads); for (i = 0; i < smt_threads; i++) { pnv_cc->get_pir_tir(chip, pc->hwid, i, &pir, NULL); servers_prop[i] = cpu_to_be32(pir); } _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", servers_prop, sizeof(*servers_prop) * smt_threads))); } g_free(servers_prop); return offset; } static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid, uint32_t nr_threads) { PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); uint32_t pir; uint64_t addr; char *name; const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp"; uint32_t irange[2], i, rsize; uint64_t *reg; int offset; pcc->get_pir_tir(chip, hwid, 0, &pir, NULL); addr = PNV_ICP_BASE(chip) | (pir << 12); irange[0] = cpu_to_be32(pir); irange[1] = cpu_to_be32(nr_threads); rsize = sizeof(uint64_t) * 2 * nr_threads; reg = g_malloc(rsize); for (i = 0; i < nr_threads; i++) { /* We know P8 PIR is linear with thread id */ reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000)); reg[i * 2 + 1] = cpu_to_be64(0x1000); } name = g_strdup_printf("interrupt-controller@%"PRIX64, addr); offset = fdt_add_subnode(fdt, 0, name); _FDT(offset); g_free(name); _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat)))); _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize))); _FDT((fdt_setprop_string(fdt, offset, "device_type", "PowerPC-External-Interrupt-Presentation"))); _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0))); _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges", irange, sizeof(irange)))); _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1))); _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0))); g_free(reg); } /* * Adds a PnvPHB to the chip on P8. * Implemented here, like for defaults PHBs */ PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb) { Pnv8Chip *chip8 = PNV8_CHIP(chip); phb->chip = chip; chip8->phbs[chip8->num_phbs] = phb; chip8->num_phbs++; return chip; } /* * Same as spapr pa_features_207 except pnv always enables CI largepages bit. * HTM is always enabled because TCG does implement HTM, it's just a * degenerate implementation. */ static const uint8_t pa_features_207[] = { 24, 0, 0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 }; static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt) { static const char compat[] = "ibm,power8-xscom\0ibm,xscom"; int i; pnv_dt_xscom(chip, fdt, 0, cpu_to_be64(PNV_XSCOM_BASE(chip)), cpu_to_be64(PNV_XSCOM_SIZE), compat, sizeof(compat)); for (i = 0; i < chip->nr_cores; i++) { PnvCore *pnv_core = chip->cores[i]; int offset; offset = pnv_dt_core(chip, pnv_core, fdt); _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features_207, sizeof(pa_features_207)))); /* Interrupt Control Presenters (ICP). One per core. */ pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads); } if (chip->ram_size) { pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); } } /* * Same as spapr pa_features_300 except pnv always enables CI largepages bit. */ static const uint8_t pa_features_300[] = { 66, 0, /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */ 0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */ /* 6: DS207 */ 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ /* 16: Vector */ 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */ /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ /* 32: LE atomic, 34: EBB + ext EBB */ 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ /* 40: Radix MMU */ 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */ /* 42: PM, 44: PC RA, 46: SC vec'd */ 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ /* 48: SIMD, 50: QP BFP, 52: String */ 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ /* 54: DecFP, 56: DecI, 58: SHA */ 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ /* 60: NM atomic, 62: RNG */ 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ }; static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt) { static const char compat[] = "ibm,power9-xscom\0ibm,xscom"; int i; pnv_dt_xscom(chip, fdt, 0, cpu_to_be64(PNV9_XSCOM_BASE(chip)), cpu_to_be64(PNV9_XSCOM_SIZE), compat, sizeof(compat)); for (i = 0; i < chip->nr_cores; i++) { PnvCore *pnv_core = chip->cores[i]; int offset; offset = pnv_dt_core(chip, pnv_core, fdt); _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features_300, sizeof(pa_features_300)))); if (pnv_core->big_core) { i++; /* Big-core groups two QEMU cores */ } } if (chip->ram_size) { pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); } pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE); } /* * Same as spapr pa_features_31 except pnv always enables CI largepages bit, * always disables copy/paste. */ static const uint8_t pa_features_31[] = { 74, 0, /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */ 0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */ /* 6: DS207 */ 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ /* 16: Vector */ 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ /* 18: Vec. Scalar, 20: Vec. XOR */ 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ /* 32: LE atomic, 34: EBB + ext EBB */ 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ /* 40: Radix MMU */ 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */ /* 42: PM, 44: PC RA, 46: SC vec'd */ 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ /* 48: SIMD, 50: QP BFP, 52: String */ 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ /* 54: DecFP, 56: DecI, 58: SHA */ 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ /* 60: NM atomic, 62: RNG */ 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */ 0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */ /* 72: [P]HASHST/[P]HASHCHK */ 0x80, 0x00, /* 72 - 73 */ }; static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt) { static const char compat[] = "ibm,power10-xscom\0ibm,xscom"; int i; pnv_dt_xscom(chip, fdt, 0, cpu_to_be64(PNV10_XSCOM_BASE(chip)), cpu_to_be64(PNV10_XSCOM_SIZE), compat, sizeof(compat)); for (i = 0; i < chip->nr_cores; i++) { PnvCore *pnv_core = chip->cores[i]; int offset; offset = pnv_dt_core(chip, pnv_core, fdt); _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features_31, sizeof(pa_features_31)))); if (pnv_core->big_core) { i++; /* Big-core groups two QEMU cores */ } } if (chip->ram_size) { pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); } pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE); } static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off) { uint32_t io_base = d->ioport_id; uint32_t io_regs[] = { cpu_to_be32(1), cpu_to_be32(io_base), cpu_to_be32(2) }; char *name; int node; name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); node = fdt_add_subnode(fdt, lpc_off, name); _FDT(node); g_free(name); _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00"))); } static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off) { const char compatible[] = "ns16550\0pnpPNP,501"; uint32_t io_base = d->ioport_id; uint32_t io_regs[] = { cpu_to_be32(1), cpu_to_be32(io_base), cpu_to_be32(8) }; uint32_t irq; char *name; int node; irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal); name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); node = fdt_add_subnode(fdt, lpc_off, name); _FDT(node); g_free(name); _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); _FDT((fdt_setprop(fdt, node, "compatible", compatible, sizeof(compatible)))); _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200))); _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200))); _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq))); _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", fdt_get_phandle(fdt, lpc_off)))); /* This is needed by Linux */ _FDT((fdt_setprop_string(fdt, node, "device_type", "serial"))); } static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off) { const char compatible[] = "bt\0ipmi-bt"; uint32_t io_base; uint32_t io_regs[] = { cpu_to_be32(1), 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */ cpu_to_be32(3) }; uint32_t irq; char *name; int node; io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal); io_regs[1] = cpu_to_be32(io_base); irq = object_property_get_int(OBJECT(d), "irq", &error_fatal); name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); node = fdt_add_subnode(fdt, lpc_off, name); _FDT(node); g_free(name); _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); _FDT((fdt_setprop(fdt, node, "compatible", compatible, sizeof(compatible)))); /* Mark it as reserved to avoid Linux trying to claim it */ _FDT((fdt_setprop_string(fdt, node, "status", "reserved"))); _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq))); _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", fdt_get_phandle(fdt, lpc_off)))); } typedef struct ForeachPopulateArgs { void *fdt; int offset; } ForeachPopulateArgs; static int pnv_dt_isa_device(DeviceState *dev, void *opaque) { ForeachPopulateArgs *args = opaque; ISADevice *d = ISA_DEVICE(dev); if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) { pnv_dt_rtc(d, args->fdt, args->offset); } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) { pnv_dt_serial(d, args->fdt, args->offset); } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) { pnv_dt_ipmi_bt(d, args->fdt, args->offset); } else { error_report("unknown isa device %s@i%x", qdev_fw_name(dev), d->ioport_id); } return 0; } /* * The default LPC bus of a multichip system is on chip 0. It's * recognized by the firmware (skiboot) using a "primary" property. */ static void pnv_dt_isa(PnvMachineState *pnv, void *fdt) { int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename); ForeachPopulateArgs args = { .fdt = fdt, .offset = isa_offset, }; uint32_t phandle; _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0))); phandle = qemu_fdt_alloc_phandle(fdt); assert(phandle > 0); _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle))); /* * ISA devices are not necessarily parented to the ISA bus so we * can not use object_child_foreach() */ qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL, &args); } static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt) { int off; off = fdt_add_subnode(fdt, 0, "ibm,opal"); off = fdt_add_subnode(fdt, off, "power-mgt"); _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000)); } static void *pnv_dt_create(MachineState *machine) { PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine); PnvMachineState *pnv = PNV_MACHINE(machine); void *fdt; char *buf; int off; int i; fdt = g_malloc0(FDT_MAX_SIZE); _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); /* /qemu node */ _FDT((fdt_add_subnode(fdt, 0, "qemu"))); /* Root node */ _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2))); _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2))); _FDT((fdt_setprop_string(fdt, 0, "model", "IBM PowerNV (emulated by qemu)"))); _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size))); buf = qemu_uuid_unparse_strdup(&qemu_uuid); _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf))); if (qemu_uuid_set) { _FDT((fdt_setprop_string(fdt, 0, "system-id", buf))); } g_free(buf); off = fdt_add_subnode(fdt, 0, "chosen"); if (machine->kernel_cmdline) { _FDT((fdt_setprop_string(fdt, off, "bootargs", machine->kernel_cmdline))); } if (pnv->initrd_size) { uint32_t start_prop = cpu_to_be32(pnv->initrd_base); uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size); _FDT((fdt_setprop(fdt, off, "linux,initrd-start", &start_prop, sizeof(start_prop)))); _FDT((fdt_setprop(fdt, off, "linux,initrd-end", &end_prop, sizeof(end_prop)))); } /* Populate device tree for each chip */ for (i = 0; i < pnv->num_chips; i++) { PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt); } /* Populate ISA devices on chip 0 */ pnv_dt_isa(pnv, fdt); if (pnv->bmc) { pnv_dt_bmc_sensors(pnv->bmc, fdt); } /* Create an extra node for power management on machines that support it */ if (pmc->dt_power_mgt) { pmc->dt_power_mgt(pnv, fdt); } return fdt; } static void pnv_powerdown_notify(Notifier *n, void *opaque) { PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier); if (pnv->bmc) { pnv_bmc_powerdown(pnv->bmc); } } static void pnv_reset(MachineState *machine, ResetType type) { PnvMachineState *pnv = PNV_MACHINE(machine); IPMIBmc *bmc; void *fdt; qemu_devices_reset(type); /* * The machine should provide by default an internal BMC simulator. * If not, try to use the BMC device that was provided on the command * line. */ bmc = pnv_bmc_find(&error_fatal); if (!pnv->bmc) { if (!bmc) { if (!qtest_enabled()) { warn_report("machine has no BMC device. Use '-device " "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' " "to define one"); } } else { pnv_bmc_set_pnor(bmc, pnv->pnor); pnv->bmc = bmc; } } if (machine->fdt) { fdt = machine->fdt; } else { fdt = pnv_dt_create(machine); /* Pack resulting tree */ _FDT((fdt_pack(fdt))); } qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt)); /* Update machine->fdt with latest fdt */ if (machine->fdt != fdt) { /* * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free * the existing machine->fdt to avoid leaking it during * a reset. */ g_free(machine->fdt); machine->fdt = fdt; } } static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp) { Pnv8Chip *chip8 = PNV8_CHIP(chip); qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL); qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq); return pnv_lpc_isa_create(&chip8->lpc, true, errp); } static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp) { Pnv8Chip *chip8 = PNV8_CHIP(chip); qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C); qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq); return pnv_lpc_isa_create(&chip8->lpc, false, errp); } static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp) { Pnv9Chip *chip9 = PNV9_CHIP(chip); qemu_irq irq; irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC); qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "LPCHC", 0, irq); irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ0); qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 0, irq); irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ1); qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 1, irq); irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ2); qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 2, irq); irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ3); qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 3, irq); return pnv_lpc_isa_create(&chip9->lpc, false, errp); } static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp) { Pnv10Chip *chip10 = PNV10_CHIP(chip); qemu_irq irq; irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC); qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "LPCHC", 0, irq); irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ0); qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 0, irq); irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ1); qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 1, irq); irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ2); qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 2, irq); irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ3); qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 3, irq); return pnv_lpc_isa_create(&chip10->lpc, false, errp); } static ISABus *pnv_isa_create(PnvChip *chip, Error **errp) { return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp); } static void pnv_chip_power8_pic_print_info(PnvChip *chip, GString *buf) { Pnv8Chip *chip8 = PNV8_CHIP(chip); int i; ics_pic_print_info(&chip8->psi.ics, buf); for (i = 0; i < chip8->num_phbs; i++) { PnvPHB *phb = chip8->phbs[i]; PnvPHB3 *phb3 = PNV_PHB3(phb->backend); pnv_phb3_msi_pic_print_info(&phb3->msis, buf); ics_pic_print_info(&phb3->lsis, buf); } } static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque) { GString *buf = opaque; PnvPHB *phb = (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB); if (!phb) { return 0; } pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), buf); return 0; } static void pnv_chip_power9_pic_print_info(PnvChip *chip, GString *buf) { Pnv9Chip *chip9 = PNV9_CHIP(chip); pnv_xive_pic_print_info(&chip9->xive, buf); pnv_psi_pic_print_info(&chip9->psi, buf); object_child_foreach_recursive(OBJECT(chip), pnv_chip_power9_pic_print_info_child, buf); } static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip, uint32_t core_id) { return PNV_XSCOM_EX_BASE(core_id); } static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip, uint32_t core_id) { return PNV9_XSCOM_EC_BASE(core_id); } static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip, uint32_t core_id) { return PNV10_XSCOM_EC_BASE(core_id); } static bool pnv_match_cpu(const char *default_type, const char *cpu_type) { PowerPCCPUClass *ppc_default = POWERPC_CPU_CLASS(object_class_by_name(default_type)); PowerPCCPUClass *ppc = POWERPC_CPU_CLASS(object_class_by_name(cpu_type)); return ppc_default->pvr_match(ppc_default, ppc->pvr, false); } static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq) { ISADevice *dev = isa_new("isa-ipmi-bt"); object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal); object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal); isa_realize_and_unref(dev, bus, &error_fatal); } static void pnv_chip_power10_pic_print_info(PnvChip *chip, GString *buf) { Pnv10Chip *chip10 = PNV10_CHIP(chip); pnv_xive2_pic_print_info(&chip10->xive, buf); pnv_psi_pic_print_info(&chip10->psi, buf); object_child_foreach_recursive(OBJECT(chip), pnv_chip_power9_pic_print_info_child, buf); } /* Always give the first 1GB to chip 0 else we won't boot */ static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id) { MachineState *machine = MACHINE(pnv); uint64_t ram_per_chip; assert(machine->ram_size >= 1 * GiB); ram_per_chip = machine->ram_size / pnv->num_chips; if (ram_per_chip >= 1 * GiB) { return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB); } assert(pnv->num_chips > 1); ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1); return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB); } static void pnv_init(MachineState *machine) { const char *bios_name = machine->firmware ?: FW_FILE_NAME; PnvMachineState *pnv = PNV_MACHINE(machine); MachineClass *mc = MACHINE_GET_CLASS(machine); PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine); int max_smt_threads = pmc->max_smt_threads; char *fw_filename; long fw_size; uint64_t chip_ram_start = 0; int i; char *chip_typename; DriveInfo *pnor = drive_get(IF_MTD, 0, 0); DeviceState *dev; if (kvm_enabled()) { error_report("machine %s does not support the KVM accelerator", mc->name); exit(EXIT_FAILURE); } /* allocate RAM */ if (machine->ram_size < mc->default_ram_size) { char *sz = size_to_str(mc->default_ram_size); error_report("Invalid RAM size, should be bigger than %s", sz); g_free(sz); exit(EXIT_FAILURE); } /* checks for invalid option combinations */ if (machine->dtb && (strlen(machine->kernel_cmdline) != 0)) { error_report("-append and -dtb cannot be used together, as passed" " command line is ignored in case of custom dtb"); exit(EXIT_FAILURE); } memory_region_add_subregion(get_system_memory(), 0, machine->ram); /* * Create our simple PNOR device */ dev = qdev_new(TYPE_PNV_PNOR); if (pnor) { qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor)); } sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); pnv->pnor = PNV_PNOR(dev); /* load skiboot firmware */ fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); if (!fw_filename) { error_report("Could not find OPAL firmware '%s'", bios_name); exit(1); } fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE); if (fw_size < 0) { error_report("Could not load OPAL firmware '%s'", fw_filename); exit(1); } g_free(fw_filename); /* load kernel */ if (machine->kernel_filename) { long kernel_size; kernel_size = load_image_targphys(machine->kernel_filename, KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE); if (kernel_size < 0) { error_report("Could not load kernel '%s'", machine->kernel_filename); exit(1); } } /* load initrd */ if (machine->initrd_filename) { pnv->initrd_base = INITRD_LOAD_ADDR; pnv->initrd_size = load_image_targphys(machine->initrd_filename, pnv->initrd_base, INITRD_MAX_SIZE); if (pnv->initrd_size < 0) { error_report("Could not load initial ram disk '%s'", machine->initrd_filename); exit(1); } } /* load dtb if passed */ if (machine->dtb) { int fdt_size; warn_report("with manually passed dtb, some options like '-append'" " will get ignored and the dtb passed will be used as-is"); /* read the file 'machine->dtb', and load it into 'fdt' buffer */ machine->fdt = load_device_tree(machine->dtb, &fdt_size); if (!machine->fdt) { error_report("Could not load dtb '%s'", machine->dtb); exit(1); } } /* MSIs are supported on this platform */ msi_nonbroken = true; /* * Check compatibility of the specified CPU with the machine * default. */ if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) { error_report("invalid CPU model '%s' for %s machine", machine->cpu_type, mc->name); exit(1); } /* Create the processor chips */ i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX); chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"), i, machine->cpu_type); if (!object_class_by_name(chip_typename)) { error_report("invalid chip model '%.*s' for %s machine", i, machine->cpu_type, mc->name); exit(1); } /* Set lpar-per-core mode if lpar-per-thread is not supported */ if (!pmc->has_lpar_per_thread) { pnv->lpar_per_core = true; } pnv->num_chips = machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads); if (pnv->big_core) { if (machine->smp.threads % 2 == 1) { error_report("Cannot support %d threads with big-core option " "because it must be an even number", machine->smp.threads); exit(1); } max_smt_threads *= 2; } if (machine->smp.threads > max_smt_threads) { error_report("Cannot support more than %d threads/core " "on %s machine", max_smt_threads, mc->desc); if (pmc->max_smt_threads == 4) { error_report("(use big-core=on for 8 threads per core)"); } exit(1); } if (pnv->big_core) { /* * powernv models PnvCore as a SMT4 core. Big-core requires 2xPnvCore * per core, so adjust topology here. pnv_dt_core() processor * device-tree and TCG SMT code make the 2 cores appear as one big core * from software point of view. pnv pervasive models and xscoms tend to * see the big core as 2 small core halves. */ machine->smp.cores *= 2; machine->smp.threads /= 2; } if (!is_power_of_2(machine->smp.threads)) { error_report("Cannot support %d threads/core on a powernv " "machine because it must be a power of 2", machine->smp.threads); exit(1); } /* * TODO: should we decide on how many chips we can create based * on #cores and Venice vs. Murano vs. Naples chip type etc..., */ if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) { error_report("invalid number of chips: '%d'", pnv->num_chips); error_printf( "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n"); exit(1); } pnv->chips = g_new0(PnvChip *, pnv->num_chips); for (i = 0; i < pnv->num_chips; i++) { char chip_name[32]; Object *chip = OBJECT(qdev_new(chip_typename)); uint64_t chip_ram_size = pnv_chip_get_ram_size(pnv, i); pnv->chips[i] = PNV_CHIP(chip); /* Distribute RAM among the chips */ object_property_set_int(chip, "ram-start", chip_ram_start, &error_fatal); object_property_set_int(chip, "ram-size", chip_ram_size, &error_fatal); chip_ram_start += chip_ram_size; snprintf(chip_name, sizeof(chip_name), "chip[%d]", i); object_property_add_child(OBJECT(pnv), chip_name, chip); object_property_set_int(chip, "chip-id", i, &error_fatal); object_property_set_int(chip, "nr-cores", machine->smp.cores, &error_fatal); object_property_set_int(chip, "nr-threads", machine->smp.threads, &error_fatal); object_property_set_bool(chip, "big-core", pnv->big_core, &error_fatal); object_property_set_bool(chip, "lpar-per-core", pnv->lpar_per_core, &error_fatal); /* * The POWER8 machine use the XICS interrupt interface. * Propagate the XICS fabric to the chip and its controllers. */ if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) { object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort); } if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) { object_property_set_link(chip, "xive-fabric", OBJECT(pnv), &error_abort); } sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal); } g_free(chip_typename); /* Instantiate ISA bus on chip 0 */ pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal); /* Create serial port */ serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS); /* Create an RTC ISA device too */ mc146818_rtc_init(pnv->isa_bus, 2000, NULL); /* * Create the machine BMC simulator and the IPMI BT device for * communication with the BMC */ if (defaults_enabled()) { pnv->bmc = pnv_bmc_create(pnv->pnor); pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10); } /* * The PNOR is mapped on the LPC FW address space by the BMC. * Since we can not reach the remote BMC machine with LPC memops, * map it always for now. */ memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET, &pnv->pnor->mmio); /* * OpenPOWER systems use a IPMI SEL Event message to notify the * host to powerdown */ pnv->powerdown_notifier.notify = pnv_powerdown_notify; qemu_register_powerdown_notifier(&pnv->powerdown_notifier); /* * Create/Connect any machine-specific I2C devices */ if (pmc->i2c_init) { pmc->i2c_init(pnv); } } /* * 0:21 Reserved - Read as zeros * 22:24 Chip ID * 25:28 Core number * 29:31 Thread ID */ static void pnv_get_pir_tir_p8(PnvChip *chip, uint32_t core_id, uint32_t thread_id, uint32_t *pir, uint32_t *tir) { if (pir) { *pir = (chip->chip_id << 7) | (core_id << 3) | thread_id; } if (tir) { *tir = thread_id; } } static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu, Error **errp) { Pnv8Chip *chip8 = PNV8_CHIP(chip); Error *local_err = NULL; Object *obj; PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err); if (local_err) { error_propagate(errp, local_err); return; } pnv_cpu->intc = obj; } static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu) { PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); icp_reset(ICP(pnv_cpu->intc)); } static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu) { PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); icp_destroy(ICP(pnv_cpu->intc)); pnv_cpu->intc = NULL; } static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, GString *buf) { icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), buf); } /* * 0:48 Reserved - Read as zeroes * 49:52 Node ID * 53:55 Chip ID * 56 Reserved - Read as zero * 57:61 Core number * 62:63 Thread ID * * We only care about the lower bits. uint32_t is fine for the moment. */ static void pnv_get_pir_tir_p9(PnvChip *chip, uint32_t core_id, uint32_t thread_id, uint32_t *pir, uint32_t *tir) { if (chip->big_core) { /* Big-core interleaves thread ID between small-cores */ thread_id <<= 1; thread_id |= core_id & 1; core_id >>= 1; if (pir) { *pir = (chip->chip_id << 8) | (core_id << 3) | thread_id; } } else { if (pir) { *pir = (chip->chip_id << 8) | (core_id << 2) | thread_id; } } if (tir) { *tir = thread_id; } } /* * 0:48 Reserved - Read as zeroes * 49:52 Node ID * 53:55 Chip ID * 56 Reserved - Read as zero * 57:59 Quad ID * 60 Core Chiplet Pair ID * 61:63 Thread/Core Chiplet ID t0-t2 * * We only care about the lower bits. uint32_t is fine for the moment. */ static void pnv_get_pir_tir_p10(PnvChip *chip, uint32_t core_id, uint32_t thread_id, uint32_t *pir, uint32_t *tir) { if (chip->big_core) { /* Big-core interleaves thread ID between small-cores */ thread_id <<= 1; thread_id |= core_id & 1; core_id >>= 1; if (pir) { *pir = (chip->chip_id << 8) | (core_id << 3) | thread_id; } } else { if (pir) { *pir = (chip->chip_id << 8) | (core_id << 2) | thread_id; } } if (tir) { *tir = thread_id; } } static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu, Error **errp) { Pnv9Chip *chip9 = PNV9_CHIP(chip); Error *local_err = NULL; Object *obj; PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); /* * The core creates its interrupt presenter but the XIVE interrupt * controller object is initialized afterwards. Hopefully, it's * only used at runtime. */ obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive), &local_err); if (local_err) { error_propagate(errp, local_err); return; } pnv_cpu->intc = obj; } static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu) { PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc)); } static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu) { PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc)); pnv_cpu->intc = NULL; } static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, GString *buf) { xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf); } static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu, Error **errp) { Pnv10Chip *chip10 = PNV10_CHIP(chip); Error *local_err = NULL; Object *obj; PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); /* * The core creates its interrupt presenter but the XIVE2 interrupt * controller object is initialized afterwards. Hopefully, it's * only used at runtime. */ obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive), &local_err); if (local_err) { error_propagate(errp, local_err); return; } pnv_cpu->intc = obj; } static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu) { PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc)); } static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu) { PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc)); pnv_cpu->intc = NULL; } static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, GString *buf) { xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf); } /* * Allowed core identifiers on a POWER8 Processor Chip : * * * EX1 - Venice only * EX2 - Venice only * EX3 - Venice only * EX4 * EX5 * EX6 * * EX9 - Venice only * EX10 - Venice only * EX11 - Venice only * EX12 * EX13 * EX14 * */ #define POWER8E_CORE_MASK (0x7070ull) #define POWER8_CORE_MASK (0x7e7eull) /* * POWER9 has 24 cores, ids starting at 0x0 */ #define POWER9_CORE_MASK (0xffffffffffffffull) #define POWER10_CORE_MASK (0xffffffffffffffull) static void pnv_chip_power8_instance_init(Object *obj) { Pnv8Chip *chip8 = PNV8_CHIP(obj); PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj); int i; object_property_add_link(obj, "xics", TYPE_XICS_FABRIC, (Object **)&chip8->xics, object_property_allow_set_link, OBJ_PROP_LINK_STRONG); object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI); object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC); object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC); object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER); if (defaults_enabled()) { chip8->num_phbs = pcc->num_phbs; for (i = 0; i < chip8->num_phbs; i++) { Object *phb = object_new(TYPE_PNV_PHB); /* * We need the chip to parent the PHB to allow the DT * to build correctly (via pnv_xscom_dt()). * * TODO: the PHB should be parented by a PEC device that, at * this moment, is not modelled powernv8/phb3. */ object_property_add_child(obj, "phb[*]", phb); chip8->phbs[i] = PNV_PHB(phb); } } } static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp) { PnvChip *chip = PNV_CHIP(chip8); PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); int i, j; char *name; name = g_strdup_printf("icp-%x", chip->chip_id); memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE); g_free(name); memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip), &chip8->icp_mmio); /* Map the ICP registers for each thread */ for (i = 0; i < chip->nr_cores; i++) { PnvCore *pnv_core = chip->cores[i]; int core_hwid = CPU_CORE(pnv_core)->core_id; for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) { uint32_t pir; PnvICPState *icp; pcc->get_pir_tir(chip, core_hwid, j, &pir, NULL); icp = PNV_ICP(xics_icp_get(chip8->xics, pir)); memory_region_add_subregion(&chip8->icp_mmio, pir << 12, &icp->mmio); } } } static void pnv_chip_power8_realize(DeviceState *dev, Error **errp) { PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); PnvChip *chip = PNV_CHIP(dev); Pnv8Chip *chip8 = PNV8_CHIP(dev); Pnv8Psi *psi8 = &chip8->psi; Error *local_err = NULL; int i; assert(chip8->xics); /* XSCOM bridge is first */ pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip)); pcc->parent_realize(dev, &local_err); if (local_err) { error_propagate(errp, local_err); return; } /* Processor Service Interface (PSI) Host Bridge */ object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip), &error_fatal); object_property_set_link(OBJECT(psi8), ICS_PROP_XICS, OBJECT(chip8->xics), &error_abort); if (!qdev_realize(DEVICE(psi8), NULL, errp)) { return; } pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE, &PNV_PSI(psi8)->xscom_regs); /* Create LPC controller */ qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal); pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs); chip->fw_mr = &chip8->lpc.isa_fw; chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x", (uint64_t) PNV_XSCOM_BASE(chip), PNV_XSCOM_LPC_BASE); /* * Interrupt Management Area. This is the memory region holding * all the Interrupt Control Presenter (ICP) registers */ pnv_chip_icp_realize(chip8, &local_err); if (local_err) { error_propagate(errp, local_err); return; } /* Create the simplified OCC model */ if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) { return; } pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs); qdev_connect_gpio_out(DEVICE(&chip8->occ), 0, qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC)); /* OCC SRAM model */ memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip), &chip8->occ.sram_regs); /* HOMER */ object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip), &error_abort); if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) { return; } /* Homer Xscom region */ pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs); /* Homer mmio region */ memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip), &chip8->homer.regs); /* PHB controllers */ for (i = 0; i < chip8->num_phbs; i++) { PnvPHB *phb = chip8->phbs[i]; object_property_set_int(OBJECT(phb), "index", i, &error_fatal); object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id, &error_fatal); object_property_set_link(OBJECT(phb), "chip", OBJECT(chip), &error_fatal); if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) { return; } } } static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr) { addr &= (PNV_XSCOM_SIZE - 1); return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf); } static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PnvChipClass *k = PNV_CHIP_CLASS(klass); k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */ k->cores_mask = POWER8E_CORE_MASK; k->num_phbs = 3; k->get_pir_tir = pnv_get_pir_tir_p8; k->intc_create = pnv_chip_power8_intc_create; k->intc_reset = pnv_chip_power8_intc_reset; k->intc_destroy = pnv_chip_power8_intc_destroy; k->intc_print_info = pnv_chip_power8_intc_print_info; k->isa_create = pnv_chip_power8_isa_create; k->dt_populate = pnv_chip_power8_dt_populate; k->pic_print_info = pnv_chip_power8_pic_print_info; k->xscom_core_base = pnv_chip_power8_xscom_core_base; k->xscom_pcba = pnv_chip_power8_xscom_pcba; dc->desc = "PowerNV Chip POWER8E"; device_class_set_parent_realize(dc, pnv_chip_power8_realize, &k->parent_realize); } static void pnv_chip_power8_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PnvChipClass *k = PNV_CHIP_CLASS(klass); k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */ k->cores_mask = POWER8_CORE_MASK; k->num_phbs = 3; k->get_pir_tir = pnv_get_pir_tir_p8; k->intc_create = pnv_chip_power8_intc_create; k->intc_reset = pnv_chip_power8_intc_reset; k->intc_destroy = pnv_chip_power8_intc_destroy; k->intc_print_info = pnv_chip_power8_intc_print_info; k->isa_create = pnv_chip_power8_isa_create; k->dt_populate = pnv_chip_power8_dt_populate; k->pic_print_info = pnv_chip_power8_pic_print_info; k->xscom_core_base = pnv_chip_power8_xscom_core_base; k->xscom_pcba = pnv_chip_power8_xscom_pcba; dc->desc = "PowerNV Chip POWER8"; device_class_set_parent_realize(dc, pnv_chip_power8_realize, &k->parent_realize); } static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PnvChipClass *k = PNV_CHIP_CLASS(klass); k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */ k->cores_mask = POWER8_CORE_MASK; k->num_phbs = 4; k->get_pir_tir = pnv_get_pir_tir_p8; k->intc_create = pnv_chip_power8_intc_create; k->intc_reset = pnv_chip_power8_intc_reset; k->intc_destroy = pnv_chip_power8_intc_destroy; k->intc_print_info = pnv_chip_power8_intc_print_info; k->isa_create = pnv_chip_power8nvl_isa_create; k->dt_populate = pnv_chip_power8_dt_populate; k->pic_print_info = pnv_chip_power8_pic_print_info; k->xscom_core_base = pnv_chip_power8_xscom_core_base; k->xscom_pcba = pnv_chip_power8_xscom_pcba; dc->desc = "PowerNV Chip POWER8NVL"; device_class_set_parent_realize(dc, pnv_chip_power8_realize, &k->parent_realize); } static void pnv_chip_power9_instance_init(Object *obj) { PnvChip *chip = PNV_CHIP(obj); Pnv9Chip *chip9 = PNV9_CHIP(obj); PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj); int i; object_initialize_child(obj, "adu", &chip9->adu, TYPE_PNV_ADU); object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE); object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive), "xive-fabric"); object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI); object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC); object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD); object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC); object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE); object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER); /* Number of PECs is the chip default */ chip->num_pecs = pcc->num_pecs; for (i = 0; i < chip->num_pecs; i++) { object_initialize_child(obj, "pec[*]", &chip9->pecs[i], TYPE_PNV_PHB4_PEC); } for (i = 0; i < pcc->i2c_num_engines; i++) { object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C); } } static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq, PnvCore *pnv_core, const char *type) { char eq_name[32]; int core_id = CPU_CORE(pnv_core)->core_id; snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id); object_initialize_child_with_props(OBJECT(chip), eq_name, eq, sizeof(*eq), type, &error_fatal, NULL); object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal); qdev_realize(DEVICE(eq), NULL, &error_fatal); } static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp) { PnvChip *chip = PNV_CHIP(chip9); int i; chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4); chip9->quads = g_new0(PnvQuad, chip9->nr_quads); for (i = 0; i < chip9->nr_quads; i++) { PnvQuad *eq = &chip9->quads[i]; pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4], PNV_QUAD_TYPE_NAME("power9")); pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id), &eq->xscom_regs); } } static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp) { Pnv9Chip *chip9 = PNV9_CHIP(chip); int i; for (i = 0; i < chip->num_pecs; i++) { PnvPhb4PecState *pec = &chip9->pecs[i]; PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); uint32_t pec_nest_base; uint32_t pec_pci_base; object_property_set_int(OBJECT(pec), "index", i, &error_fatal); object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id, &error_fatal); object_property_set_link(OBJECT(pec), "chip", OBJECT(chip), &error_fatal); if (!qdev_realize(DEVICE(pec), NULL, errp)) { return; } pec_nest_base = pecc->xscom_nest_base(pec); pec_pci_base = pecc->xscom_pci_base(pec); pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr); pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr); } } static void pnv_chip_power9_realize(DeviceState *dev, Error **errp) { PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); Pnv9Chip *chip9 = PNV9_CHIP(dev); PnvChip *chip = PNV_CHIP(dev); Pnv9Psi *psi9 = &chip9->psi; Error *local_err = NULL; int i; /* XSCOM bridge is first */ pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip)); pcc->parent_realize(dev, &local_err); if (local_err) { error_propagate(errp, local_err); return; } /* ADU */ object_property_set_link(OBJECT(&chip9->adu), "lpc", OBJECT(&chip9->lpc), &error_abort); if (!qdev_realize(DEVICE(&chip9->adu), NULL, errp)) { return; } pnv_xscom_add_subregion(chip, PNV9_XSCOM_ADU_BASE, &chip9->adu.xscom_regs); pnv_chip_quad_realize(chip9, &local_err); if (local_err) { error_propagate(errp, local_err); return; } /* XIVE interrupt controller (POWER9) */ object_property_set_int(OBJECT(&chip9->xive), "ic-bar", PNV9_XIVE_IC_BASE(chip), &error_fatal); object_property_set_int(OBJECT(&chip9->xive), "vc-bar", PNV9_XIVE_VC_BASE(chip), &error_fatal); object_property_set_int(OBJECT(&chip9->xive), "pc-bar", PNV9_XIVE_PC_BASE(chip), &error_fatal); object_property_set_int(OBJECT(&chip9->xive), "tm-bar", PNV9_XIVE_TM_BASE(chip), &error_fatal); object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip), &error_abort); if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) { return; } pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE, &chip9->xive.xscom_regs); /* Processor Service Interface (PSI) Host Bridge */ object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip), &error_fatal); /* This is the only device with 4k ESB pages */ object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K, &error_fatal); if (!qdev_realize(DEVICE(psi9), NULL, errp)) { return; } pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE, &PNV_PSI(psi9)->xscom_regs); /* LPC */ if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) { return; } memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip), &chip9->lpc.xscom_regs); chip->fw_mr = &chip9->lpc.isa_fw; chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0", (uint64_t) PNV9_LPCM_BASE(chip)); /* ChipTOD */ object_property_set_bool(OBJECT(&chip9->chiptod), "primary", chip->chip_id == 0, &error_abort); object_property_set_bool(OBJECT(&chip9->chiptod), "secondary", chip->chip_id == 1, &error_abort); object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip), &error_abort); if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) { return; } pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE, &chip9->chiptod.xscom_regs); /* Create the simplified OCC model */ if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) { return; } pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs); qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in( DEVICE(psi9), PSIHB9_IRQ_OCC)); /* OCC SRAM model */ memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip), &chip9->occ.sram_regs); /* SBE */ if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) { return; } pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE, &chip9->sbe.xscom_ctrl_regs); pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE, &chip9->sbe.xscom_mbox_regs); qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in( DEVICE(psi9), PSIHB9_IRQ_PSU)); /* HOMER */ object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip), &error_abort); if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) { return; } /* Homer Xscom region */ pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs); /* Homer mmio region */ memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip), &chip9->homer.regs); /* PEC PHBs */ pnv_chip_power9_pec_realize(chip, &local_err); if (local_err) { error_propagate(errp, local_err); return; } /* * I2C */ for (i = 0; i < pcc->i2c_num_engines; i++) { Object *obj = OBJECT(&chip9->i2c[i]); object_property_set_int(obj, "engine", i + 1, &error_fatal); object_property_set_int(obj, "num-busses", pcc->i2c_ports_per_engine[i], &error_fatal); object_property_set_link(obj, "chip", OBJECT(chip), &error_abort); if (!qdev_realize(DEVICE(obj), NULL, errp)) { return; } pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE + (chip9->i2c[i].engine - 1) * PNV9_XSCOM_I2CM_SIZE, &chip9->i2c[i].xscom_regs); qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0, qdev_get_gpio_in(DEVICE(psi9), PSIHB9_IRQ_SBE_I2C)); } } static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr) { addr &= (PNV9_XSCOM_SIZE - 1); return addr >> 3; } static void pnv_chip_power9_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PnvChipClass *k = PNV_CHIP_CLASS(klass); static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2}; k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */ k->cores_mask = POWER9_CORE_MASK; k->get_pir_tir = pnv_get_pir_tir_p9; k->intc_create = pnv_chip_power9_intc_create; k->intc_reset = pnv_chip_power9_intc_reset; k->intc_destroy = pnv_chip_power9_intc_destroy; k->intc_print_info = pnv_chip_power9_intc_print_info; k->isa_create = pnv_chip_power9_isa_create; k->dt_populate = pnv_chip_power9_dt_populate; k->pic_print_info = pnv_chip_power9_pic_print_info; k->xscom_core_base = pnv_chip_power9_xscom_core_base; k->xscom_pcba = pnv_chip_power9_xscom_pcba; dc->desc = "PowerNV Chip POWER9"; k->num_pecs = PNV9_CHIP_MAX_PEC; k->i2c_num_engines = PNV9_CHIP_MAX_I2C; k->i2c_ports_per_engine = i2c_ports_per_engine; device_class_set_parent_realize(dc, pnv_chip_power9_realize, &k->parent_realize); } static void pnv_chip_power10_instance_init(Object *obj) { PnvChip *chip = PNV_CHIP(obj); Pnv10Chip *chip10 = PNV10_CHIP(obj); PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj); int i; object_initialize_child(obj, "adu", &chip10->adu, TYPE_PNV_ADU); object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2); object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive), "xive-fabric"); object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI); object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC); object_initialize_child(obj, "chiptod", &chip10->chiptod, TYPE_PNV10_CHIPTOD); object_initialize_child(obj, "occ", &chip10->occ, TYPE_PNV10_OCC); object_initialize_child(obj, "sbe", &chip10->sbe, TYPE_PNV10_SBE); object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER); object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet, TYPE_PNV_N1_CHIPLET); chip->num_pecs = pcc->num_pecs; for (i = 0; i < chip->num_pecs; i++) { object_initialize_child(obj, "pec[*]", &chip10->pecs[i], TYPE_PNV_PHB5_PEC); } for (i = 0; i < pcc->i2c_num_engines; i++) { object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C); } for (i = 0; i < PNV10_CHIP_MAX_PIB_SPIC; i++) { object_initialize_child(obj, "pib_spic[*]", &chip10->pib_spic[i], TYPE_PNV_SPI); } } static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp) { PnvChip *chip = PNV_CHIP(chip10); int i; chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4); chip10->quads = g_new0(PnvQuad, chip10->nr_quads); for (i = 0; i < chip10->nr_quads; i++) { PnvQuad *eq = &chip10->quads[i]; pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4], PNV_QUAD_TYPE_NAME("power10")); pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id), &eq->xscom_regs); pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id), &eq->xscom_qme_regs); } } static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp) { Pnv10Chip *chip10 = PNV10_CHIP(chip); int i; for (i = 0; i < chip->num_pecs; i++) { PnvPhb4PecState *pec = &chip10->pecs[i]; PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); uint32_t pec_nest_base; uint32_t pec_pci_base; object_property_set_int(OBJECT(pec), "index", i, &error_fatal); object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id, &error_fatal); object_property_set_link(OBJECT(pec), "chip", OBJECT(chip), &error_fatal); if (!qdev_realize(DEVICE(pec), NULL, errp)) { return; } pec_nest_base = pecc->xscom_nest_base(pec); pec_pci_base = pecc->xscom_pci_base(pec); pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr); pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr); } } static void pnv_chip_power10_realize(DeviceState *dev, Error **errp) { PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); PnvChip *chip = PNV_CHIP(dev); Pnv10Chip *chip10 = PNV10_CHIP(dev); Error *local_err = NULL; int i; /* XSCOM bridge is first */ pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip)); pcc->parent_realize(dev, &local_err); if (local_err) { error_propagate(errp, local_err); return; } /* ADU */ object_property_set_link(OBJECT(&chip10->adu), "lpc", OBJECT(&chip10->lpc), &error_abort); if (!qdev_realize(DEVICE(&chip10->adu), NULL, errp)) { return; } pnv_xscom_add_subregion(chip, PNV10_XSCOM_ADU_BASE, &chip10->adu.xscom_regs); pnv_chip_power10_quad_realize(chip10, &local_err); if (local_err) { error_propagate(errp, local_err); return; } /* XIVE2 interrupt controller (POWER10) */ object_property_set_int(OBJECT(&chip10->xive), "ic-bar", PNV10_XIVE2_IC_BASE(chip), &error_fatal); object_property_set_int(OBJECT(&chip10->xive), "esb-bar", PNV10_XIVE2_ESB_BASE(chip), &error_fatal); object_property_set_int(OBJECT(&chip10->xive), "end-bar", PNV10_XIVE2_END_BASE(chip), &error_fatal); object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar", PNV10_XIVE2_NVPG_BASE(chip), &error_fatal); object_property_set_int(OBJECT(&chip10->xive), "nvc-bar", PNV10_XIVE2_NVC_BASE(chip), &error_fatal); object_property_set_int(OBJECT(&chip10->xive), "tm-bar", PNV10_XIVE2_TM_BASE(chip), &error_fatal); object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip), &error_abort); if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) { return; } pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE, &chip10->xive.xscom_regs); /* Processor Service Interface (PSI) Host Bridge */ object_property_set_int(OBJECT(&chip10->psi), "bar", PNV10_PSIHB_BASE(chip), &error_fatal); /* PSI can now be configured to use 64k ESB pages on POWER10 */ object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K, &error_fatal); if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) { return; } pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE, &PNV_PSI(&chip10->psi)->xscom_regs); /* LPC */ if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) { return; } memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip), &chip10->lpc.xscom_regs); chip->fw_mr = &chip10->lpc.isa_fw; chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0", (uint64_t) PNV10_LPCM_BASE(chip)); /* ChipTOD */ object_property_set_bool(OBJECT(&chip10->chiptod), "primary", chip->chip_id == 0, &error_abort); object_property_set_bool(OBJECT(&chip10->chiptod), "secondary", chip->chip_id == 1, &error_abort); object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip), &error_abort); if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) { return; } pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE, &chip10->chiptod.xscom_regs); /* Create the simplified OCC model */ if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) { return; } pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE, &chip10->occ.xscom_regs); qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in( DEVICE(&chip10->psi), PSIHB9_IRQ_OCC)); /* OCC SRAM model */ memory_region_add_subregion(get_system_memory(), PNV10_OCC_SENSOR_BASE(chip), &chip10->occ.sram_regs); /* SBE */ if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) { return; } pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE, &chip10->sbe.xscom_ctrl_regs); pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE, &chip10->sbe.xscom_mbox_regs); qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in( DEVICE(&chip10->psi), PSIHB9_IRQ_PSU)); /* HOMER */ object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip), &error_abort); if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) { return; } /* Homer Xscom region */ pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE, &chip10->homer.pba_regs); /* Homer mmio region */ memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip), &chip10->homer.regs); /* N1 chiplet */ if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) { return; } pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE, &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr); pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE, &chip10->n1_chiplet.xscom_pb_eq_mr); pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE, &chip10->n1_chiplet.xscom_pb_es_mr); /* PHBs */ pnv_chip_power10_phb_realize(chip, &local_err); if (local_err) { error_propagate(errp, local_err); return; } /* * I2C */ for (i = 0; i < pcc->i2c_num_engines; i++) { Object *obj = OBJECT(&chip10->i2c[i]); object_property_set_int(obj, "engine", i + 1, &error_fatal); object_property_set_int(obj, "num-busses", pcc->i2c_ports_per_engine[i], &error_fatal); object_property_set_link(obj, "chip", OBJECT(chip), &error_abort); if (!qdev_realize(DEVICE(obj), NULL, errp)) { return; } pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE + (chip10->i2c[i].engine - 1) * PNV10_XSCOM_I2CM_SIZE, &chip10->i2c[i].xscom_regs); qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0, qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_SBE_I2C)); } /* PIB SPI Controller */ for (i = 0; i < PNV10_CHIP_MAX_PIB_SPIC; i++) { object_property_set_int(OBJECT(&chip10->pib_spic[i]), "spic_num", i, &error_fatal); /* pib_spic[2] connected to 25csm04 which implements 1 byte transfer */ object_property_set_int(OBJECT(&chip10->pib_spic[i]), "transfer_len", (i == 2) ? 1 : 4, &error_fatal); if (!sysbus_realize(SYS_BUS_DEVICE(OBJECT (&chip10->pib_spic[i])), errp)) { return; } pnv_xscom_add_subregion(chip, PNV10_XSCOM_PIB_SPIC_BASE + i * PNV10_XSCOM_PIB_SPIC_SIZE, &chip10->pib_spic[i].xscom_spic_regs); } } static void pnv_rainier_i2c_init(PnvMachineState *pnv) { int i; for (i = 0; i < pnv->num_chips; i++) { Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]); /* * Add a PCA9552 I2C device for PCIe hotplug control * to engine 2, bus 1, address 0x63 */ I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9552", 0x63); /* * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9 * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots * after hypervisor code sets a SLOTx_EN pin high. */ qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5)); qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6)); qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7)); qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8)); qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9)); /* * Add a PCA9554 I2C device for cable card presence detection * to engine 2, bus 1, address 0x25 */ i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25); } } static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr) { addr &= (PNV10_XSCOM_SIZE - 1); return addr >> 3; } static void pnv_chip_power10_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PnvChipClass *k = PNV_CHIP_CLASS(klass); static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16}; k->chip_cfam_id = 0x220da04980000000ull; /* P10 DD2.0 (with NX) */ k->cores_mask = POWER10_CORE_MASK; k->get_pir_tir = pnv_get_pir_tir_p10; k->intc_create = pnv_chip_power10_intc_create; k->intc_reset = pnv_chip_power10_intc_reset; k->intc_destroy = pnv_chip_power10_intc_destroy; k->intc_print_info = pnv_chip_power10_intc_print_info; k->isa_create = pnv_chip_power10_isa_create; k->dt_populate = pnv_chip_power10_dt_populate; k->pic_print_info = pnv_chip_power10_pic_print_info; k->xscom_core_base = pnv_chip_power10_xscom_core_base; k->xscom_pcba = pnv_chip_power10_xscom_pcba; dc->desc = "PowerNV Chip POWER10"; k->num_pecs = PNV10_CHIP_MAX_PEC; k->i2c_num_engines = PNV10_CHIP_MAX_I2C; k->i2c_ports_per_engine = i2c_ports_per_engine; device_class_set_parent_realize(dc, pnv_chip_power10_realize, &k->parent_realize); } static void pnv_chip_core_sanitize(PnvMachineState *pnv, PnvChip *chip, Error **errp) { PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); int cores_max; /* * No custom mask for this chip, let's use the default one from * * the chip class */ if (!chip->cores_mask) { chip->cores_mask = pcc->cores_mask; } /* filter alien core ids ! some are reserved */ if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) { error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !", chip->cores_mask); return; } chip->cores_mask &= pcc->cores_mask; /* Ensure small-cores a paired up in big-core mode */ if (pnv->big_core) { uint64_t even_cores = chip->cores_mask & 0x5555555555555555ULL; uint64_t odd_cores = chip->cores_mask & 0xaaaaaaaaaaaaaaaaULL; if (even_cores ^ (odd_cores >> 1)) { error_setg(errp, "warning: unpaired cores in big-core mode !"); return; } } /* now that we have a sane layout, let check the number of cores */ cores_max = ctpop64(chip->cores_mask); if (chip->nr_cores > cores_max) { error_setg(errp, "warning: too many cores for chip ! Limit is %d", cores_max); return; } } static void pnv_chip_core_realize(PnvChip *chip, Error **errp) { PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(pnv); Error *error = NULL; PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); const char *typename = pnv_chip_core_typename(chip); int i, core_hwid; if (!object_class_by_name(typename)) { error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename); return; } /* Cores */ pnv_chip_core_sanitize(pnv, chip, &error); if (error) { error_propagate(errp, error); return; } chip->cores = g_new0(PnvCore *, chip->nr_cores); for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8) && (i < chip->nr_cores); core_hwid++) { char core_name[32]; PnvCore *pnv_core; uint64_t xscom_core_base; if (!(chip->cores_mask & (1ull << core_hwid))) { continue; } pnv_core = PNV_CORE(object_new(typename)); snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid); object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core)); chip->cores[i] = pnv_core; object_property_set_int(OBJECT(pnv_core), "nr-threads", chip->nr_threads, &error_fatal); object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID, core_hwid, &error_fatal); object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid, &error_fatal); object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr, &error_fatal); object_property_set_bool(OBJECT(pnv_core), "big-core", chip->big_core, &error_fatal); object_property_set_bool(OBJECT(pnv_core), "quirk-tb-big-core", pmc->quirk_tb_big_core, &error_fatal); object_property_set_bool(OBJECT(pnv_core), "lpar-per-core", chip->lpar_per_core, &error_fatal); object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip), &error_abort); qdev_realize(DEVICE(pnv_core), NULL, &error_fatal); /* Each core has an XSCOM MMIO region */ xscom_core_base = pcc->xscom_core_base(chip, core_hwid); pnv_xscom_add_subregion(chip, xscom_core_base, &pnv_core->xscom_regs); i++; } } static void pnv_chip_realize(DeviceState *dev, Error **errp) { PnvChip *chip = PNV_CHIP(dev); Error *error = NULL; /* Cores */ pnv_chip_core_realize(chip, &error); if (error) { error_propagate(errp, error); return; } } static Property pnv_chip_properties[] = { DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0), DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0), DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0), DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1), DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0), DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1), DEFINE_PROP_BOOL("big-core", PnvChip, big_core, false), DEFINE_PROP_BOOL("lpar-per-core", PnvChip, lpar_per_core, false), DEFINE_PROP_END_OF_LIST(), }; static void pnv_chip_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); set_bit(DEVICE_CATEGORY_CPU, dc->categories); dc->realize = pnv_chip_realize; device_class_set_props(dc, pnv_chip_properties); dc->desc = "PowerNV Chip"; } PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id) { int i; for (i = 0; i < chip->nr_cores; i++) { PnvCore *pc = chip->cores[i]; CPUCore *cc = CPU_CORE(pc); if (cc->core_id == core_id) { return pc; } } return NULL; } PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir) { int i, j; for (i = 0; i < chip->nr_cores; i++) { PnvCore *pc = chip->cores[i]; CPUCore *cc = CPU_CORE(pc); for (j = 0; j < cc->nr_threads; j++) { if (ppc_cpu_pir(pc->threads[j]) == pir) { return pc->threads[j]; } } } return NULL; } static void pnv_chip_foreach_cpu(PnvChip *chip, void (*fn)(PnvChip *chip, PowerPCCPU *cpu, void *opaque), void *opaque) { int i, j; for (i = 0; i < chip->nr_cores; i++) { PnvCore *pc = chip->cores[i]; for (j = 0; j < CPU_CORE(pc)->nr_threads; j++) { fn(chip, pc->threads[j], opaque); } } } static ICSState *pnv_ics_get(XICSFabric *xi, int irq) { PnvMachineState *pnv = PNV_MACHINE(xi); int i, j; for (i = 0; i < pnv->num_chips; i++) { Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]); if (ics_valid_irq(&chip8->psi.ics, irq)) { return &chip8->psi.ics; } for (j = 0; j < chip8->num_phbs; j++) { PnvPHB *phb = chip8->phbs[j]; PnvPHB3 *phb3 = PNV_PHB3(phb->backend); if (ics_valid_irq(&phb3->lsis, irq)) { return &phb3->lsis; } if (ics_valid_irq(ICS(&phb3->msis), irq)) { return ICS(&phb3->msis); } } } return NULL; } PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id) { int i; for (i = 0; i < pnv->num_chips; i++) { PnvChip *chip = pnv->chips[i]; if (chip->chip_id == chip_id) { return chip; } } return NULL; } static void pnv_ics_resend(XICSFabric *xi) { PnvMachineState *pnv = PNV_MACHINE(xi); int i, j; for (i = 0; i < pnv->num_chips; i++) { Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]); ics_resend(&chip8->psi.ics); for (j = 0; j < chip8->num_phbs; j++) { PnvPHB *phb = chip8->phbs[j]; PnvPHB3 *phb3 = PNV_PHB3(phb->backend); ics_resend(&phb3->lsis); ics_resend(ICS(&phb3->msis)); } } } static ICPState *pnv_icp_get(XICSFabric *xi, int pir) { PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir); return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL; } static void pnv_pic_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, void *opaque) { PNV_CHIP_GET_CLASS(chip)->intc_print_info(chip, cpu, opaque); } static void pnv_pic_print_info(InterruptStatsProvider *obj, GString *buf) { PnvMachineState *pnv = PNV_MACHINE(obj); int i; for (i = 0; i < pnv->num_chips; i++) { PnvChip *chip = pnv->chips[i]; /* First CPU presenters */ pnv_chip_foreach_cpu(chip, pnv_pic_intc_print_info, buf); /* Then other devices, PHB, PSI, XIVE */ PNV_CHIP_GET_CLASS(chip)->pic_print_info(chip, buf); } } static int pnv_match_nvt(XiveFabric *xfb, uint8_t format, uint8_t nvt_blk, uint32_t nvt_idx, bool cam_ignore, uint8_t priority, uint32_t logic_serv, XiveTCTXMatch *match) { PnvMachineState *pnv = PNV_MACHINE(xfb); int total_count = 0; int i; for (i = 0; i < pnv->num_chips; i++) { Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]); XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive); XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); int count; count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, priority, logic_serv, match); if (count < 0) { return count; } total_count += count; } return total_count; } static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format, uint8_t nvt_blk, uint32_t nvt_idx, bool cam_ignore, uint8_t priority, uint32_t logic_serv, XiveTCTXMatch *match) { PnvMachineState *pnv = PNV_MACHINE(xfb); int total_count = 0; int i; for (i = 0; i < pnv->num_chips; i++) { Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]); XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive); XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); int count; count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, priority, logic_serv, match); if (count < 0) { return count; } total_count += count; } return total_count; } static bool pnv_machine_get_big_core(Object *obj, Error **errp) { PnvMachineState *pnv = PNV_MACHINE(obj); return pnv->big_core; } static void pnv_machine_set_big_core(Object *obj, bool value, Error **errp) { PnvMachineState *pnv = PNV_MACHINE(obj); pnv->big_core = value; } static bool pnv_machine_get_lpar_per_core(Object *obj, Error **errp) { PnvMachineState *pnv = PNV_MACHINE(obj); return pnv->lpar_per_core; } static void pnv_machine_set_lpar_per_core(Object *obj, bool value, Error **errp) { PnvMachineState *pnv = PNV_MACHINE(obj); pnv->lpar_per_core = value; } static bool pnv_machine_get_hb(Object *obj, Error **errp) { PnvMachineState *pnv = PNV_MACHINE(obj); return !!pnv->fw_load_addr; } static void pnv_machine_set_hb(Object *obj, bool value, Error **errp) { PnvMachineState *pnv = PNV_MACHINE(obj); if (value) { pnv->fw_load_addr = 0x8000000; } } static void pnv_machine_power8_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv"; static GlobalProperty phb_compat[] = { { TYPE_PNV_PHB, "version", "3" }, { TYPE_PNV_PHB_ROOT_PORT, "version", "3" }, }; mc->desc = "IBM PowerNV (Non-Virtualized) POWER8"; mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat)); xic->icp_get = pnv_icp_get; xic->ics_get = pnv_ics_get; xic->ics_resend = pnv_ics_resend; pmc->compat = compat; pmc->compat_size = sizeof(compat); pmc->max_smt_threads = 8; /* POWER8 is always lpar-per-core mode */ pmc->has_lpar_per_thread = false; machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB); } static void pnv_machine_power9_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); static const char compat[] = "qemu,powernv9\0ibm,powernv"; static GlobalProperty phb_compat[] = { { TYPE_PNV_PHB, "version", "4" }, { TYPE_PNV_PHB_ROOT_PORT, "version", "4" }, }; mc->desc = "IBM PowerNV (Non-Virtualized) POWER9"; mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2"); compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat)); xfc->match_nvt = pnv_match_nvt; pmc->compat = compat; pmc->compat_size = sizeof(compat); pmc->max_smt_threads = 4; pmc->has_lpar_per_thread = true; pmc->dt_power_mgt = pnv_dt_power_mgt; machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB); object_class_property_add_bool(oc, "big-core", pnv_machine_get_big_core, pnv_machine_set_big_core); object_class_property_set_description(oc, "big-core", "Use big-core (aka fused-core) mode"); object_class_property_add_bool(oc, "lpar-per-core", pnv_machine_get_lpar_per_core, pnv_machine_set_lpar_per_core); object_class_property_set_description(oc, "lpar-per-core", "Use 1 LPAR per core mode"); } static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); static const char compat[] = "qemu,powernv10\0ibm,powernv"; static GlobalProperty phb_compat[] = { { TYPE_PNV_PHB, "version", "5" }, { TYPE_PNV_PHB_ROOT_PORT, "version", "5" }, }; mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0"); compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat)); mc->alias = "powernv"; pmc->compat = compat; pmc->compat_size = sizeof(compat); pmc->max_smt_threads = 4; pmc->has_lpar_per_thread = true; pmc->quirk_tb_big_core = true; pmc->dt_power_mgt = pnv_dt_power_mgt; xfc->match_nvt = pnv10_xive_match_nvt; machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB); } static void pnv_machine_power10_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); pnv_machine_p10_common_class_init(oc, data); mc->desc = "IBM PowerNV (Non-Virtualized) POWER10"; /* * This is the parent of POWER10 Rainier class, so properies go here * rather than common init (which would add them to both parent and * child which is invalid). */ object_class_property_add_bool(oc, "big-core", pnv_machine_get_big_core, pnv_machine_set_big_core); object_class_property_set_description(oc, "big-core", "Use big-core (aka fused-core) mode"); object_class_property_add_bool(oc, "lpar-per-core", pnv_machine_get_lpar_per_core, pnv_machine_set_lpar_per_core); object_class_property_set_description(oc, "lpar-per-core", "Use 1 LPAR per core mode"); } static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); pnv_machine_p10_common_class_init(oc, data); mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier"; pmc->i2c_init = pnv_rainier_i2c_init; } static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg) { CPUPPCState *env = cpu_env(cs); cpu_synchronize_state(cs); ppc_cpu_do_system_reset(cs); if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) { /* * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100 * (PPC_BIT(43)). */ if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) { warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason"); env->spr[SPR_SRR1] |= SRR1_WAKERESET; } } else { /* * For non-powersave system resets, SRR1[42:45] are defined to be * implementation-dependent. The POWER9 User Manual specifies that * an external (SCOM driven, which may come from a BMC nmi command or * another CPU requesting a NMI IPI) system reset exception should be * 0b0010 (PPC_BIT(44)). */ env->spr[SPR_SRR1] |= SRR1_WAKESCOM; } if (arg.host_int == 1) { cpu_resume(cs); } } /* * Send a SRESET (NMI) interrupt to the CPU, and resume execution if it was * paused. */ void pnv_cpu_do_nmi_resume(CPUState *cs) { async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_HOST_INT(1)); } static void pnv_cpu_do_nmi(PnvChip *chip, PowerPCCPU *cpu, void *opaque) { async_run_on_cpu(CPU(cpu), pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_HOST_INT(0)); } static void pnv_nmi(NMIState *n, int cpu_index, Error **errp) { PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); int i; for (i = 0; i < pnv->num_chips; i++) { pnv_chip_foreach_cpu(pnv->chips[i], pnv_cpu_do_nmi, NULL); } } static void pnv_machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); NMIClass *nc = NMI_CLASS(oc); mc->desc = "IBM PowerNV (Non-Virtualized)"; mc->init = pnv_init; mc->reset = pnv_reset; mc->max_cpus = MAX_CPUS; /* Pnv provides a AHCI device for storage */ mc->block_default_type = IF_IDE; mc->no_parallel = 1; mc->default_boot_order = NULL; /* * RAM defaults to less than 2048 for 32-bit hosts, and large * enough to fit the maximum initrd size at it's load address */ mc->default_ram_size = 1 * GiB; mc->default_ram_id = "pnv.ram"; ispc->print_info = pnv_pic_print_info; nc->nmi_monitor_handler = pnv_nmi; object_class_property_add_bool(oc, "hb-mode", pnv_machine_get_hb, pnv_machine_set_hb); object_class_property_set_description(oc, "hb-mode", "Use a hostboot like boot loader"); } #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \ { \ .name = type, \ .class_init = class_initfn, \ .parent = TYPE_PNV8_CHIP, \ } #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \ { \ .name = type, \ .class_init = class_initfn, \ .parent = TYPE_PNV9_CHIP, \ } #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \ { \ .name = type, \ .class_init = class_initfn, \ .parent = TYPE_PNV10_CHIP, \ } static const TypeInfo types[] = { { .name = MACHINE_TYPE_NAME("powernv10-rainier"), .parent = MACHINE_TYPE_NAME("powernv10"), .class_init = pnv_machine_p10_rainier_class_init, }, { .name = MACHINE_TYPE_NAME("powernv10"), .parent = TYPE_PNV_MACHINE, .class_init = pnv_machine_power10_class_init, .interfaces = (InterfaceInfo[]) { { TYPE_XIVE_FABRIC }, { }, }, }, { .name = MACHINE_TYPE_NAME("powernv9"), .parent = TYPE_PNV_MACHINE, .class_init = pnv_machine_power9_class_init, .interfaces = (InterfaceInfo[]) { { TYPE_XIVE_FABRIC }, { }, }, }, { .name = MACHINE_TYPE_NAME("powernv8"), .parent = TYPE_PNV_MACHINE, .class_init = pnv_machine_power8_class_init, .interfaces = (InterfaceInfo[]) { { TYPE_XICS_FABRIC }, { }, }, }, { .name = TYPE_PNV_MACHINE, .parent = TYPE_MACHINE, .abstract = true, .instance_size = sizeof(PnvMachineState), .class_init = pnv_machine_class_init, .class_size = sizeof(PnvMachineClass), .interfaces = (InterfaceInfo[]) { { TYPE_INTERRUPT_STATS_PROVIDER }, { TYPE_NMI }, { }, }, }, { .name = TYPE_PNV_CHIP, .parent = TYPE_SYS_BUS_DEVICE, .class_init = pnv_chip_class_init, .instance_size = sizeof(PnvChip), .class_size = sizeof(PnvChipClass), .abstract = true, }, /* * P10 chip and variants */ { .name = TYPE_PNV10_CHIP, .parent = TYPE_PNV_CHIP, .instance_init = pnv_chip_power10_instance_init, .instance_size = sizeof(Pnv10Chip), }, DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init), /* * P9 chip and variants */ { .name = TYPE_PNV9_CHIP, .parent = TYPE_PNV_CHIP, .instance_init = pnv_chip_power9_instance_init, .instance_size = sizeof(Pnv9Chip), }, DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init), /* * P8 chip and variants */ { .name = TYPE_PNV8_CHIP, .parent = TYPE_PNV_CHIP, .instance_init = pnv_chip_power8_instance_init, .instance_size = sizeof(Pnv8Chip), }, DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init), DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init), DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL, pnv_chip_power8nvl_class_init), }; DEFINE_TYPES(types)