/* * QEMU PCI bus manager * * Copyright (c) 2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu/datadir.h" #include "qemu/units.h" #include "hw/irq.h" #include "hw/pci/pci.h" #include "hw/pci/pci_bridge.h" #include "hw/pci/pci_bus.h" #include "hw/pci/pci_host.h" #include "hw/qdev-properties.h" #include "hw/qdev-properties-system.h" #include "migration/qemu-file-types.h" #include "migration/vmstate.h" #include "net/net.h" #include "sysemu/numa.h" #include "sysemu/runstate.h" #include "sysemu/sysemu.h" #include "hw/loader.h" #include "qemu/error-report.h" #include "qemu/range.h" #include "trace.h" #include "hw/pci/msi.h" #include "hw/pci/msix.h" #include "hw/hotplug.h" #include "hw/boards.h" #include "qapi/error.h" #include "qemu/cutils.h" #include "pci-internal.h" #include "hw/xen/xen.h" #include "hw/i386/kvm/xen_evtchn.h" //#define DEBUG_PCI #ifdef DEBUG_PCI # define PCI_DPRINTF(format, ...) printf(format, ## __VA_ARGS__) #else # define PCI_DPRINTF(format, ...) do { } while (0) #endif bool pci_available = true; static char *pcibus_get_dev_path(DeviceState *dev); static char *pcibus_get_fw_dev_path(DeviceState *dev); static void pcibus_reset(BusState *qbus); static Property pci_props[] = { DEFINE_PROP_PCI_DEVFN("addr", PCIDevice, devfn, -1), DEFINE_PROP_STRING("romfile", PCIDevice, romfile), DEFINE_PROP_UINT32("romsize", PCIDevice, romsize, -1), DEFINE_PROP_UINT32("rombar", PCIDevice, rom_bar, 1), DEFINE_PROP_BIT("multifunction", PCIDevice, cap_present, QEMU_PCI_CAP_MULTIFUNCTION_BITNR, false), DEFINE_PROP_BIT("x-pcie-lnksta-dllla", PCIDevice, cap_present, QEMU_PCIE_LNKSTA_DLLLA_BITNR, true), DEFINE_PROP_BIT("x-pcie-extcap-init", PCIDevice, cap_present, QEMU_PCIE_EXTCAP_INIT_BITNR, true), DEFINE_PROP_STRING("failover_pair_id", PCIDevice, failover_pair_id), DEFINE_PROP_UINT32("acpi-index", PCIDevice, acpi_index, 0), DEFINE_PROP_BIT("x-pcie-err-unc-mask", PCIDevice, cap_present, QEMU_PCIE_ERR_UNC_MASK_BITNR, true), DEFINE_PROP_END_OF_LIST() }; static const VMStateDescription vmstate_pcibus = { .name = "PCIBUS", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_INT32_EQUAL(nirq, PCIBus, NULL), VMSTATE_VARRAY_INT32(irq_count, PCIBus, nirq, 0, vmstate_info_int32, int32_t), VMSTATE_END_OF_LIST() } }; static gint g_cmp_uint32(gconstpointer a, gconstpointer b, gpointer user_data) { return a - b; } static GSequence *pci_acpi_index_list(void) { static GSequence *used_acpi_index_list; if (!used_acpi_index_list) { used_acpi_index_list = g_sequence_new(NULL); } return used_acpi_index_list; } static void pci_init_bus_master(PCIDevice *pci_dev) { AddressSpace *dma_as = pci_device_iommu_address_space(pci_dev); memory_region_init_alias(&pci_dev->bus_master_enable_region, OBJECT(pci_dev), "bus master", dma_as->root, 0, memory_region_size(dma_as->root)); memory_region_set_enabled(&pci_dev->bus_master_enable_region, false); memory_region_add_subregion(&pci_dev->bus_master_container_region, 0, &pci_dev->bus_master_enable_region); } static void pcibus_machine_done(Notifier *notifier, void *data) { PCIBus *bus = container_of(notifier, PCIBus, machine_done); int i; for (i = 0; i < ARRAY_SIZE(bus->devices); ++i) { if (bus->devices[i]) { pci_init_bus_master(bus->devices[i]); } } } static void pci_bus_realize(BusState *qbus, Error **errp) { PCIBus *bus = PCI_BUS(qbus); bus->machine_done.notify = pcibus_machine_done; qemu_add_machine_init_done_notifier(&bus->machine_done); vmstate_register(NULL, VMSTATE_INSTANCE_ID_ANY, &vmstate_pcibus, bus); } static void pcie_bus_realize(BusState *qbus, Error **errp) { PCIBus *bus = PCI_BUS(qbus); Error *local_err = NULL; pci_bus_realize(qbus, &local_err); if (local_err) { error_propagate(errp, local_err); return; } /* * A PCI-E bus can support extended config space if it's the root * bus, or if the bus/bridge above it does as well */ if (pci_bus_is_root(bus)) { bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE; } else { PCIBus *parent_bus = pci_get_bus(bus->parent_dev); if (pci_bus_allows_extended_config_space(parent_bus)) { bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE; } } } static void pci_bus_unrealize(BusState *qbus) { PCIBus *bus = PCI_BUS(qbus); qemu_remove_machine_init_done_notifier(&bus->machine_done); vmstate_unregister(NULL, &vmstate_pcibus, bus); } static int pcibus_num(PCIBus *bus) { if (pci_bus_is_root(bus)) { return 0; /* pci host bridge */ } return bus->parent_dev->config[PCI_SECONDARY_BUS]; } static uint16_t pcibus_numa_node(PCIBus *bus) { return NUMA_NODE_UNASSIGNED; } static void pci_bus_class_init(ObjectClass *klass, void *data) { BusClass *k = BUS_CLASS(klass); PCIBusClass *pbc = PCI_BUS_CLASS(klass); k->print_dev = pcibus_dev_print; k->get_dev_path = pcibus_get_dev_path; k->get_fw_dev_path = pcibus_get_fw_dev_path; k->realize = pci_bus_realize; k->unrealize = pci_bus_unrealize; k->reset = pcibus_reset; pbc->bus_num = pcibus_num; pbc->numa_node = pcibus_numa_node; } static const TypeInfo pci_bus_info = { .name = TYPE_PCI_BUS, .parent = TYPE_BUS, .instance_size = sizeof(PCIBus), .class_size = sizeof(PCIBusClass), .class_init = pci_bus_class_init, }; static const TypeInfo cxl_interface_info = { .name = INTERFACE_CXL_DEVICE, .parent = TYPE_INTERFACE, }; static const TypeInfo pcie_interface_info = { .name = INTERFACE_PCIE_DEVICE, .parent = TYPE_INTERFACE, }; static const TypeInfo conventional_pci_interface_info = { .name = INTERFACE_CONVENTIONAL_PCI_DEVICE, .parent = TYPE_INTERFACE, }; static void pcie_bus_class_init(ObjectClass *klass, void *data) { BusClass *k = BUS_CLASS(klass); k->realize = pcie_bus_realize; } static const TypeInfo pcie_bus_info = { .name = TYPE_PCIE_BUS, .parent = TYPE_PCI_BUS, .class_init = pcie_bus_class_init, }; static const TypeInfo cxl_bus_info = { .name = TYPE_CXL_BUS, .parent = TYPE_PCIE_BUS, .class_init = pcie_bus_class_init, }; static void pci_update_mappings(PCIDevice *d); static void pci_irq_handler(void *opaque, int irq_num, int level); static void pci_add_option_rom(PCIDevice *pdev, bool is_default_rom, Error **); static void pci_del_option_rom(PCIDevice *pdev); static uint16_t pci_default_sub_vendor_id = PCI_SUBVENDOR_ID_REDHAT_QUMRANET; static uint16_t pci_default_sub_device_id = PCI_SUBDEVICE_ID_QEMU; PCIHostStateList pci_host_bridges; int pci_bar(PCIDevice *d, int reg) { uint8_t type; /* PCIe virtual functions do not have their own BARs */ assert(!pci_is_vf(d)); if (reg != PCI_ROM_SLOT) return PCI_BASE_ADDRESS_0 + reg * 4; type = d->config[PCI_HEADER_TYPE] & ~PCI_HEADER_TYPE_MULTI_FUNCTION; return type == PCI_HEADER_TYPE_BRIDGE ? PCI_ROM_ADDRESS1 : PCI_ROM_ADDRESS; } static inline int pci_irq_state(PCIDevice *d, int irq_num) { return (d->irq_state >> irq_num) & 0x1; } static inline void pci_set_irq_state(PCIDevice *d, int irq_num, int level) { d->irq_state &= ~(0x1 << irq_num); d->irq_state |= level << irq_num; } static void pci_bus_change_irq_level(PCIBus *bus, int irq_num, int change) { assert(irq_num >= 0); assert(irq_num < bus->nirq); bus->irq_count[irq_num] += change; bus->set_irq(bus->irq_opaque, irq_num, bus->irq_count[irq_num] != 0); } static void pci_change_irq_level(PCIDevice *pci_dev, int irq_num, int change) { PCIBus *bus; for (;;) { int dev_irq = irq_num; bus = pci_get_bus(pci_dev); assert(bus->map_irq); irq_num = bus->map_irq(pci_dev, irq_num); trace_pci_route_irq(dev_irq, DEVICE(pci_dev)->canonical_path, irq_num, pci_bus_is_root(bus) ? "root-complex" : DEVICE(bus->parent_dev)->canonical_path); if (bus->set_irq) break; pci_dev = bus->parent_dev; } pci_bus_change_irq_level(bus, irq_num, change); } int pci_bus_get_irq_level(PCIBus *bus, int irq_num) { assert(irq_num >= 0); assert(irq_num < bus->nirq); return !!bus->irq_count[irq_num]; } /* Update interrupt status bit in config space on interrupt * state change. */ static void pci_update_irq_status(PCIDevice *dev) { if (dev->irq_state) { dev->config[PCI_STATUS] |= PCI_STATUS_INTERRUPT; } else { dev->config[PCI_STATUS] &= ~PCI_STATUS_INTERRUPT; } } void pci_device_deassert_intx(PCIDevice *dev) { int i; for (i = 0; i < PCI_NUM_PINS; ++i) { pci_irq_handler(dev, i, 0); } } static void pci_msi_trigger(PCIDevice *dev, MSIMessage msg) { MemTxAttrs attrs = {}; /* * Xen uses the high bits of the address to contain some of the bits * of the PIRQ#. Therefore we can't just send the write cycle and * trust that it's caught by the APIC at 0xfee00000 because the * target of the write might be e.g. 0x0x1000fee46000 for PIRQ#4166. * So we intercept the delivery here instead of in kvm_send_msi(). */ if (xen_mode == XEN_EMULATE && xen_evtchn_deliver_pirq_msi(msg.address, msg.data)) { return; } attrs.requester_id = pci_requester_id(dev); address_space_stl_le(&dev->bus_master_as, msg.address, msg.data, attrs, NULL); } static void pci_reset_regions(PCIDevice *dev) { int r; if (pci_is_vf(dev)) { return; } for (r = 0; r < PCI_NUM_REGIONS; ++r) { PCIIORegion *region = &dev->io_regions[r]; if (!region->size) { continue; } if (!(region->type & PCI_BASE_ADDRESS_SPACE_IO) && region->type & PCI_BASE_ADDRESS_MEM_TYPE_64) { pci_set_quad(dev->config + pci_bar(dev, r), region->type); } else { pci_set_long(dev->config + pci_bar(dev, r), region->type); } } } static void pci_do_device_reset(PCIDevice *dev) { pci_device_deassert_intx(dev); assert(dev->irq_state == 0); /* Clear all writable bits */ pci_word_test_and_clear_mask(dev->config + PCI_COMMAND, pci_get_word(dev->wmask + PCI_COMMAND) | pci_get_word(dev->w1cmask + PCI_COMMAND)); pci_word_test_and_clear_mask(dev->config + PCI_STATUS, pci_get_word(dev->wmask + PCI_STATUS) | pci_get_word(dev->w1cmask + PCI_STATUS)); /* Some devices make bits of PCI_INTERRUPT_LINE read only */ pci_byte_test_and_clear_mask(dev->config + PCI_INTERRUPT_LINE, pci_get_word(dev->wmask + PCI_INTERRUPT_LINE) | pci_get_word(dev->w1cmask + PCI_INTERRUPT_LINE)); dev->config[PCI_CACHE_LINE_SIZE] = 0x0; pci_reset_regions(dev); pci_update_mappings(dev); msi_reset(dev); msix_reset(dev); } /* * This function is called on #RST and FLR. * FLR if PCI_EXP_DEVCTL_BCR_FLR is set */ void pci_device_reset(PCIDevice *dev) { device_cold_reset(&dev->qdev); pci_do_device_reset(dev); } /* * Trigger pci bus reset under a given bus. * Called via bus_cold_reset on RST# assert, after the devices * have been reset device_cold_reset-ed already. */ static void pcibus_reset(BusState *qbus) { PCIBus *bus = DO_UPCAST(PCIBus, qbus, qbus); int i; for (i = 0; i < ARRAY_SIZE(bus->devices); ++i) { if (bus->devices[i]) { pci_do_device_reset(bus->devices[i]); } } for (i = 0; i < bus->nirq; i++) { assert(bus->irq_count[i] == 0); } } static void pci_host_bus_register(DeviceState *host) { PCIHostState *host_bridge = PCI_HOST_BRIDGE(host); QLIST_INSERT_HEAD(&pci_host_bridges, host_bridge, next); } static void pci_host_bus_unregister(DeviceState *host) { PCIHostState *host_bridge = PCI_HOST_BRIDGE(host); QLIST_REMOVE(host_bridge, next); } PCIBus *pci_device_root_bus(const PCIDevice *d) { PCIBus *bus = pci_get_bus(d); while (!pci_bus_is_root(bus)) { d = bus->parent_dev; assert(d != NULL); bus = pci_get_bus(d); } return bus; } const char *pci_root_bus_path(PCIDevice *dev) { PCIBus *rootbus = pci_device_root_bus(dev); PCIHostState *host_bridge = PCI_HOST_BRIDGE(rootbus->qbus.parent); PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_GET_CLASS(host_bridge); assert(host_bridge->bus == rootbus); if (hc->root_bus_path) { return (*hc->root_bus_path)(host_bridge, rootbus); } return rootbus->qbus.name; } bool pci_bus_bypass_iommu(PCIBus *bus) { PCIBus *rootbus = bus; PCIHostState *host_bridge; if (!pci_bus_is_root(bus)) { rootbus = pci_device_root_bus(bus->parent_dev); } host_bridge = PCI_HOST_BRIDGE(rootbus->qbus.parent); assert(host_bridge->bus == rootbus); return host_bridge->bypass_iommu; } static void pci_root_bus_internal_init(PCIBus *bus, DeviceState *parent, MemoryRegion *address_space_mem, MemoryRegion *address_space_io, uint8_t devfn_min) { assert(PCI_FUNC(devfn_min) == 0); bus->devfn_min = devfn_min; bus->slot_reserved_mask = 0x0; bus->address_space_mem = address_space_mem; bus->address_space_io = address_space_io; bus->flags |= PCI_BUS_IS_ROOT; /* host bridge */ QLIST_INIT(&bus->child); pci_host_bus_register(parent); } static void pci_bus_uninit(PCIBus *bus) { pci_host_bus_unregister(BUS(bus)->parent); } bool pci_bus_is_express(const PCIBus *bus) { return object_dynamic_cast(OBJECT(bus), TYPE_PCIE_BUS); } void pci_root_bus_init(PCIBus *bus, size_t bus_size, DeviceState *parent, const char *name, MemoryRegion *address_space_mem, MemoryRegion *address_space_io, uint8_t devfn_min, const char *typename) { qbus_init(bus, bus_size, typename, parent, name); pci_root_bus_internal_init(bus, parent, address_space_mem, address_space_io, devfn_min); } PCIBus *pci_root_bus_new(DeviceState *parent, const char *name, MemoryRegion *address_space_mem, MemoryRegion *address_space_io, uint8_t devfn_min, const char *typename) { PCIBus *bus; bus = PCI_BUS(qbus_new(typename, parent, name)); pci_root_bus_internal_init(bus, parent, address_space_mem, address_space_io, devfn_min); return bus; } void pci_root_bus_cleanup(PCIBus *bus) { pci_bus_uninit(bus); /* the caller of the unplug hotplug handler will delete this device */ qbus_unrealize(BUS(bus)); } void pci_bus_irqs(PCIBus *bus, pci_set_irq_fn set_irq, void *irq_opaque, int nirq) { bus->set_irq = set_irq; bus->irq_opaque = irq_opaque; bus->nirq = nirq; g_free(bus->irq_count); bus->irq_count = g_malloc0(nirq * sizeof(bus->irq_count[0])); } void pci_bus_map_irqs(PCIBus *bus, pci_map_irq_fn map_irq) { bus->map_irq = map_irq; } void pci_bus_irqs_cleanup(PCIBus *bus) { bus->set_irq = NULL; bus->map_irq = NULL; bus->irq_opaque = NULL; bus->nirq = 0; g_free(bus->irq_count); bus->irq_count = NULL; } PCIBus *pci_register_root_bus(DeviceState *parent, const char *name, pci_set_irq_fn set_irq, pci_map_irq_fn map_irq, void *irq_opaque, MemoryRegion *address_space_mem, MemoryRegion *address_space_io, uint8_t devfn_min, int nirq, const char *typename) { PCIBus *bus; bus = pci_root_bus_new(parent, name, address_space_mem, address_space_io, devfn_min, typename); pci_bus_irqs(bus, set_irq, irq_opaque, nirq); pci_bus_map_irqs(bus, map_irq); return bus; } void pci_unregister_root_bus(PCIBus *bus) { pci_bus_irqs_cleanup(bus); pci_root_bus_cleanup(bus); } int pci_bus_num(PCIBus *s) { return PCI_BUS_GET_CLASS(s)->bus_num(s); } /* Returns the min and max bus numbers of a PCI bus hierarchy */ void pci_bus_range(PCIBus *bus, int *min_bus, int *max_bus) { int i; *min_bus = *max_bus = pci_bus_num(bus); for (i = 0; i < ARRAY_SIZE(bus->devices); ++i) { PCIDevice *dev = bus->devices[i]; if (dev && IS_PCI_BRIDGE(dev)) { *min_bus = MIN(*min_bus, dev->config[PCI_SECONDARY_BUS]); *max_bus = MAX(*max_bus, dev->config[PCI_SUBORDINATE_BUS]); } } } int pci_bus_numa_node(PCIBus *bus) { return PCI_BUS_GET_CLASS(bus)->numa_node(bus); } static int get_pci_config_device(QEMUFile *f, void *pv, size_t size, const VMStateField *field) { PCIDevice *s = container_of(pv, PCIDevice, config); uint8_t *config; int i; assert(size == pci_config_size(s)); config = g_malloc(size); qemu_get_buffer(f, config, size); for (i = 0; i < size; ++i) { if ((config[i] ^ s->config[i]) & s->cmask[i] & ~s->wmask[i] & ~s->w1cmask[i]) { error_report("%s: Bad config data: i=0x%x read: %x device: %x " "cmask: %x wmask: %x w1cmask:%x", __func__, i, config[i], s->config[i], s->cmask[i], s->wmask[i], s->w1cmask[i]); g_free(config); return -EINVAL; } } memcpy(s->config, config, size); pci_update_mappings(s); if (IS_PCI_BRIDGE(s)) { pci_bridge_update_mappings(PCI_BRIDGE(s)); } memory_region_set_enabled(&s->bus_master_enable_region, pci_get_word(s->config + PCI_COMMAND) & PCI_COMMAND_MASTER); g_free(config); return 0; } /* just put buffer */ static int put_pci_config_device(QEMUFile *f, void *pv, size_t size, const VMStateField *field, JSONWriter *vmdesc) { const uint8_t **v = pv; assert(size == pci_config_size(container_of(pv, PCIDevice, config))); qemu_put_buffer(f, *v, size); return 0; } static VMStateInfo vmstate_info_pci_config = { .name = "pci config", .get = get_pci_config_device, .put = put_pci_config_device, }; static int get_pci_irq_state(QEMUFile *f, void *pv, size_t size, const VMStateField *field) { PCIDevice *s = container_of(pv, PCIDevice, irq_state); uint32_t irq_state[PCI_NUM_PINS]; int i; for (i = 0; i < PCI_NUM_PINS; ++i) { irq_state[i] = qemu_get_be32(f); if (irq_state[i] != 0x1 && irq_state[i] != 0) { fprintf(stderr, "irq state %d: must be 0 or 1.\n", irq_state[i]); return -EINVAL; } } for (i = 0; i < PCI_NUM_PINS; ++i) { pci_set_irq_state(s, i, irq_state[i]); } return 0; } static int put_pci_irq_state(QEMUFile *f, void *pv, size_t size, const VMStateField *field, JSONWriter *vmdesc) { int i; PCIDevice *s = container_of(pv, PCIDevice, irq_state); for (i = 0; i < PCI_NUM_PINS; ++i) { qemu_put_be32(f, pci_irq_state(s, i)); } return 0; } static VMStateInfo vmstate_info_pci_irq_state = { .name = "pci irq state", .get = get_pci_irq_state, .put = put_pci_irq_state, }; static bool migrate_is_pcie(void *opaque, int version_id) { return pci_is_express((PCIDevice *)opaque); } static bool migrate_is_not_pcie(void *opaque, int version_id) { return !pci_is_express((PCIDevice *)opaque); } const VMStateDescription vmstate_pci_device = { .name = "PCIDevice", .version_id = 2, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_INT32_POSITIVE_LE(version_id, PCIDevice), VMSTATE_BUFFER_UNSAFE_INFO_TEST(config, PCIDevice, migrate_is_not_pcie, 0, vmstate_info_pci_config, PCI_CONFIG_SPACE_SIZE), VMSTATE_BUFFER_UNSAFE_INFO_TEST(config, PCIDevice, migrate_is_pcie, 0, vmstate_info_pci_config, PCIE_CONFIG_SPACE_SIZE), VMSTATE_BUFFER_UNSAFE_INFO(irq_state, PCIDevice, 2, vmstate_info_pci_irq_state, PCI_NUM_PINS * sizeof(int32_t)), VMSTATE_END_OF_LIST() } }; void pci_device_save(PCIDevice *s, QEMUFile *f) { /* Clear interrupt status bit: it is implicit * in irq_state which we are saving. * This makes us compatible with old devices * which never set or clear this bit. */ s->config[PCI_STATUS] &= ~PCI_STATUS_INTERRUPT; vmstate_save_state(f, &vmstate_pci_device, s, NULL); /* Restore the interrupt status bit. */ pci_update_irq_status(s); } int pci_device_load(PCIDevice *s, QEMUFile *f) { int ret; ret = vmstate_load_state(f, &vmstate_pci_device, s, s->version_id); /* Restore the interrupt status bit. */ pci_update_irq_status(s); return ret; } static void pci_set_default_subsystem_id(PCIDevice *pci_dev) { pci_set_word(pci_dev->config + PCI_SUBSYSTEM_VENDOR_ID, pci_default_sub_vendor_id); pci_set_word(pci_dev->config + PCI_SUBSYSTEM_ID, pci_default_sub_device_id); } /* * Parse [[:]:], return -1 on error if funcp == NULL * [[:]:]., return -1 on error */ static int pci_parse_devaddr(const char *addr, int *domp, int *busp, unsigned int *slotp, unsigned int *funcp) { const char *p; char *e; unsigned long val; unsigned long dom = 0, bus = 0; unsigned int slot = 0; unsigned int func = 0; p = addr; val = strtoul(p, &e, 16); if (e == p) return -1; if (*e == ':') { bus = val; p = e + 1; val = strtoul(p, &e, 16); if (e == p) return -1; if (*e == ':') { dom = bus; bus = val; p = e + 1; val = strtoul(p, &e, 16); if (e == p) return -1; } } slot = val; if (funcp != NULL) { if (*e != '.') return -1; p = e + 1; val = strtoul(p, &e, 16); if (e == p) return -1; func = val; } /* if funcp == NULL func is 0 */ if (dom > 0xffff || bus > 0xff || slot > 0x1f || func > 7) return -1; if (*e) return -1; *domp = dom; *busp = bus; *slotp = slot; if (funcp != NULL) *funcp = func; return 0; } static void pci_init_cmask(PCIDevice *dev) { pci_set_word(dev->cmask + PCI_VENDOR_ID, 0xffff); pci_set_word(dev->cmask + PCI_DEVICE_ID, 0xffff); dev->cmask[PCI_STATUS] = PCI_STATUS_CAP_LIST; dev->cmask[PCI_REVISION_ID] = 0xff; dev->cmask[PCI_CLASS_PROG] = 0xff; pci_set_word(dev->cmask + PCI_CLASS_DEVICE, 0xffff); dev->cmask[PCI_HEADER_TYPE] = 0xff; dev->cmask[PCI_CAPABILITY_LIST] = 0xff; } static void pci_init_wmask(PCIDevice *dev) { int config_size = pci_config_size(dev); dev->wmask[PCI_CACHE_LINE_SIZE] = 0xff; dev->wmask[PCI_INTERRUPT_LINE] = 0xff; pci_set_word(dev->wmask + PCI_COMMAND, PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INTX_DISABLE); pci_word_test_and_set_mask(dev->wmask + PCI_COMMAND, PCI_COMMAND_SERR); memset(dev->wmask + PCI_CONFIG_HEADER_SIZE, 0xff, config_size - PCI_CONFIG_HEADER_SIZE); } static void pci_init_w1cmask(PCIDevice *dev) { /* * Note: It's okay to set w1cmask even for readonly bits as * long as their value is hardwired to 0. */ pci_set_word(dev->w1cmask + PCI_STATUS, PCI_STATUS_PARITY | PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_DETECTED_PARITY); } static void pci_init_mask_bridge(PCIDevice *d) { /* PCI_PRIMARY_BUS, PCI_SECONDARY_BUS, PCI_SUBORDINATE_BUS and PCI_SEC_LETENCY_TIMER */ memset(d->wmask + PCI_PRIMARY_BUS, 0xff, 4); /* base and limit */ d->wmask[PCI_IO_BASE] = PCI_IO_RANGE_MASK & 0xff; d->wmask[PCI_IO_LIMIT] = PCI_IO_RANGE_MASK & 0xff; pci_set_word(d->wmask + PCI_MEMORY_BASE, PCI_MEMORY_RANGE_MASK & 0xffff); pci_set_word(d->wmask + PCI_MEMORY_LIMIT, PCI_MEMORY_RANGE_MASK & 0xffff); pci_set_word(d->wmask + PCI_PREF_MEMORY_BASE, PCI_PREF_RANGE_MASK & 0xffff); pci_set_word(d->wmask + PCI_PREF_MEMORY_LIMIT, PCI_PREF_RANGE_MASK & 0xffff); /* PCI_PREF_BASE_UPPER32 and PCI_PREF_LIMIT_UPPER32 */ memset(d->wmask + PCI_PREF_BASE_UPPER32, 0xff, 8); /* Supported memory and i/o types */ d->config[PCI_IO_BASE] |= PCI_IO_RANGE_TYPE_16; d->config[PCI_IO_LIMIT] |= PCI_IO_RANGE_TYPE_16; pci_word_test_and_set_mask(d->config + PCI_PREF_MEMORY_BASE, PCI_PREF_RANGE_TYPE_64); pci_word_test_and_set_mask(d->config + PCI_PREF_MEMORY_LIMIT, PCI_PREF_RANGE_TYPE_64); /* * TODO: Bridges default to 10-bit VGA decoding but we currently only * implement 16-bit decoding (no alias support). */ pci_set_word(d->wmask + PCI_BRIDGE_CONTROL, PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR | PCI_BRIDGE_CTL_ISA | PCI_BRIDGE_CTL_VGA | PCI_BRIDGE_CTL_VGA_16BIT | PCI_BRIDGE_CTL_MASTER_ABORT | PCI_BRIDGE_CTL_BUS_RESET | PCI_BRIDGE_CTL_FAST_BACK | PCI_BRIDGE_CTL_DISCARD | PCI_BRIDGE_CTL_SEC_DISCARD | PCI_BRIDGE_CTL_DISCARD_SERR); /* Below does not do anything as we never set this bit, put here for * completeness. */ pci_set_word(d->w1cmask + PCI_BRIDGE_CONTROL, PCI_BRIDGE_CTL_DISCARD_STATUS); d->cmask[PCI_IO_BASE] |= PCI_IO_RANGE_TYPE_MASK; d->cmask[PCI_IO_LIMIT] |= PCI_IO_RANGE_TYPE_MASK; pci_word_test_and_set_mask(d->cmask + PCI_PREF_MEMORY_BASE, PCI_PREF_RANGE_TYPE_MASK); pci_word_test_and_set_mask(d->cmask + PCI_PREF_MEMORY_LIMIT, PCI_PREF_RANGE_TYPE_MASK); } static void pci_init_multifunction(PCIBus *bus, PCIDevice *dev, Error **errp) { uint8_t slot = PCI_SLOT(dev->devfn); uint8_t func; if (dev->cap_present & QEMU_PCI_CAP_MULTIFUNCTION) { dev->config[PCI_HEADER_TYPE] |= PCI_HEADER_TYPE_MULTI_FUNCTION; } /* * With SR/IOV and ARI, a device at function 0 need not be a multifunction * device, as it may just be a VF that ended up with function 0 in * the legacy PCI interpretation. Avoid failing in such cases: */ if (pci_is_vf(dev) && dev->exp.sriov_vf.pf->cap_present & QEMU_PCI_CAP_MULTIFUNCTION) { return; } /* * multifunction bit is interpreted in two ways as follows. * - all functions must set the bit to 1. * Example: Intel X53 * - function 0 must set the bit, but the rest function (> 0) * is allowed to leave the bit to 0. * Example: PIIX3(also in qemu), PIIX4(also in qemu), ICH10, * * So OS (at least Linux) checks the bit of only function 0, * and doesn't see the bit of function > 0. * * The below check allows both interpretation. */ if (PCI_FUNC(dev->devfn)) { PCIDevice *f0 = bus->devices[PCI_DEVFN(slot, 0)]; if (f0 && !(f0->cap_present & QEMU_PCI_CAP_MULTIFUNCTION)) { /* function 0 should set multifunction bit */ error_setg(errp, "PCI: single function device can't be populated " "in function %x.%x", slot, PCI_FUNC(dev->devfn)); return; } return; } if (dev->cap_present & QEMU_PCI_CAP_MULTIFUNCTION) { return; } /* function 0 indicates single function, so function > 0 must be NULL */ for (func = 1; func < PCI_FUNC_MAX; ++func) { if (bus->devices[PCI_DEVFN(slot, func)]) { error_setg(errp, "PCI: %x.0 indicates single function, " "but %x.%x is already populated.", slot, slot, func); return; } } } static void pci_config_alloc(PCIDevice *pci_dev) { int config_size = pci_config_size(pci_dev); pci_dev->config = g_malloc0(config_size); pci_dev->cmask = g_malloc0(config_size); pci_dev->wmask = g_malloc0(config_size); pci_dev->w1cmask = g_malloc0(config_size); pci_dev->used = g_malloc0(config_size); } static void pci_config_free(PCIDevice *pci_dev) { g_free(pci_dev->config); g_free(pci_dev->cmask); g_free(pci_dev->wmask); g_free(pci_dev->w1cmask); g_free(pci_dev->used); } static void do_pci_unregister_device(PCIDevice *pci_dev) { pci_get_bus(pci_dev)->devices[pci_dev->devfn] = NULL; pci_config_free(pci_dev); if (xen_mode == XEN_EMULATE) { xen_evtchn_remove_pci_device(pci_dev); } if (memory_region_is_mapped(&pci_dev->bus_master_enable_region)) { memory_region_del_subregion(&pci_dev->bus_master_container_region, &pci_dev->bus_master_enable_region); } address_space_destroy(&pci_dev->bus_master_as); } /* Extract PCIReqIDCache into BDF format */ static uint16_t pci_req_id_cache_extract(PCIReqIDCache *cache) { uint8_t bus_n; uint16_t result; switch (cache->type) { case PCI_REQ_ID_BDF: result = pci_get_bdf(cache->dev); break; case PCI_REQ_ID_SECONDARY_BUS: bus_n = pci_dev_bus_num(cache->dev); result = PCI_BUILD_BDF(bus_n, 0); break; default: error_report("Invalid PCI requester ID cache type: %d", cache->type); exit(1); break; } return result; } /* Parse bridges up to the root complex and return requester ID * cache for specific device. For full PCIe topology, the cache * result would be exactly the same as getting BDF of the device. * However, several tricks are required when system mixed up with * legacy PCI devices and PCIe-to-PCI bridges. * * Here we cache the proxy device (and type) not requester ID since * bus number might change from time to time. */ static PCIReqIDCache pci_req_id_cache_get(PCIDevice *dev) { PCIDevice *parent; PCIReqIDCache cache = { .dev = dev, .type = PCI_REQ_ID_BDF, }; while (!pci_bus_is_root(pci_get_bus(dev))) { /* We are under PCI/PCIe bridges */ parent = pci_get_bus(dev)->parent_dev; if (pci_is_express(parent)) { if (pcie_cap_get_type(parent) == PCI_EXP_TYPE_PCI_BRIDGE) { /* When we pass through PCIe-to-PCI/PCIX bridges, we * override the requester ID using secondary bus * number of parent bridge with zeroed devfn * (pcie-to-pci bridge spec chap 2.3). */ cache.type = PCI_REQ_ID_SECONDARY_BUS; cache.dev = dev; } } else { /* Legacy PCI, override requester ID with the bridge's * BDF upstream. When the root complex connects to * legacy PCI devices (including buses), it can only * obtain requester ID info from directly attached * devices. If devices are attached under bridges, only * the requester ID of the bridge that is directly * attached to the root complex can be recognized. */ cache.type = PCI_REQ_ID_BDF; cache.dev = parent; } dev = parent; } return cache; } uint16_t pci_requester_id(PCIDevice *dev) { return pci_req_id_cache_extract(&dev->requester_id_cache); } static bool pci_bus_devfn_available(PCIBus *bus, int devfn) { return !(bus->devices[devfn]); } static bool pci_bus_devfn_reserved(PCIBus *bus, int devfn) { return bus->slot_reserved_mask & (1UL << PCI_SLOT(devfn)); } uint32_t pci_bus_get_slot_reserved_mask(PCIBus *bus) { return bus->slot_reserved_mask; } void pci_bus_set_slot_reserved_mask(PCIBus *bus, uint32_t mask) { bus->slot_reserved_mask |= mask; } void pci_bus_clear_slot_reserved_mask(PCIBus *bus, uint32_t mask) { bus->slot_reserved_mask &= ~mask; } /* -1 for devfn means auto assign */ static PCIDevice *do_pci_register_device(PCIDevice *pci_dev, const char *name, int devfn, Error **errp) { PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(pci_dev); PCIConfigReadFunc *config_read = pc->config_read; PCIConfigWriteFunc *config_write = pc->config_write; Error *local_err = NULL; DeviceState *dev = DEVICE(pci_dev); PCIBus *bus = pci_get_bus(pci_dev); bool is_bridge = IS_PCI_BRIDGE(pci_dev); /* Only pci bridges can be attached to extra PCI root buses */ if (pci_bus_is_root(bus) && bus->parent_dev && !is_bridge) { error_setg(errp, "PCI: Only PCI/PCIe bridges can be plugged into %s", bus->parent_dev->name); return NULL; } if (devfn < 0) { for(devfn = bus->devfn_min ; devfn < ARRAY_SIZE(bus->devices); devfn += PCI_FUNC_MAX) { if (pci_bus_devfn_available(bus, devfn) && !pci_bus_devfn_reserved(bus, devfn)) { goto found; } } error_setg(errp, "PCI: no slot/function available for %s, all in use " "or reserved", name); return NULL; found: ; } else if (pci_bus_devfn_reserved(bus, devfn)) { error_setg(errp, "PCI: slot %d function %d not available for %s," " reserved", PCI_SLOT(devfn), PCI_FUNC(devfn), name); return NULL; } else if (!pci_bus_devfn_available(bus, devfn)) { error_setg(errp, "PCI: slot %d function %d not available for %s," " in use by %s,id=%s", PCI_SLOT(devfn), PCI_FUNC(devfn), name, bus->devices[devfn]->name, bus->devices[devfn]->qdev.id); return NULL; } else if (dev->hotplugged && !pci_is_vf(pci_dev) && pci_get_function_0(pci_dev)) { error_setg(errp, "PCI: slot %d function 0 already occupied by %s," " new func %s cannot be exposed to guest.", PCI_SLOT(pci_get_function_0(pci_dev)->devfn), pci_get_function_0(pci_dev)->name, name); return NULL; } pci_dev->devfn = devfn; pci_dev->requester_id_cache = pci_req_id_cache_get(pci_dev); pstrcpy(pci_dev->name, sizeof(pci_dev->name), name); memory_region_init(&pci_dev->bus_master_container_region, OBJECT(pci_dev), "bus master container", UINT64_MAX); address_space_init(&pci_dev->bus_master_as, &pci_dev->bus_master_container_region, pci_dev->name); if (phase_check(PHASE_MACHINE_READY)) { pci_init_bus_master(pci_dev); } pci_dev->irq_state = 0; pci_config_alloc(pci_dev); pci_config_set_vendor_id(pci_dev->config, pc->vendor_id); pci_config_set_device_id(pci_dev->config, pc->device_id); pci_config_set_revision(pci_dev->config, pc->revision); pci_config_set_class(pci_dev->config, pc->class_id); if (!is_bridge) { if (pc->subsystem_vendor_id || pc->subsystem_id) { pci_set_word(pci_dev->config + PCI_SUBSYSTEM_VENDOR_ID, pc->subsystem_vendor_id); pci_set_word(pci_dev->config + PCI_SUBSYSTEM_ID, pc->subsystem_id); } else { pci_set_default_subsystem_id(pci_dev); } } else { /* subsystem_vendor_id/subsystem_id are only for header type 0 */ assert(!pc->subsystem_vendor_id); assert(!pc->subsystem_id); } pci_init_cmask(pci_dev); pci_init_wmask(pci_dev); pci_init_w1cmask(pci_dev); if (is_bridge) { pci_init_mask_bridge(pci_dev); } pci_init_multifunction(bus, pci_dev, &local_err); if (local_err) { error_propagate(errp, local_err); do_pci_unregister_device(pci_dev); return NULL; } if (!config_read) config_read = pci_default_read_config; if (!config_write) config_write = pci_default_write_config; pci_dev->config_read = config_read; pci_dev->config_write = config_write; bus->devices[devfn] = pci_dev; pci_dev->version_id = 2; /* Current pci device vmstate version */ return pci_dev; } static void pci_unregister_io_regions(PCIDevice *pci_dev) { PCIIORegion *r; int i; for(i = 0; i < PCI_NUM_REGIONS; i++) { r = &pci_dev->io_regions[i]; if (!r->size || r->addr == PCI_BAR_UNMAPPED) continue; memory_region_del_subregion(r->address_space, r->memory); } pci_unregister_vga(pci_dev); } static void pci_qdev_unrealize(DeviceState *dev) { PCIDevice *pci_dev = PCI_DEVICE(dev); PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(pci_dev); pci_unregister_io_regions(pci_dev); pci_del_option_rom(pci_dev); if (pc->exit) { pc->exit(pci_dev); } pci_device_deassert_intx(pci_dev); do_pci_unregister_device(pci_dev); pci_dev->msi_trigger = NULL; /* * clean up acpi-index so it could reused by another device */ if (pci_dev->acpi_index) { GSequence *used_indexes = pci_acpi_index_list(); g_sequence_remove(g_sequence_lookup(used_indexes, GINT_TO_POINTER(pci_dev->acpi_index), g_cmp_uint32, NULL)); } } void pci_register_bar(PCIDevice *pci_dev, int region_num, uint8_t type, MemoryRegion *memory) { PCIIORegion *r; uint32_t addr; /* offset in pci config space */ uint64_t wmask; pcibus_t size = memory_region_size(memory); uint8_t hdr_type; assert(!pci_is_vf(pci_dev)); /* VFs must use pcie_sriov_vf_register_bar */ assert(region_num >= 0); assert(region_num < PCI_NUM_REGIONS); assert(is_power_of_2(size)); /* A PCI bridge device (with Type 1 header) may only have at most 2 BARs */ hdr_type = pci_dev->config[PCI_HEADER_TYPE] & ~PCI_HEADER_TYPE_MULTI_FUNCTION; assert(hdr_type != PCI_HEADER_TYPE_BRIDGE || region_num < 2); r = &pci_dev->io_regions[region_num]; r->addr = PCI_BAR_UNMAPPED; r->size = size; r->type = type; r->memory = memory; r->address_space = type & PCI_BASE_ADDRESS_SPACE_IO ? pci_get_bus(pci_dev)->address_space_io : pci_get_bus(pci_dev)->address_space_mem; wmask = ~(size - 1); if (region_num == PCI_ROM_SLOT) { /* ROM enable bit is writable */ wmask |= PCI_ROM_ADDRESS_ENABLE; } addr = pci_bar(pci_dev, region_num); pci_set_long(pci_dev->config + addr, type); if (!(r->type & PCI_BASE_ADDRESS_SPACE_IO) && r->type & PCI_BASE_ADDRESS_MEM_TYPE_64) { pci_set_quad(pci_dev->wmask + addr, wmask); pci_set_quad(pci_dev->cmask + addr, ~0ULL); } else { pci_set_long(pci_dev->wmask + addr, wmask & 0xffffffff); pci_set_long(pci_dev->cmask + addr, 0xffffffff); } } static void pci_update_vga(PCIDevice *pci_dev) { uint16_t cmd; if (!pci_dev->has_vga) { return; } cmd = pci_get_word(pci_dev->config + PCI_COMMAND); memory_region_set_enabled(pci_dev->vga_regions[QEMU_PCI_VGA_MEM], cmd & PCI_COMMAND_MEMORY); memory_region_set_enabled(pci_dev->vga_regions[QEMU_PCI_VGA_IO_LO], cmd & PCI_COMMAND_IO); memory_region_set_enabled(pci_dev->vga_regions[QEMU_PCI_VGA_IO_HI], cmd & PCI_COMMAND_IO); } void pci_register_vga(PCIDevice *pci_dev, MemoryRegion *mem, MemoryRegion *io_lo, MemoryRegion *io_hi) { PCIBus *bus = pci_get_bus(pci_dev); assert(!pci_dev->has_vga); assert(memory_region_size(mem) == QEMU_PCI_VGA_MEM_SIZE); pci_dev->vga_regions[QEMU_PCI_VGA_MEM] = mem; memory_region_add_subregion_overlap(bus->address_space_mem, QEMU_PCI_VGA_MEM_BASE, mem, 1); assert(memory_region_size(io_lo) == QEMU_PCI_VGA_IO_LO_SIZE); pci_dev->vga_regions[QEMU_PCI_VGA_IO_LO] = io_lo; memory_region_add_subregion_overlap(bus->address_space_io, QEMU_PCI_VGA_IO_LO_BASE, io_lo, 1); assert(memory_region_size(io_hi) == QEMU_PCI_VGA_IO_HI_SIZE); pci_dev->vga_regions[QEMU_PCI_VGA_IO_HI] = io_hi; memory_region_add_subregion_overlap(bus->address_space_io, QEMU_PCI_VGA_IO_HI_BASE, io_hi, 1); pci_dev->has_vga = true; pci_update_vga(pci_dev); } void pci_unregister_vga(PCIDevice *pci_dev) { PCIBus *bus = pci_get_bus(pci_dev); if (!pci_dev->has_vga) { return; } memory_region_del_subregion(bus->address_space_mem, pci_dev->vga_regions[QEMU_PCI_VGA_MEM]); memory_region_del_subregion(bus->address_space_io, pci_dev->vga_regions[QEMU_PCI_VGA_IO_LO]); memory_region_del_subregion(bus->address_space_io, pci_dev->vga_regions[QEMU_PCI_VGA_IO_HI]); pci_dev->has_vga = false; } pcibus_t pci_get_bar_addr(PCIDevice *pci_dev, int region_num) { return pci_dev->io_regions[region_num].addr; } static pcibus_t pci_config_get_bar_addr(PCIDevice *d, int reg, uint8_t type, pcibus_t size) { pcibus_t new_addr; if (!pci_is_vf(d)) { int bar = pci_bar(d, reg); if (type & PCI_BASE_ADDRESS_MEM_TYPE_64) { new_addr = pci_get_quad(d->config + bar); } else { new_addr = pci_get_long(d->config + bar); } } else { PCIDevice *pf = d->exp.sriov_vf.pf; uint16_t sriov_cap = pf->exp.sriov_cap; int bar = sriov_cap + PCI_SRIOV_BAR + reg * 4; uint16_t vf_offset = pci_get_word(pf->config + sriov_cap + PCI_SRIOV_VF_OFFSET); uint16_t vf_stride = pci_get_word(pf->config + sriov_cap + PCI_SRIOV_VF_STRIDE); uint32_t vf_num = (d->devfn - (pf->devfn + vf_offset)) / vf_stride; if (type & PCI_BASE_ADDRESS_MEM_TYPE_64) { new_addr = pci_get_quad(pf->config + bar); } else { new_addr = pci_get_long(pf->config + bar); } new_addr += vf_num * size; } /* The ROM slot has a specific enable bit, keep it intact */ if (reg != PCI_ROM_SLOT) { new_addr &= ~(size - 1); } return new_addr; } pcibus_t pci_bar_address(PCIDevice *d, int reg, uint8_t type, pcibus_t size) { pcibus_t new_addr, last_addr; uint16_t cmd = pci_get_word(d->config + PCI_COMMAND); MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); bool allow_0_address = mc->pci_allow_0_address; if (type & PCI_BASE_ADDRESS_SPACE_IO) { if (!(cmd & PCI_COMMAND_IO)) { return PCI_BAR_UNMAPPED; } new_addr = pci_config_get_bar_addr(d, reg, type, size); last_addr = new_addr + size - 1; /* Check if 32 bit BAR wraps around explicitly. * TODO: make priorities correct and remove this work around. */ if (last_addr <= new_addr || last_addr >= UINT32_MAX || (!allow_0_address && new_addr == 0)) { return PCI_BAR_UNMAPPED; } return new_addr; } if (!(cmd & PCI_COMMAND_MEMORY)) { return PCI_BAR_UNMAPPED; } new_addr = pci_config_get_bar_addr(d, reg, type, size); /* the ROM slot has a specific enable bit */ if (reg == PCI_ROM_SLOT && !(new_addr & PCI_ROM_ADDRESS_ENABLE)) { return PCI_BAR_UNMAPPED; } new_addr &= ~(size - 1); last_addr = new_addr + size - 1; /* NOTE: we do not support wrapping */ /* XXX: as we cannot support really dynamic mappings, we handle specific values as invalid mappings. */ if (last_addr <= new_addr || last_addr == PCI_BAR_UNMAPPED || (!allow_0_address && new_addr == 0)) { return PCI_BAR_UNMAPPED; } /* Now pcibus_t is 64bit. * Check if 32 bit BAR wraps around explicitly. * Without this, PC ide doesn't work well. * TODO: remove this work around. */ if (!(type & PCI_BASE_ADDRESS_MEM_TYPE_64) && last_addr >= UINT32_MAX) { return PCI_BAR_UNMAPPED; } /* * OS is allowed to set BAR beyond its addressable * bits. For example, 32 bit OS can set 64bit bar * to >4G. Check it. TODO: we might need to support * it in the future for e.g. PAE. */ if (last_addr >= HWADDR_MAX) { return PCI_BAR_UNMAPPED; } return new_addr; } static void pci_update_mappings(PCIDevice *d) { PCIIORegion *r; int i; pcibus_t new_addr; for(i = 0; i < PCI_NUM_REGIONS; i++) { r = &d->io_regions[i]; /* this region isn't registered */ if (!r->size) continue; new_addr = pci_bar_address(d, i, r->type, r->size); if (!d->has_power) { new_addr = PCI_BAR_UNMAPPED; } /* This bar isn't changed */ if (new_addr == r->addr) continue; /* now do the real mapping */ if (r->addr != PCI_BAR_UNMAPPED) { trace_pci_update_mappings_del(d->name, pci_dev_bus_num(d), PCI_SLOT(d->devfn), PCI_FUNC(d->devfn), i, r->addr, r->size); memory_region_del_subregion(r->address_space, r->memory); } r->addr = new_addr; if (r->addr != PCI_BAR_UNMAPPED) { trace_pci_update_mappings_add(d->name, pci_dev_bus_num(d), PCI_SLOT(d->devfn), PCI_FUNC(d->devfn), i, r->addr, r->size); memory_region_add_subregion_overlap(r->address_space, r->addr, r->memory, 1); } } pci_update_vga(d); } static inline int pci_irq_disabled(PCIDevice *d) { return pci_get_word(d->config + PCI_COMMAND) & PCI_COMMAND_INTX_DISABLE; } /* Called after interrupt disabled field update in config space, * assert/deassert interrupts if necessary. * Gets original interrupt disable bit value (before update). */ static void pci_update_irq_disabled(PCIDevice *d, int was_irq_disabled) { int i, disabled = pci_irq_disabled(d); if (disabled == was_irq_disabled) return; for (i = 0; i < PCI_NUM_PINS; ++i) { int state = pci_irq_state(d, i); pci_change_irq_level(d, i, disabled ? -state : state); } } uint32_t pci_default_read_config(PCIDevice *d, uint32_t address, int len) { uint32_t val = 0; assert(address + len <= pci_config_size(d)); if (pci_is_express_downstream_port(d) && ranges_overlap(address, len, d->exp.exp_cap + PCI_EXP_LNKSTA, 2)) { pcie_sync_bridge_lnk(d); } memcpy(&val, d->config + address, len); return le32_to_cpu(val); } void pci_default_write_config(PCIDevice *d, uint32_t addr, uint32_t val_in, int l) { int i, was_irq_disabled = pci_irq_disabled(d); uint32_t val = val_in; assert(addr + l <= pci_config_size(d)); for (i = 0; i < l; val >>= 8, ++i) { uint8_t wmask = d->wmask[addr + i]; uint8_t w1cmask = d->w1cmask[addr + i]; assert(!(wmask & w1cmask)); d->config[addr + i] = (d->config[addr + i] & ~wmask) | (val & wmask); d->config[addr + i] &= ~(val & w1cmask); /* W1C: Write 1 to Clear */ } if (ranges_overlap(addr, l, PCI_BASE_ADDRESS_0, 24) || ranges_overlap(addr, l, PCI_ROM_ADDRESS, 4) || ranges_overlap(addr, l, PCI_ROM_ADDRESS1, 4) || range_covers_byte(addr, l, PCI_COMMAND)) pci_update_mappings(d); if (range_covers_byte(addr, l, PCI_COMMAND)) { pci_update_irq_disabled(d, was_irq_disabled); memory_region_set_enabled(&d->bus_master_enable_region, (pci_get_word(d->config + PCI_COMMAND) & PCI_COMMAND_MASTER) && d->has_power); } msi_write_config(d, addr, val_in, l); msix_write_config(d, addr, val_in, l); pcie_sriov_config_write(d, addr, val_in, l); } /***********************************************************/ /* generic PCI irq support */ /* 0 <= irq_num <= 3. level must be 0 or 1 */ static void pci_irq_handler(void *opaque, int irq_num, int level) { PCIDevice *pci_dev = opaque; int change; assert(0 <= irq_num && irq_num < PCI_NUM_PINS); assert(level == 0 || level == 1); change = level - pci_irq_state(pci_dev, irq_num); if (!change) return; pci_set_irq_state(pci_dev, irq_num, level); pci_update_irq_status(pci_dev); if (pci_irq_disabled(pci_dev)) return; pci_change_irq_level(pci_dev, irq_num, change); } qemu_irq pci_allocate_irq(PCIDevice *pci_dev) { int intx = pci_intx(pci_dev); assert(0 <= intx && intx < PCI_NUM_PINS); return qemu_allocate_irq(pci_irq_handler, pci_dev, intx); } void pci_set_irq(PCIDevice *pci_dev, int level) { int intx = pci_intx(pci_dev); pci_irq_handler(pci_dev, intx, level); } /* Special hooks used by device assignment */ void pci_bus_set_route_irq_fn(PCIBus *bus, pci_route_irq_fn route_intx_to_irq) { assert(pci_bus_is_root(bus)); bus->route_intx_to_irq = route_intx_to_irq; } PCIINTxRoute pci_device_route_intx_to_irq(PCIDevice *dev, int pin) { PCIBus *bus; do { int dev_irq = pin; bus = pci_get_bus(dev); pin = bus->map_irq(dev, pin); trace_pci_route_irq(dev_irq, DEVICE(dev)->canonical_path, pin, pci_bus_is_root(bus) ? "root-complex" : DEVICE(bus->parent_dev)->canonical_path); dev = bus->parent_dev; } while (dev); if (!bus->route_intx_to_irq) { error_report("PCI: Bug - unimplemented PCI INTx routing (%s)", object_get_typename(OBJECT(bus->qbus.parent))); return (PCIINTxRoute) { PCI_INTX_DISABLED, -1 }; } return bus->route_intx_to_irq(bus->irq_opaque, pin); } bool pci_intx_route_changed(PCIINTxRoute *old, PCIINTxRoute *new) { return old->mode != new->mode || old->irq != new->irq; } void pci_bus_fire_intx_routing_notifier(PCIBus *bus) { PCIDevice *dev; PCIBus *sec; int i; for (i = 0; i < ARRAY_SIZE(bus->devices); ++i) { dev = bus->devices[i]; if (dev && dev->intx_routing_notifier) { dev->intx_routing_notifier(dev); } } QLIST_FOREACH(sec, &bus->child, sibling) { pci_bus_fire_intx_routing_notifier(sec); } } void pci_device_set_intx_routing_notifier(PCIDevice *dev, PCIINTxRoutingNotifier notifier) { dev->intx_routing_notifier = notifier; } /* * PCI-to-PCI bridge specification * 9.1: Interrupt routing. Table 9-1 * * the PCI Express Base Specification, Revision 2.1 * 2.2.8.1: INTx interrupt signaling - Rules * the Implementation Note * Table 2-20 */ /* * 0 <= pin <= 3 0 = INTA, 1 = INTB, 2 = INTC, 3 = INTD * 0-origin unlike PCI interrupt pin register. */ int pci_swizzle_map_irq_fn(PCIDevice *pci_dev, int pin) { return pci_swizzle(PCI_SLOT(pci_dev->devfn), pin); } /***********************************************************/ /* monitor info on PCI */ static const pci_class_desc pci_class_descriptions[] = { { 0x0001, "VGA controller", "display"}, { 0x0100, "SCSI controller", "scsi"}, { 0x0101, "IDE controller", "ide"}, { 0x0102, "Floppy controller", "fdc"}, { 0x0103, "IPI controller", "ipi"}, { 0x0104, "RAID controller", "raid"}, { 0x0106, "SATA controller"}, { 0x0107, "SAS controller"}, { 0x0180, "Storage controller"}, { 0x0200, "Ethernet controller", "ethernet"}, { 0x0201, "Token Ring controller", "token-ring"}, { 0x0202, "FDDI controller", "fddi"}, { 0x0203, "ATM controller", "atm"}, { 0x0280, "Network controller"}, { 0x0300, "VGA controller", "display", 0x00ff}, { 0x0301, "XGA controller"}, { 0x0302, "3D controller"}, { 0x0380, "Display controller"}, { 0x0400, "Video controller", "video"}, { 0x0401, "Audio controller", "sound"}, { 0x0402, "Phone"}, { 0x0403, "Audio controller", "sound"}, { 0x0480, "Multimedia controller"}, { 0x0500, "RAM controller", "memory"}, { 0x0501, "Flash controller", "flash"}, { 0x0580, "Memory controller"}, { 0x0600, "Host bridge", "host"}, { 0x0601, "ISA bridge", "isa"}, { 0x0602, "EISA bridge", "eisa"}, { 0x0603, "MC bridge", "mca"}, { 0x0604, "PCI bridge", "pci-bridge"}, { 0x0605, "PCMCIA bridge", "pcmcia"}, { 0x0606, "NUBUS bridge", "nubus"}, { 0x0607, "CARDBUS bridge", "cardbus"}, { 0x0608, "RACEWAY bridge"}, { 0x0680, "Bridge"}, { 0x0700, "Serial port", "serial"}, { 0x0701, "Parallel port", "parallel"}, { 0x0800, "Interrupt controller", "interrupt-controller"}, { 0x0801, "DMA controller", "dma-controller"}, { 0x0802, "Timer", "timer"}, { 0x0803, "RTC", "rtc"}, { 0x0900, "Keyboard", "keyboard"}, { 0x0901, "Pen", "pen"}, { 0x0902, "Mouse", "mouse"}, { 0x0A00, "Dock station", "dock", 0x00ff}, { 0x0B00, "i386 cpu", "cpu", 0x00ff}, { 0x0c00, "Firewire controller", "firewire"}, { 0x0c01, "Access bus controller", "access-bus"}, { 0x0c02, "SSA controller", "ssa"}, { 0x0c03, "USB controller", "usb"}, { 0x0c04, "Fibre channel controller", "fibre-channel"}, { 0x0c05, "SMBus"}, { 0, NULL} }; void pci_for_each_device_under_bus_reverse(PCIBus *bus, pci_bus_dev_fn fn, void *opaque) { PCIDevice *d; int devfn; for (devfn = 0; devfn < ARRAY_SIZE(bus->devices); devfn++) { d = bus->devices[ARRAY_SIZE(bus->devices) - 1 - devfn]; if (d) { fn(bus, d, opaque); } } } void pci_for_each_device_reverse(PCIBus *bus, int bus_num, pci_bus_dev_fn fn, void *opaque) { bus = pci_find_bus_nr(bus, bus_num); if (bus) { pci_for_each_device_under_bus_reverse(bus, fn, opaque); } } void pci_for_each_device_under_bus(PCIBus *bus, pci_bus_dev_fn fn, void *opaque) { PCIDevice *d; int devfn; for(devfn = 0; devfn < ARRAY_SIZE(bus->devices); devfn++) { d = bus->devices[devfn]; if (d) { fn(bus, d, opaque); } } } void pci_for_each_device(PCIBus *bus, int bus_num, pci_bus_dev_fn fn, void *opaque) { bus = pci_find_bus_nr(bus, bus_num); if (bus) { pci_for_each_device_under_bus(bus, fn, opaque); } } const pci_class_desc *get_class_desc(int class) { const pci_class_desc *desc; desc = pci_class_descriptions; while (desc->desc && class != desc->class) { desc++; } return desc; } /* Initialize a PCI NIC. */ PCIDevice *pci_nic_init_nofail(NICInfo *nd, PCIBus *rootbus, const char *default_model, const char *default_devaddr) { const char *devaddr = nd->devaddr ? nd->devaddr : default_devaddr; GPtrArray *pci_nic_models; PCIBus *bus; PCIDevice *pci_dev; DeviceState *dev; int devfn; int i; int dom, busnr; unsigned slot; if (nd->model && !strcmp(nd->model, "virtio")) { g_free(nd->model); nd->model = g_strdup("virtio-net-pci"); } pci_nic_models = qemu_get_nic_models(TYPE_PCI_DEVICE); if (qemu_show_nic_models(nd->model, (const char **)pci_nic_models->pdata)) { exit(0); } i = qemu_find_nic_model(nd, (const char **)pci_nic_models->pdata, default_model); if (i < 0) { exit(1); } if (!rootbus) { error_report("No primary PCI bus"); exit(1); } assert(!rootbus->parent_dev); if (!devaddr) { devfn = -1; busnr = 0; } else { if (pci_parse_devaddr(devaddr, &dom, &busnr, &slot, NULL) < 0) { error_report("Invalid PCI device address %s for device %s", devaddr, nd->model); exit(1); } if (dom != 0) { error_report("No support for non-zero PCI domains"); exit(1); } devfn = PCI_DEVFN(slot, 0); } bus = pci_find_bus_nr(rootbus, busnr); if (!bus) { error_report("Invalid PCI device address %s for device %s", devaddr, nd->model); exit(1); } pci_dev = pci_new(devfn, nd->model); dev = &pci_dev->qdev; qdev_set_nic_properties(dev, nd); pci_realize_and_unref(pci_dev, bus, &error_fatal); g_ptr_array_free(pci_nic_models, true); return pci_dev; } PCIDevice *pci_vga_init(PCIBus *bus) { vga_interface_created = true; switch (vga_interface_type) { case VGA_CIRRUS: return pci_create_simple(bus, -1, "cirrus-vga"); case VGA_QXL: return pci_create_simple(bus, -1, "qxl-vga"); case VGA_STD: return pci_create_simple(bus, -1, "VGA"); case VGA_VMWARE: return pci_create_simple(bus, -1, "vmware-svga"); case VGA_VIRTIO: return pci_create_simple(bus, -1, "virtio-vga"); case VGA_NONE: default: /* Other non-PCI types. Checking for unsupported types is already done in vl.c. */ return NULL; } } /* Whether a given bus number is in range of the secondary * bus of the given bridge device. */ static bool pci_secondary_bus_in_range(PCIDevice *dev, int bus_num) { return !(pci_get_word(dev->config + PCI_BRIDGE_CONTROL) & PCI_BRIDGE_CTL_BUS_RESET) /* Don't walk the bus if it's reset. */ && dev->config[PCI_SECONDARY_BUS] <= bus_num && bus_num <= dev->config[PCI_SUBORDINATE_BUS]; } /* Whether a given bus number is in a range of a root bus */ static bool pci_root_bus_in_range(PCIBus *bus, int bus_num) { int i; for (i = 0; i < ARRAY_SIZE(bus->devices); ++i) { PCIDevice *dev = bus->devices[i]; if (dev && IS_PCI_BRIDGE(dev)) { if (pci_secondary_bus_in_range(dev, bus_num)) { return true; } } } return false; } PCIBus *pci_find_bus_nr(PCIBus *bus, int bus_num) { PCIBus *sec; if (!bus) { return NULL; } if (pci_bus_num(bus) == bus_num) { return bus; } /* Consider all bus numbers in range for the host pci bridge. */ if (!pci_bus_is_root(bus) && !pci_secondary_bus_in_range(bus->parent_dev, bus_num)) { return NULL; } /* try child bus */ for (; bus; bus = sec) { QLIST_FOREACH(sec, &bus->child, sibling) { if (pci_bus_num(sec) == bus_num) { return sec; } /* PXB buses assumed to be children of bus 0 */ if (pci_bus_is_root(sec)) { if (pci_root_bus_in_range(sec, bus_num)) { break; } } else { if (pci_secondary_bus_in_range(sec->parent_dev, bus_num)) { break; } } } } return NULL; } void pci_for_each_bus_depth_first(PCIBus *bus, pci_bus_ret_fn begin, pci_bus_fn end, void *parent_state) { PCIBus *sec; void *state; if (!bus) { return; } if (begin) { state = begin(bus, parent_state); } else { state = parent_state; } QLIST_FOREACH(sec, &bus->child, sibling) { pci_for_each_bus_depth_first(sec, begin, end, state); } if (end) { end(bus, state); } } PCIDevice *pci_find_device(PCIBus *bus, int bus_num, uint8_t devfn) { bus = pci_find_bus_nr(bus, bus_num); if (!bus) return NULL; return bus->devices[devfn]; } #define ONBOARD_INDEX_MAX (16 * 1024 - 1) static void pci_qdev_realize(DeviceState *qdev, Error **errp) { PCIDevice *pci_dev = (PCIDevice *)qdev; PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(pci_dev); ObjectClass *klass = OBJECT_CLASS(pc); Error *local_err = NULL; bool is_default_rom; uint16_t class_id; /* * capped by systemd (see: udev-builtin-net_id.c) * as it's the only known user honor it to avoid users * misconfigure QEMU and then wonder why acpi-index doesn't work */ if (pci_dev->acpi_index > ONBOARD_INDEX_MAX) { error_setg(errp, "acpi-index should be less or equal to %u", ONBOARD_INDEX_MAX); return; } /* * make sure that acpi-index is unique across all present PCI devices */ if (pci_dev->acpi_index) { GSequence *used_indexes = pci_acpi_index_list(); if (g_sequence_lookup(used_indexes, GINT_TO_POINTER(pci_dev->acpi_index), g_cmp_uint32, NULL)) { error_setg(errp, "a PCI device with acpi-index = %" PRIu32 " already exist", pci_dev->acpi_index); return; } g_sequence_insert_sorted(used_indexes, GINT_TO_POINTER(pci_dev->acpi_index), g_cmp_uint32, NULL); } if (pci_dev->romsize != -1 && !is_power_of_2(pci_dev->romsize)) { error_setg(errp, "ROM size %u is not a power of two", pci_dev->romsize); return; } /* initialize cap_present for pci_is_express() and pci_config_size(), * Note that hybrid PCIs are not set automatically and need to manage * QEMU_PCI_CAP_EXPRESS manually */ if (object_class_dynamic_cast(klass, INTERFACE_PCIE_DEVICE) && !object_class_dynamic_cast(klass, INTERFACE_CONVENTIONAL_PCI_DEVICE)) { pci_dev->cap_present |= QEMU_PCI_CAP_EXPRESS; } if (object_class_dynamic_cast(klass, INTERFACE_CXL_DEVICE)) { pci_dev->cap_present |= QEMU_PCIE_CAP_CXL; } pci_dev = do_pci_register_device(pci_dev, object_get_typename(OBJECT(qdev)), pci_dev->devfn, errp); if (pci_dev == NULL) return; if (pc->realize) { pc->realize(pci_dev, &local_err); if (local_err) { error_propagate(errp, local_err); do_pci_unregister_device(pci_dev); return; } } if (pci_dev->failover_pair_id) { if (!pci_bus_is_express(pci_get_bus(pci_dev))) { error_setg(errp, "failover primary device must be on " "PCIExpress bus"); pci_qdev_unrealize(DEVICE(pci_dev)); return; } class_id = pci_get_word(pci_dev->config + PCI_CLASS_DEVICE); if (class_id != PCI_CLASS_NETWORK_ETHERNET) { error_setg(errp, "failover primary device is not an " "Ethernet device"); pci_qdev_unrealize(DEVICE(pci_dev)); return; } if ((pci_dev->cap_present & QEMU_PCI_CAP_MULTIFUNCTION) || (PCI_FUNC(pci_dev->devfn) != 0)) { error_setg(errp, "failover: primary device must be in its own " "PCI slot"); pci_qdev_unrealize(DEVICE(pci_dev)); return; } qdev->allow_unplug_during_migration = true; } /* rom loading */ is_default_rom = false; if (pci_dev->romfile == NULL && pc->romfile != NULL) { pci_dev->romfile = g_strdup(pc->romfile); is_default_rom = true; } pci_add_option_rom(pci_dev, is_default_rom, &local_err); if (local_err) { error_propagate(errp, local_err); pci_qdev_unrealize(DEVICE(pci_dev)); return; } pci_set_power(pci_dev, true); pci_dev->msi_trigger = pci_msi_trigger; } static PCIDevice *pci_new_internal(int devfn, bool multifunction, const char *name) { DeviceState *dev; dev = qdev_new(name); qdev_prop_set_int32(dev, "addr", devfn); qdev_prop_set_bit(dev, "multifunction", multifunction); return PCI_DEVICE(dev); } PCIDevice *pci_new_multifunction(int devfn, const char *name) { return pci_new_internal(devfn, true, name); } PCIDevice *pci_new(int devfn, const char *name) { return pci_new_internal(devfn, false, name); } bool pci_realize_and_unref(PCIDevice *dev, PCIBus *bus, Error **errp) { return qdev_realize_and_unref(&dev->qdev, &bus->qbus, errp); } PCIDevice *pci_create_simple_multifunction(PCIBus *bus, int devfn, const char *name) { PCIDevice *dev = pci_new_multifunction(devfn, name); pci_realize_and_unref(dev, bus, &error_fatal); return dev; } PCIDevice *pci_create_simple(PCIBus *bus, int devfn, const char *name) { PCIDevice *dev = pci_new(devfn, name); pci_realize_and_unref(dev, bus, &error_fatal); return dev; } static uint8_t pci_find_space(PCIDevice *pdev, uint8_t size) { int offset = PCI_CONFIG_HEADER_SIZE; int i; for (i = PCI_CONFIG_HEADER_SIZE; i < PCI_CONFIG_SPACE_SIZE; ++i) { if (pdev->used[i]) offset = i + 1; else if (i - offset + 1 == size) return offset; } return 0; } static uint8_t pci_find_capability_list(PCIDevice *pdev, uint8_t cap_id, uint8_t *prev_p) { uint8_t next, prev; if (!(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST)) return 0; for (prev = PCI_CAPABILITY_LIST; (next = pdev->config[prev]); prev = next + PCI_CAP_LIST_NEXT) if (pdev->config[next + PCI_CAP_LIST_ID] == cap_id) break; if (prev_p) *prev_p = prev; return next; } static uint8_t pci_find_capability_at_offset(PCIDevice *pdev, uint8_t offset) { uint8_t next, prev, found = 0; if (!(pdev->used[offset])) { return 0; } assert(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST); for (prev = PCI_CAPABILITY_LIST; (next = pdev->config[prev]); prev = next + PCI_CAP_LIST_NEXT) { if (next <= offset && next > found) { found = next; } } return found; } /* Patch the PCI vendor and device ids in a PCI rom image if necessary. This is needed for an option rom which is used for more than one device. */ static void pci_patch_ids(PCIDevice *pdev, uint8_t *ptr, uint32_t size) { uint16_t vendor_id; uint16_t device_id; uint16_t rom_vendor_id; uint16_t rom_device_id; uint16_t rom_magic; uint16_t pcir_offset; uint8_t checksum; /* Words in rom data are little endian (like in PCI configuration), so they can be read / written with pci_get_word / pci_set_word. */ /* Only a valid rom will be patched. */ rom_magic = pci_get_word(ptr); if (rom_magic != 0xaa55) { PCI_DPRINTF("Bad ROM magic %04x\n", rom_magic); return; } pcir_offset = pci_get_word(ptr + 0x18); if (pcir_offset + 8 >= size || memcmp(ptr + pcir_offset, "PCIR", 4)) { PCI_DPRINTF("Bad PCIR offset 0x%x or signature\n", pcir_offset); return; } vendor_id = pci_get_word(pdev->config + PCI_VENDOR_ID); device_id = pci_get_word(pdev->config + PCI_DEVICE_ID); rom_vendor_id = pci_get_word(ptr + pcir_offset + 4); rom_device_id = pci_get_word(ptr + pcir_offset + 6); PCI_DPRINTF("%s: ROM id %04x%04x / PCI id %04x%04x\n", pdev->romfile, vendor_id, device_id, rom_vendor_id, rom_device_id); checksum = ptr[6]; if (vendor_id != rom_vendor_id) { /* Patch vendor id and checksum (at offset 6 for etherboot roms). */ checksum += (uint8_t)rom_vendor_id + (uint8_t)(rom_vendor_id >> 8); checksum -= (uint8_t)vendor_id + (uint8_t)(vendor_id >> 8); PCI_DPRINTF("ROM checksum %02x / %02x\n", ptr[6], checksum); ptr[6] = checksum; pci_set_word(ptr + pcir_offset + 4, vendor_id); } if (device_id != rom_device_id) { /* Patch device id and checksum (at offset 6 for etherboot roms). */ checksum += (uint8_t)rom_device_id + (uint8_t)(rom_device_id >> 8); checksum -= (uint8_t)device_id + (uint8_t)(device_id >> 8); PCI_DPRINTF("ROM checksum %02x / %02x\n", ptr[6], checksum); ptr[6] = checksum; pci_set_word(ptr + pcir_offset + 6, device_id); } } /* Add an option rom for the device */ static void pci_add_option_rom(PCIDevice *pdev, bool is_default_rom, Error **errp) { int64_t size = 0; g_autofree char *path = NULL; char name[32]; const VMStateDescription *vmsd; /* * In case of incoming migration ROM will come with migration stream, no * reason to load the file. Neither we want to fail if local ROM file * mismatches with specified romsize. */ bool load_file = !runstate_check(RUN_STATE_INMIGRATE); if (!pdev->romfile || !strlen(pdev->romfile)) { return; } if (!pdev->rom_bar) { /* * Load rom via fw_cfg instead of creating a rom bar, * for 0.11 compatibility. */ int class = pci_get_word(pdev->config + PCI_CLASS_DEVICE); /* * Hot-plugged devices can't use the option ROM * if the rom bar is disabled. */ if (DEVICE(pdev)->hotplugged) { error_setg(errp, "Hot-plugged device without ROM bar" " can't have an option ROM"); return; } if (class == 0x0300) { rom_add_vga(pdev->romfile); } else { rom_add_option(pdev->romfile, -1); } return; } if (load_file || pdev->romsize == -1) { path = qemu_find_file(QEMU_FILE_TYPE_BIOS, pdev->romfile); if (path == NULL) { path = g_strdup(pdev->romfile); } size = get_image_size(path); if (size < 0) { error_setg(errp, "failed to find romfile \"%s\"", pdev->romfile); return; } else if (size == 0) { error_setg(errp, "romfile \"%s\" is empty", pdev->romfile); return; } else if (size > 2 * GiB) { error_setg(errp, "romfile \"%s\" too large (size cannot exceed 2 GiB)", pdev->romfile); return; } if (pdev->romsize != -1) { if (size > pdev->romsize) { error_setg(errp, "romfile \"%s\" (%u bytes) " "is too large for ROM size %u", pdev->romfile, (uint32_t)size, pdev->romsize); return; } } else { pdev->romsize = pow2ceil(size); } } vmsd = qdev_get_vmsd(DEVICE(pdev)); snprintf(name, sizeof(name), "%s.rom", vmsd ? vmsd->name : object_get_typename(OBJECT(pdev))); pdev->has_rom = true; memory_region_init_rom(&pdev->rom, OBJECT(pdev), name, pdev->romsize, &error_fatal); if (load_file) { void *ptr = memory_region_get_ram_ptr(&pdev->rom); if (load_image_size(path, ptr, size) < 0) { error_setg(errp, "failed to load romfile \"%s\"", pdev->romfile); return; } if (is_default_rom) { /* Only the default rom images will be patched (if needed). */ pci_patch_ids(pdev, ptr, size); } } pci_register_bar(pdev, PCI_ROM_SLOT, 0, &pdev->rom); } static void pci_del_option_rom(PCIDevice *pdev) { if (!pdev->has_rom) return; vmstate_unregister_ram(&pdev->rom, &pdev->qdev); pdev->has_rom = false; } /* * On success, pci_add_capability() returns a positive value * that the offset of the pci capability. * On failure, it sets an error and returns a negative error * code. */ int pci_add_capability(PCIDevice *pdev, uint8_t cap_id, uint8_t offset, uint8_t size, Error **errp) { uint8_t *config; int i, overlapping_cap; if (!offset) { offset = pci_find_space(pdev, size); /* out of PCI config space is programming error */ assert(offset); } else { /* Verify that capabilities don't overlap. Note: device assignment * depends on this check to verify that the device is not broken. * Should never trigger for emulated devices, but it's helpful * for debugging these. */ for (i = offset; i < offset + size; i++) { overlapping_cap = pci_find_capability_at_offset(pdev, i); if (overlapping_cap) { error_setg(errp, "%s:%02x:%02x.%x " "Attempt to add PCI capability %x at offset " "%x overlaps existing capability %x at offset %x", pci_root_bus_path(pdev), pci_dev_bus_num(pdev), PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), cap_id, offset, overlapping_cap, i); return -EINVAL; } } } config = pdev->config + offset; config[PCI_CAP_LIST_ID] = cap_id; config[PCI_CAP_LIST_NEXT] = pdev->config[PCI_CAPABILITY_LIST]; pdev->config[PCI_CAPABILITY_LIST] = offset; pdev->config[PCI_STATUS] |= PCI_STATUS_CAP_LIST; memset(pdev->used + offset, 0xFF, QEMU_ALIGN_UP(size, 4)); /* Make capability read-only by default */ memset(pdev->wmask + offset, 0, size); /* Check capability by default */ memset(pdev->cmask + offset, 0xFF, size); return offset; } /* Unlink capability from the pci config space. */ void pci_del_capability(PCIDevice *pdev, uint8_t cap_id, uint8_t size) { uint8_t prev, offset = pci_find_capability_list(pdev, cap_id, &prev); if (!offset) return; pdev->config[prev] = pdev->config[offset + PCI_CAP_LIST_NEXT]; /* Make capability writable again */ memset(pdev->wmask + offset, 0xff, size); memset(pdev->w1cmask + offset, 0, size); /* Clear cmask as device-specific registers can't be checked */ memset(pdev->cmask + offset, 0, size); memset(pdev->used + offset, 0, QEMU_ALIGN_UP(size, 4)); if (!pdev->config[PCI_CAPABILITY_LIST]) pdev->config[PCI_STATUS] &= ~PCI_STATUS_CAP_LIST; } uint8_t pci_find_capability(PCIDevice *pdev, uint8_t cap_id) { return pci_find_capability_list(pdev, cap_id, NULL); } static char *pci_dev_fw_name(DeviceState *dev, char *buf, int len) { PCIDevice *d = (PCIDevice *)dev; const char *name = NULL; const pci_class_desc *desc = pci_class_descriptions; int class = pci_get_word(d->config + PCI_CLASS_DEVICE); while (desc->desc && (class & ~desc->fw_ign_bits) != (desc->class & ~desc->fw_ign_bits)) { desc++; } if (desc->desc) { name = desc->fw_name; } if (name) { pstrcpy(buf, len, name); } else { snprintf(buf, len, "pci%04x,%04x", pci_get_word(d->config + PCI_VENDOR_ID), pci_get_word(d->config + PCI_DEVICE_ID)); } return buf; } static char *pcibus_get_fw_dev_path(DeviceState *dev) { PCIDevice *d = (PCIDevice *)dev; char name[33]; int has_func = !!PCI_FUNC(d->devfn); return g_strdup_printf("%s@%x%s%.*x", pci_dev_fw_name(dev, name, sizeof(name)), PCI_SLOT(d->devfn), has_func ? "," : "", has_func, PCI_FUNC(d->devfn)); } static char *pcibus_get_dev_path(DeviceState *dev) { PCIDevice *d = container_of(dev, PCIDevice, qdev); PCIDevice *t; int slot_depth; /* Path format: Domain:00:Slot.Function:Slot.Function....:Slot.Function. * 00 is added here to make this format compatible with * domain:Bus:Slot.Func for systems without nested PCI bridges. * Slot.Function list specifies the slot and function numbers for all * devices on the path from root to the specific device. */ const char *root_bus_path; int root_bus_len; char slot[] = ":SS.F"; int slot_len = sizeof slot - 1 /* For '\0' */; int path_len; char *path, *p; int s; root_bus_path = pci_root_bus_path(d); root_bus_len = strlen(root_bus_path); /* Calculate # of slots on path between device and root. */; slot_depth = 0; for (t = d; t; t = pci_get_bus(t)->parent_dev) { ++slot_depth; } path_len = root_bus_len + slot_len * slot_depth; /* Allocate memory, fill in the terminating null byte. */ path = g_malloc(path_len + 1 /* For '\0' */); path[path_len] = '\0'; memcpy(path, root_bus_path, root_bus_len); /* Fill in slot numbers. We walk up from device to root, so need to print * them in the reverse order, last to first. */ p = path + path_len; for (t = d; t; t = pci_get_bus(t)->parent_dev) { p -= slot_len; s = snprintf(slot, sizeof slot, ":%02x.%x", PCI_SLOT(t->devfn), PCI_FUNC(t->devfn)); assert(s == slot_len); memcpy(p, slot, slot_len); } return path; } static int pci_qdev_find_recursive(PCIBus *bus, const char *id, PCIDevice **pdev) { DeviceState *qdev = qdev_find_recursive(&bus->qbus, id); if (!qdev) { return -ENODEV; } /* roughly check if given qdev is pci device */ if (object_dynamic_cast(OBJECT(qdev), TYPE_PCI_DEVICE)) { *pdev = PCI_DEVICE(qdev); return 0; } return -EINVAL; } int pci_qdev_find_device(const char *id, PCIDevice **pdev) { PCIHostState *host_bridge; int rc = -ENODEV; QLIST_FOREACH(host_bridge, &pci_host_bridges, next) { int tmp = pci_qdev_find_recursive(host_bridge->bus, id, pdev); if (!tmp) { rc = 0; break; } if (tmp != -ENODEV) { rc = tmp; } } return rc; } MemoryRegion *pci_address_space(PCIDevice *dev) { return pci_get_bus(dev)->address_space_mem; } MemoryRegion *pci_address_space_io(PCIDevice *dev) { return pci_get_bus(dev)->address_space_io; } static void pci_device_class_init(ObjectClass *klass, void *data) { DeviceClass *k = DEVICE_CLASS(klass); k->realize = pci_qdev_realize; k->unrealize = pci_qdev_unrealize; k->bus_type = TYPE_PCI_BUS; device_class_set_props(k, pci_props); } static void pci_device_class_base_init(ObjectClass *klass, void *data) { if (!object_class_is_abstract(klass)) { ObjectClass *conventional = object_class_dynamic_cast(klass, INTERFACE_CONVENTIONAL_PCI_DEVICE); ObjectClass *pcie = object_class_dynamic_cast(klass, INTERFACE_PCIE_DEVICE); ObjectClass *cxl = object_class_dynamic_cast(klass, INTERFACE_CXL_DEVICE); assert(conventional || pcie || cxl); } } AddressSpace *pci_device_iommu_address_space(PCIDevice *dev) { PCIBus *bus = pci_get_bus(dev); PCIBus *iommu_bus = bus; uint8_t devfn = dev->devfn; while (iommu_bus && !iommu_bus->iommu_fn && iommu_bus->parent_dev) { PCIBus *parent_bus = pci_get_bus(iommu_bus->parent_dev); /* * The requester ID of the provided device may be aliased, as seen from * the IOMMU, due to topology limitations. The IOMMU relies on a * requester ID to provide a unique AddressSpace for devices, but * conventional PCI buses pre-date such concepts. Instead, the PCIe- * to-PCI bridge creates and accepts transactions on behalf of down- * stream devices. When doing so, all downstream devices are masked * (aliased) behind a single requester ID. The requester ID used * depends on the format of the bridge devices. Proper PCIe-to-PCI * bridges, with a PCIe capability indicating such, follow the * guidelines of chapter 2.3 of the PCIe-to-PCI/X bridge specification, * where the bridge uses the seconary bus as the bridge portion of the * requester ID and devfn of 00.0. For other bridges, typically those * found on the root complex such as the dmi-to-pci-bridge, we follow * the convention of typical bare-metal hardware, which uses the * requester ID of the bridge itself. There are device specific * exceptions to these rules, but these are the defaults that the * Linux kernel uses when determining DMA aliases itself and believed * to be true for the bare metal equivalents of the devices emulated * in QEMU. */ if (!pci_bus_is_express(iommu_bus)) { PCIDevice *parent = iommu_bus->parent_dev; if (pci_is_express(parent) && pcie_cap_get_type(parent) == PCI_EXP_TYPE_PCI_BRIDGE) { devfn = PCI_DEVFN(0, 0); bus = iommu_bus; } else { devfn = parent->devfn; bus = parent_bus; } } iommu_bus = parent_bus; } if (!pci_bus_bypass_iommu(bus) && iommu_bus && iommu_bus->iommu_fn) { return iommu_bus->iommu_fn(bus, iommu_bus->iommu_opaque, devfn); } return &address_space_memory; } void pci_setup_iommu(PCIBus *bus, PCIIOMMUFunc fn, void *opaque) { bus->iommu_fn = fn; bus->iommu_opaque = opaque; } static void pci_dev_get_w64(PCIBus *b, PCIDevice *dev, void *opaque) { Range *range = opaque; uint16_t cmd = pci_get_word(dev->config + PCI_COMMAND); int i; if (!(cmd & PCI_COMMAND_MEMORY)) { return; } if (IS_PCI_BRIDGE(dev)) { pcibus_t base = pci_bridge_get_base(dev, PCI_BASE_ADDRESS_MEM_PREFETCH); pcibus_t limit = pci_bridge_get_limit(dev, PCI_BASE_ADDRESS_MEM_PREFETCH); base = MAX(base, 0x1ULL << 32); if (limit >= base) { Range pref_range; range_set_bounds(&pref_range, base, limit); range_extend(range, &pref_range); } } for (i = 0; i < PCI_NUM_REGIONS; ++i) { PCIIORegion *r = &dev->io_regions[i]; pcibus_t lob, upb; Range region_range; if (!r->size || (r->type & PCI_BASE_ADDRESS_SPACE_IO) || !(r->type & PCI_BASE_ADDRESS_MEM_TYPE_64)) { continue; } lob = pci_bar_address(dev, i, r->type, r->size); upb = lob + r->size - 1; if (lob == PCI_BAR_UNMAPPED) { continue; } lob = MAX(lob, 0x1ULL << 32); if (upb >= lob) { range_set_bounds(®ion_range, lob, upb); range_extend(range, ®ion_range); } } } void pci_bus_get_w64_range(PCIBus *bus, Range *range) { range_make_empty(range); pci_for_each_device_under_bus(bus, pci_dev_get_w64, range); } static bool pcie_has_upstream_port(PCIDevice *dev) { PCIDevice *parent_dev = pci_bridge_get_device(pci_get_bus(dev)); /* Device associated with an upstream port. * As there are several types of these, it's easier to check the * parent device: upstream ports are always connected to * root or downstream ports. */ return parent_dev && pci_is_express(parent_dev) && parent_dev->exp.exp_cap && (pcie_cap_get_type(parent_dev) == PCI_EXP_TYPE_ROOT_PORT || pcie_cap_get_type(parent_dev) == PCI_EXP_TYPE_DOWNSTREAM); } PCIDevice *pci_get_function_0(PCIDevice *pci_dev) { PCIBus *bus = pci_get_bus(pci_dev); if(pcie_has_upstream_port(pci_dev)) { /* With an upstream PCIe port, we only support 1 device at slot 0 */ return bus->devices[0]; } else { /* Other bus types might support multiple devices at slots 0-31 */ return bus->devices[PCI_DEVFN(PCI_SLOT(pci_dev->devfn), 0)]; } } MSIMessage pci_get_msi_message(PCIDevice *dev, int vector) { MSIMessage msg; if (msix_enabled(dev)) { msg = msix_get_message(dev, vector); } else if (msi_enabled(dev)) { msg = msi_get_message(dev, vector); } else { /* Should never happen */ error_report("%s: unknown interrupt type", __func__); abort(); } return msg; } void pci_set_power(PCIDevice *d, bool state) { if (d->has_power == state) { return; } d->has_power = state; pci_update_mappings(d); memory_region_set_enabled(&d->bus_master_enable_region, (pci_get_word(d->config + PCI_COMMAND) & PCI_COMMAND_MASTER) && d->has_power); if (!d->has_power) { pci_device_reset(d); } } static const TypeInfo pci_device_type_info = { .name = TYPE_PCI_DEVICE, .parent = TYPE_DEVICE, .instance_size = sizeof(PCIDevice), .abstract = true, .class_size = sizeof(PCIDeviceClass), .class_init = pci_device_class_init, .class_base_init = pci_device_class_base_init, }; static void pci_register_types(void) { type_register_static(&pci_bus_info); type_register_static(&pcie_bus_info); type_register_static(&cxl_bus_info); type_register_static(&conventional_pci_interface_info); type_register_static(&cxl_interface_info); type_register_static(&pcie_interface_info); type_register_static(&pci_device_type_info); } type_init(pci_register_types)