/* * QEMU NVM Express Controller * * Copyright (c) 2012, Intel Corporation * * Written by Keith Busch * * This code is licensed under the GNU GPL v2 or later. */ /** * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e * * https://nvmexpress.org/developers/nvme-specification/ * * * Notes on coding style * --------------------- * While QEMU coding style prefers lowercase hexadecimals in constants, the * NVMe subsystem use this format from the NVMe specifications in the comments * (i.e. 'h' suffix instead of '0x' prefix). * * Usage * ----- * See docs/system/nvme.rst for extensive documentation. * * Add options: * -drive file=,if=none,id= * -device nvme-subsys,id=,nqn= * -device nvme,serial=,id=, \ * cmb_size_mb=, \ * [pmrdev=,] \ * max_ioqpairs=, \ * aerl=,aer_max_queued=, \ * mdts=,vsl=, \ * zoned.zasl=, \ * zoned.auto_transition=, \ * sriov_max_vfs= \ * sriov_vq_flexible= \ * sriov_vi_flexible= \ * sriov_max_vi_per_vf= \ * sriov_max_vq_per_vf= \ * atomic.dn=, \ * atomic.awun, \ * atomic.awupf, \ * subsys= * -device nvme-ns,drive=,bus=,nsid=,\ * zoned=, \ * subsys=,shared=, \ * detached=, \ * zoned.zone_size=, \ * zoned.zone_capacity=, \ * zoned.descr_ext_size=, \ * zoned.max_active=, \ * zoned.max_open=, \ * zoned.cross_read= * * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to * always enable the CMBLOC and CMBSZ registers (v1.3 behavior). * * Enabling pmr emulation can be achieved by pointing to memory-backend-file. * For example: * -object memory-backend-file,id=,share=on,mem-path=, \ * size= .... -device nvme,...,pmrdev= * * The PMR will use BAR 4/5 exclusively. * * To place controller(s) and namespace(s) to a subsystem, then provide * nvme-subsys device as above. * * nvme subsystem device parameters * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * - `nqn` * This parameter provides the `` part of the string * `nqn.2019-08.org.qemu:` which will be reported in the SUBNQN field * of subsystem controllers. Note that `` should be unique per * subsystem, but this is not enforced by QEMU. If not specified, it will * default to the value of the `id` parameter (``). * * nvme device parameters * ~~~~~~~~~~~~~~~~~~~~~~ * - `subsys` * Specifying this parameter attaches the controller to the subsystem and * the SUBNQN field in the controller will report the NQN of the subsystem * device. This also enables multi controller capability represented in * Identify Controller data structure in CMIC (Controller Multi-path I/O and * Namespace Sharing Capabilities). * * - `aerl` * The Asynchronous Event Request Limit (AERL). Indicates the maximum number * of concurrently outstanding Asynchronous Event Request commands support * by the controller. This is a 0's based value. * * - `aer_max_queued` * This is the maximum number of events that the device will enqueue for * completion when there are no outstanding AERs. When the maximum number of * enqueued events are reached, subsequent events will be dropped. * * - `mdts` * Indicates the maximum data transfer size for a command that transfers data * between host-accessible memory and the controller. The value is specified * as a power of two (2^n) and is in units of the minimum memory page size * (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB). * * - `vsl` * Indicates the maximum data size limit for the Verify command. Like `mdts`, * this value is specified as a power of two (2^n) and is in units of the * minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512 * KiB). * * - `zoned.zasl` * Indicates the maximum data transfer size for the Zone Append command. Like * `mdts`, the value is specified as a power of two (2^n) and is in units of * the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e. * defaulting to the value of `mdts`). * * - `zoned.auto_transition` * Indicates if zones in zone state implicitly opened can be automatically * transitioned to zone state closed for resource management purposes. * Defaults to 'on'. * * - `sriov_max_vfs` * Indicates the maximum number of PCIe virtual functions supported * by the controller. The default value is 0. Specifying a non-zero value * enables reporting of both SR-IOV and ARI capabilities by the NVMe device. * Virtual function controllers will not report SR-IOV capability. * * NOTE: Single Root I/O Virtualization support is experimental. * All the related parameters may be subject to change. * * - `sriov_vq_flexible` * Indicates the total number of flexible queue resources assignable to all * the secondary controllers. Implicitly sets the number of primary * controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`. * * - `sriov_vi_flexible` * Indicates the total number of flexible interrupt resources assignable to * all the secondary controllers. Implicitly sets the number of primary * controller's private resources to `(msix_qsize - sriov_vi_flexible)`. * * - `sriov_max_vi_per_vf` * Indicates the maximum number of virtual interrupt resources assignable * to a secondary controller. The default 0 resolves to * `(sriov_vi_flexible / sriov_max_vfs)`. * * - `sriov_max_vq_per_vf` * Indicates the maximum number of virtual queue resources assignable to * a secondary controller. The default 0 resolves to * `(sriov_vq_flexible / sriov_max_vfs)`. * * nvme namespace device parameters * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * - `shared` * When the parent nvme device (as defined explicitly by the 'bus' parameter * or implicitly by the most recently defined NvmeBus) is linked to an * nvme-subsys device, the namespace will be attached to all controllers in * the subsystem. If set to 'off' (the default), the namespace will remain a * private namespace and may only be attached to a single controller at a * time. * * - `detached` * This parameter is only valid together with the `subsys` parameter. If left * at the default value (`false/off`), the namespace will be attached to all * controllers in the NVMe subsystem at boot-up. If set to `true/on`, the * namespace will be available in the subsystem but not attached to any * controllers. * * Setting `zoned` to true selects Zoned Command Set at the namespace. * In this case, the following namespace properties are available to configure * zoned operation: * zoned.zone_size= * The number may be followed by K, M, G as in kilo-, mega- or giga-. * * zoned.zone_capacity= * The value 0 (default) forces zone capacity to be the same as zone * size. The value of this property may not exceed zone size. * * zoned.descr_ext_size= * This value needs to be specified in 64B units. If it is zero, * namespace(s) will not support zone descriptor extensions. * * zoned.max_active= * The default value means there is no limit to the number of * concurrently active zones. * * zoned.max_open= * The default value means there is no limit to the number of * concurrently open zones. * * zoned.cross_read= * Setting this property to true enables Read Across Zone Boundaries. */ #include "qemu/osdep.h" #include "qemu/cutils.h" #include "qemu/error-report.h" #include "qemu/log.h" #include "qemu/units.h" #include "qemu/range.h" #include "qapi/error.h" #include "qapi/visitor.h" #include "sysemu/sysemu.h" #include "sysemu/block-backend.h" #include "sysemu/hostmem.h" #include "hw/pci/msix.h" #include "hw/pci/pcie_sriov.h" #include "sysemu/spdm-socket.h" #include "migration/vmstate.h" #include "nvme.h" #include "dif.h" #include "trace.h" #define NVME_MAX_IOQPAIRS 0xffff #define NVME_DB_SIZE 4 #define NVME_SPEC_VER 0x00010400 #define NVME_CMB_BIR 2 #define NVME_PMR_BIR 4 #define NVME_TEMPERATURE 0x143 #define NVME_TEMPERATURE_WARNING 0x157 #define NVME_TEMPERATURE_CRITICAL 0x175 #define NVME_NUM_FW_SLOTS 1 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB) #define NVME_VF_RES_GRANULARITY 1 #define NVME_VF_OFFSET 0x1 #define NVME_VF_STRIDE 1 #define NVME_GUEST_ERR(trace, fmt, ...) \ do { \ (trace_##trace)(__VA_ARGS__); \ qemu_log_mask(LOG_GUEST_ERROR, #trace \ " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \ } while (0) static const bool nvme_feature_support[NVME_FID_MAX] = { [NVME_ARBITRATION] = true, [NVME_POWER_MANAGEMENT] = true, [NVME_TEMPERATURE_THRESHOLD] = true, [NVME_ERROR_RECOVERY] = true, [NVME_VOLATILE_WRITE_CACHE] = true, [NVME_NUMBER_OF_QUEUES] = true, [NVME_INTERRUPT_COALESCING] = true, [NVME_INTERRUPT_VECTOR_CONF] = true, [NVME_WRITE_ATOMICITY] = true, [NVME_ASYNCHRONOUS_EVENT_CONF] = true, [NVME_TIMESTAMP] = true, [NVME_HOST_BEHAVIOR_SUPPORT] = true, [NVME_COMMAND_SET_PROFILE] = true, [NVME_FDP_MODE] = true, [NVME_FDP_EVENTS] = true, }; static const uint32_t nvme_feature_cap[NVME_FID_MAX] = { [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE, [NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS, [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE, [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE, [NVME_WRITE_ATOMICITY] = NVME_FEAT_CAP_CHANGE, [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE, [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE, [NVME_HOST_BEHAVIOR_SUPPORT] = NVME_FEAT_CAP_CHANGE, [NVME_COMMAND_SET_PROFILE] = NVME_FEAT_CAP_CHANGE, [NVME_FDP_MODE] = NVME_FEAT_CAP_CHANGE, [NVME_FDP_EVENTS] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS, }; static const uint32_t nvme_cse_acs[256] = { [NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP, [NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP, [NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP, [NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP, [NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP, [NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP, [NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP, [NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP, [NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP, [NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP, [NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC, [NVME_ADM_CMD_VIRT_MNGMT] = NVME_CMD_EFF_CSUPP, [NVME_ADM_CMD_DBBUF_CONFIG] = NVME_CMD_EFF_CSUPP, [NVME_ADM_CMD_FORMAT_NVM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, [NVME_ADM_CMD_DIRECTIVE_RECV] = NVME_CMD_EFF_CSUPP, [NVME_ADM_CMD_DIRECTIVE_SEND] = NVME_CMD_EFF_CSUPP, }; static const uint32_t nvme_cse_iocs_none[256]; static const uint32_t nvme_cse_iocs_nvm[256] = { [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP, [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP, [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP, [NVME_CMD_IO_MGMT_RECV] = NVME_CMD_EFF_CSUPP, [NVME_CMD_IO_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, }; static const uint32_t nvme_cse_iocs_zoned[256] = { [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP, [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP, [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP, [NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, [NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, [NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP, }; static void nvme_process_sq(void *opaque); static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst); static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n); static uint16_t nvme_sqid(NvmeRequest *req) { return le16_to_cpu(req->sq->sqid); } static inline uint16_t nvme_make_pid(NvmeNamespace *ns, uint16_t rg, uint16_t ph) { uint16_t rgif = ns->endgrp->fdp.rgif; if (!rgif) { return ph; } return (rg << (16 - rgif)) | ph; } static inline bool nvme_ph_valid(NvmeNamespace *ns, uint16_t ph) { return ph < ns->fdp.nphs; } static inline bool nvme_rg_valid(NvmeEnduranceGroup *endgrp, uint16_t rg) { return rg < endgrp->fdp.nrg; } static inline uint16_t nvme_pid2ph(NvmeNamespace *ns, uint16_t pid) { uint16_t rgif = ns->endgrp->fdp.rgif; if (!rgif) { return pid; } return pid & ((1 << (15 - rgif)) - 1); } static inline uint16_t nvme_pid2rg(NvmeNamespace *ns, uint16_t pid) { uint16_t rgif = ns->endgrp->fdp.rgif; if (!rgif) { return 0; } return pid >> (16 - rgif); } static inline bool nvme_parse_pid(NvmeNamespace *ns, uint16_t pid, uint16_t *ph, uint16_t *rg) { *rg = nvme_pid2rg(ns, pid); *ph = nvme_pid2ph(ns, pid); return nvme_ph_valid(ns, *ph) && nvme_rg_valid(ns->endgrp, *rg); } static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone, NvmeZoneState state) { if (QTAILQ_IN_USE(zone, entry)) { switch (nvme_get_zone_state(zone)) { case NVME_ZONE_STATE_EXPLICITLY_OPEN: QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry); break; case NVME_ZONE_STATE_IMPLICITLY_OPEN: QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); break; case NVME_ZONE_STATE_CLOSED: QTAILQ_REMOVE(&ns->closed_zones, zone, entry); break; case NVME_ZONE_STATE_FULL: QTAILQ_REMOVE(&ns->full_zones, zone, entry); default: ; } } nvme_set_zone_state(zone, state); switch (state) { case NVME_ZONE_STATE_EXPLICITLY_OPEN: QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry); break; case NVME_ZONE_STATE_IMPLICITLY_OPEN: QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry); break; case NVME_ZONE_STATE_CLOSED: QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry); break; case NVME_ZONE_STATE_FULL: QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry); case NVME_ZONE_STATE_READ_ONLY: break; default: zone->d.za = 0; } } static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act, uint32_t opn, uint32_t zrwa) { if (ns->params.max_active_zones != 0 && ns->nr_active_zones + act > ns->params.max_active_zones) { trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones); return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR; } if (ns->params.max_open_zones != 0 && ns->nr_open_zones + opn > ns->params.max_open_zones) { trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones); return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR; } if (zrwa > ns->zns.numzrwa) { return NVME_NOZRWA | NVME_DNR; } return NVME_SUCCESS; } /* * Check if we can open a zone without exceeding open/active limits. * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5). */ static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn) { return nvme_zns_check_resources(ns, act, opn, 0); } static NvmeFdpEvent *nvme_fdp_alloc_event(NvmeCtrl *n, NvmeFdpEventBuffer *ebuf) { NvmeFdpEvent *ret = NULL; bool is_full = ebuf->next == ebuf->start && ebuf->nelems; ret = &ebuf->events[ebuf->next++]; if (unlikely(ebuf->next == NVME_FDP_MAX_EVENTS)) { ebuf->next = 0; } if (is_full) { ebuf->start = ebuf->next; } else { ebuf->nelems++; } memset(ret, 0, sizeof(NvmeFdpEvent)); ret->timestamp = nvme_get_timestamp(n); return ret; } static inline int log_event(NvmeRuHandle *ruh, uint8_t event_type) { return (ruh->event_filter >> nvme_fdp_evf_shifts[event_type]) & 0x1; } static bool nvme_update_ruh(NvmeCtrl *n, NvmeNamespace *ns, uint16_t pid) { NvmeEnduranceGroup *endgrp = ns->endgrp; NvmeRuHandle *ruh; NvmeReclaimUnit *ru; NvmeFdpEvent *e = NULL; uint16_t ph, rg, ruhid; if (!nvme_parse_pid(ns, pid, &ph, &rg)) { return false; } ruhid = ns->fdp.phs[ph]; ruh = &endgrp->fdp.ruhs[ruhid]; ru = &ruh->rus[rg]; if (ru->ruamw) { if (log_event(ruh, FDP_EVT_RU_NOT_FULLY_WRITTEN)) { e = nvme_fdp_alloc_event(n, &endgrp->fdp.host_events); e->type = FDP_EVT_RU_NOT_FULLY_WRITTEN; e->flags = FDPEF_PIV | FDPEF_NSIDV | FDPEF_LV; e->pid = cpu_to_le16(pid); e->nsid = cpu_to_le32(ns->params.nsid); e->rgid = cpu_to_le16(rg); e->ruhid = cpu_to_le16(ruhid); } /* log (eventual) GC overhead of prematurely swapping the RU */ nvme_fdp_stat_inc(&endgrp->fdp.mbmw, nvme_l2b(ns, ru->ruamw)); } ru->ruamw = ruh->ruamw; return true; } static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr) { hwaddr hi, lo; if (!n->cmb.cmse) { return false; } lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba; hi = lo + int128_get64(n->cmb.mem.size); return addr >= lo && addr < hi; } static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr) { hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba; return &n->cmb.buf[addr - base]; } static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr) { hwaddr hi; if (!n->pmr.cmse) { return false; } hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size); return addr >= n->pmr.cba && addr < hi; } static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr) { return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba); } static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr) { hwaddr hi, lo; /* * The purpose of this check is to guard against invalid "local" access to * the iomem (i.e. controller registers). Thus, we check against the range * covered by the 'bar0' MemoryRegion since that is currently composed of * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however, * that if the device model is ever changed to allow the CMB to be located * in BAR0 as well, then this must be changed. */ lo = n->bar0.addr; hi = lo + int128_get64(n->bar0.size); return addr >= lo && addr < hi; } static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size) { hwaddr hi = addr + size - 1; if (hi < addr) { return 1; } if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { memcpy(buf, nvme_addr_to_cmb(n, addr), size); return 0; } if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) { memcpy(buf, nvme_addr_to_pmr(n, addr), size); return 0; } return pci_dma_read(PCI_DEVICE(n), addr, buf, size); } static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size) { hwaddr hi = addr + size - 1; if (hi < addr) { return 1; } if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { memcpy(nvme_addr_to_cmb(n, addr), buf, size); return 0; } if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) { memcpy(nvme_addr_to_pmr(n, addr), buf, size); return 0; } return pci_dma_write(PCI_DEVICE(n), addr, buf, size); } static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid) { return nsid && (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES); } static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid) { return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1; } static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid) { return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1; } static void nvme_inc_cq_tail(NvmeCQueue *cq) { cq->tail++; if (cq->tail >= cq->size) { cq->tail = 0; cq->phase = !cq->phase; } } static void nvme_inc_sq_head(NvmeSQueue *sq) { sq->head = (sq->head + 1) % sq->size; } static uint8_t nvme_cq_full(NvmeCQueue *cq) { return (cq->tail + 1) % cq->size == cq->head; } static uint8_t nvme_sq_empty(NvmeSQueue *sq) { return sq->head == sq->tail; } static void nvme_irq_check(NvmeCtrl *n) { PCIDevice *pci = PCI_DEVICE(n); uint32_t intms = ldl_le_p(&n->bar.intms); if (msix_enabled(pci)) { return; } /* vfs does not implement intx */ if (pci_is_vf(pci)) { return; } if (~intms & n->irq_status) { pci_irq_assert(pci); } else { pci_irq_deassert(pci); } } static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq) { PCIDevice *pci = PCI_DEVICE(n); if (cq->irq_enabled) { if (msix_enabled(pci)) { trace_pci_nvme_irq_msix(cq->vector); msix_notify(pci, cq->vector); } else { trace_pci_nvme_irq_pin(); assert(cq->vector < 32); n->irq_status |= 1 << cq->vector; nvme_irq_check(n); } } else { trace_pci_nvme_irq_masked(); } } static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq) { if (cq->irq_enabled) { if (msix_enabled(PCI_DEVICE(n))) { return; } else { assert(cq->vector < 32); if (!n->cq_pending) { n->irq_status &= ~(1 << cq->vector); } nvme_irq_check(n); } } } static void nvme_req_clear(NvmeRequest *req) { req->ns = NULL; req->opaque = NULL; req->aiocb = NULL; memset(&req->cqe, 0x0, sizeof(req->cqe)); req->status = NVME_SUCCESS; } static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma) { if (dma) { pci_dma_sglist_init(&sg->qsg, PCI_DEVICE(n), 0); sg->flags = NVME_SG_DMA; } else { qemu_iovec_init(&sg->iov, 0); } sg->flags |= NVME_SG_ALLOC; } static inline void nvme_sg_unmap(NvmeSg *sg) { if (!(sg->flags & NVME_SG_ALLOC)) { return; } if (sg->flags & NVME_SG_DMA) { qemu_sglist_destroy(&sg->qsg); } else { qemu_iovec_destroy(&sg->iov); } memset(sg, 0x0, sizeof(*sg)); } /* * When metadata is transferred as extended LBAs, the DPTR mapped into `sg` * holds both data and metadata. This function splits the data and metadata * into two separate QSG/IOVs. */ static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data, NvmeSg *mdata) { NvmeSg *dst = data; uint32_t trans_len, count = ns->lbasz; uint64_t offset = 0; bool dma = sg->flags & NVME_SG_DMA; size_t sge_len; size_t sg_len = dma ? sg->qsg.size : sg->iov.size; int sg_idx = 0; assert(sg->flags & NVME_SG_ALLOC); while (sg_len) { sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len; trans_len = MIN(sg_len, count); trans_len = MIN(trans_len, sge_len - offset); if (dst) { if (dma) { qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset, trans_len); } else { qemu_iovec_add(&dst->iov, sg->iov.iov[sg_idx].iov_base + offset, trans_len); } } sg_len -= trans_len; count -= trans_len; offset += trans_len; if (count == 0) { dst = (dst == data) ? mdata : data; count = (dst == data) ? ns->lbasz : ns->lbaf.ms; } if (sge_len == offset) { offset = 0; sg_idx++; } } } static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, size_t len) { if (!len) { return NVME_SUCCESS; } trace_pci_nvme_map_addr_cmb(addr, len); if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) { return NVME_DATA_TRAS_ERROR; } qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len); return NVME_SUCCESS; } static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, size_t len) { if (!len) { return NVME_SUCCESS; } if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) { return NVME_DATA_TRAS_ERROR; } qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len); return NVME_SUCCESS; } static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len) { bool cmb = false, pmr = false; if (!len) { return NVME_SUCCESS; } trace_pci_nvme_map_addr(addr, len); if (nvme_addr_is_iomem(n, addr)) { return NVME_DATA_TRAS_ERROR; } if (nvme_addr_is_cmb(n, addr)) { cmb = true; } else if (nvme_addr_is_pmr(n, addr)) { pmr = true; } if (cmb || pmr) { if (sg->flags & NVME_SG_DMA) { return NVME_INVALID_USE_OF_CMB | NVME_DNR; } if (sg->iov.niov + 1 > IOV_MAX) { goto max_mappings_exceeded; } if (cmb) { return nvme_map_addr_cmb(n, &sg->iov, addr, len); } else { return nvme_map_addr_pmr(n, &sg->iov, addr, len); } } if (!(sg->flags & NVME_SG_DMA)) { return NVME_INVALID_USE_OF_CMB | NVME_DNR; } if (sg->qsg.nsg + 1 > IOV_MAX) { goto max_mappings_exceeded; } qemu_sglist_add(&sg->qsg, addr, len); return NVME_SUCCESS; max_mappings_exceeded: NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings, "number of mappings exceed 1024"); return NVME_INTERNAL_DEV_ERROR | NVME_DNR; } static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr) { return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr)); } static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1, uint64_t prp2, uint32_t len) { hwaddr trans_len = n->page_size - (prp1 % n->page_size); trans_len = MIN(len, trans_len); int num_prps = (len >> n->page_bits) + 1; uint16_t status; int ret; trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps); nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1)); status = nvme_map_addr(n, sg, prp1, trans_len); if (status) { goto unmap; } len -= trans_len; if (len) { if (len > n->page_size) { g_autofree uint64_t *prp_list = g_new(uint64_t, n->max_prp_ents); uint32_t nents, prp_trans; int i = 0; /* * The first PRP list entry, pointed to by PRP2 may contain offset. * Hence, we need to calculate the number of entries in based on * that offset. */ nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3; prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t); ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans); if (ret) { trace_pci_nvme_err_addr_read(prp2); status = NVME_DATA_TRAS_ERROR; goto unmap; } while (len != 0) { uint64_t prp_ent = le64_to_cpu(prp_list[i]); if (i == nents - 1 && len > n->page_size) { if (unlikely(prp_ent & (n->page_size - 1))) { trace_pci_nvme_err_invalid_prplist_ent(prp_ent); status = NVME_INVALID_PRP_OFFSET | NVME_DNR; goto unmap; } i = 0; nents = (len + n->page_size - 1) >> n->page_bits; nents = MIN(nents, n->max_prp_ents); prp_trans = nents * sizeof(uint64_t); ret = nvme_addr_read(n, prp_ent, (void *)prp_list, prp_trans); if (ret) { trace_pci_nvme_err_addr_read(prp_ent); status = NVME_DATA_TRAS_ERROR; goto unmap; } prp_ent = le64_to_cpu(prp_list[i]); } if (unlikely(prp_ent & (n->page_size - 1))) { trace_pci_nvme_err_invalid_prplist_ent(prp_ent); status = NVME_INVALID_PRP_OFFSET | NVME_DNR; goto unmap; } trans_len = MIN(len, n->page_size); status = nvme_map_addr(n, sg, prp_ent, trans_len); if (status) { goto unmap; } len -= trans_len; i++; } } else { if (unlikely(prp2 & (n->page_size - 1))) { trace_pci_nvme_err_invalid_prp2_align(prp2); status = NVME_INVALID_PRP_OFFSET | NVME_DNR; goto unmap; } status = nvme_map_addr(n, sg, prp2, len); if (status) { goto unmap; } } } return NVME_SUCCESS; unmap: nvme_sg_unmap(sg); return status; } /* * Map 'nsgld' data descriptors from 'segment'. The function will subtract the * number of bytes mapped in len. */ static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor *segment, uint64_t nsgld, size_t *len, NvmeCmd *cmd) { dma_addr_t addr, trans_len; uint32_t dlen; uint16_t status; for (int i = 0; i < nsgld; i++) { uint8_t type = NVME_SGL_TYPE(segment[i].type); switch (type) { case NVME_SGL_DESCR_TYPE_DATA_BLOCK: break; case NVME_SGL_DESCR_TYPE_SEGMENT: case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR; default: return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR; } dlen = le32_to_cpu(segment[i].len); if (!dlen) { continue; } if (*len == 0) { /* * All data has been mapped, but the SGL contains additional * segments and/or descriptors. The controller might accept * ignoring the rest of the SGL. */ uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls); if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) { break; } trace_pci_nvme_err_invalid_sgl_excess_length(dlen); return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; } trans_len = MIN(*len, dlen); addr = le64_to_cpu(segment[i].addr); if (UINT64_MAX - addr < dlen) { return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; } status = nvme_map_addr(n, sg, addr, trans_len); if (status) { return status; } *len -= trans_len; } return NVME_SUCCESS; } static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl, size_t len, NvmeCmd *cmd) { /* * Read the segment in chunks of 256 descriptors (one 4k page) to avoid * dynamically allocating a potentially huge SGL. The spec allows the SGL * to be larger (as in number of bytes required to describe the SGL * descriptors and segment chain) than the command transfer size, so it is * not bounded by MDTS. */ #define SEG_CHUNK_SIZE 256 NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld; uint64_t nsgld; uint32_t seg_len; uint16_t status; hwaddr addr; int ret; sgld = &sgl; addr = le64_to_cpu(sgl.addr); trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len); nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr)); /* * If the entire transfer can be described with a single data block it can * be mapped directly. */ if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) { status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd); if (status) { goto unmap; } goto out; } for (;;) { switch (NVME_SGL_TYPE(sgld->type)) { case NVME_SGL_DESCR_TYPE_SEGMENT: case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: break; default: return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; } seg_len = le32_to_cpu(sgld->len); /* check the length of the (Last) Segment descriptor */ if (!seg_len || seg_len & 0xf) { return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; } if (UINT64_MAX - addr < seg_len) { return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; } nsgld = seg_len / sizeof(NvmeSglDescriptor); while (nsgld > SEG_CHUNK_SIZE) { if (nvme_addr_read(n, addr, segment, sizeof(segment))) { trace_pci_nvme_err_addr_read(addr); status = NVME_DATA_TRAS_ERROR; goto unmap; } status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE, &len, cmd); if (status) { goto unmap; } nsgld -= SEG_CHUNK_SIZE; addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor); } ret = nvme_addr_read(n, addr, segment, nsgld * sizeof(NvmeSglDescriptor)); if (ret) { trace_pci_nvme_err_addr_read(addr); status = NVME_DATA_TRAS_ERROR; goto unmap; } last_sgld = &segment[nsgld - 1]; /* * If the segment ends with a Data Block, then we are done. */ if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) { status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd); if (status) { goto unmap; } goto out; } /* * If the last descriptor was not a Data Block, then the current * segment must not be a Last Segment. */ if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) { status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; goto unmap; } sgld = last_sgld; addr = le64_to_cpu(sgld->addr); /* * Do not map the last descriptor; it will be a Segment or Last Segment * descriptor and is handled by the next iteration. */ status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd); if (status) { goto unmap; } } out: /* if there is any residual left in len, the SGL was too short */ if (len) { status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR; goto unmap; } return NVME_SUCCESS; unmap: nvme_sg_unmap(sg); return status; } uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len, NvmeCmd *cmd) { uint64_t prp1, prp2; switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) { case NVME_PSDT_PRP: prp1 = le64_to_cpu(cmd->dptr.prp1); prp2 = le64_to_cpu(cmd->dptr.prp2); return nvme_map_prp(n, sg, prp1, prp2, len); case NVME_PSDT_SGL_MPTR_CONTIGUOUS: case NVME_PSDT_SGL_MPTR_SGL: return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd); default: return NVME_INVALID_FIELD; } } static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len, NvmeCmd *cmd) { int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags); hwaddr mptr = le64_to_cpu(cmd->mptr); uint16_t status; if (psdt == NVME_PSDT_SGL_MPTR_SGL) { NvmeSglDescriptor sgl; if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) { return NVME_DATA_TRAS_ERROR; } status = nvme_map_sgl(n, sg, sgl, len, cmd); if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) { status = NVME_MD_SGL_LEN_INVALID | NVME_DNR; } return status; } nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr)); status = nvme_map_addr(n, sg, mptr, len); if (status) { nvme_sg_unmap(sg); } return status; } static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req) { NvmeNamespace *ns = req->ns; NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps); bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT); size_t len = nvme_l2b(ns, nlb); uint16_t status; if (nvme_ns_ext(ns) && !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) { NvmeSg sg; len += nvme_m2b(ns, nlb); status = nvme_map_dptr(n, &sg, len, &req->cmd); if (status) { return status; } nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA); nvme_sg_split(&sg, ns, &req->sg, NULL); nvme_sg_unmap(&sg); return NVME_SUCCESS; } return nvme_map_dptr(n, &req->sg, len, &req->cmd); } static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req) { NvmeNamespace *ns = req->ns; size_t len = nvme_m2b(ns, nlb); uint16_t status; if (nvme_ns_ext(ns)) { NvmeSg sg; len += nvme_l2b(ns, nlb); status = nvme_map_dptr(n, &sg, len, &req->cmd); if (status) { return status; } nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA); nvme_sg_split(&sg, ns, NULL, &req->sg); nvme_sg_unmap(&sg); return NVME_SUCCESS; } return nvme_map_mptr(n, &req->sg, len, &req->cmd); } static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr, uint32_t len, uint32_t bytes, int32_t skip_bytes, int64_t offset, NvmeTxDirection dir) { hwaddr addr; uint32_t trans_len, count = bytes; bool dma = sg->flags & NVME_SG_DMA; int64_t sge_len; int sg_idx = 0; int ret; assert(sg->flags & NVME_SG_ALLOC); while (len) { sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len; if (sge_len - offset < 0) { offset -= sge_len; sg_idx++; continue; } if (sge_len == offset) { offset = 0; sg_idx++; continue; } trans_len = MIN(len, count); trans_len = MIN(trans_len, sge_len - offset); if (dma) { addr = sg->qsg.sg[sg_idx].base + offset; } else { addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset; } if (dir == NVME_TX_DIRECTION_TO_DEVICE) { ret = nvme_addr_read(n, addr, ptr, trans_len); } else { ret = nvme_addr_write(n, addr, ptr, trans_len); } if (ret) { return NVME_DATA_TRAS_ERROR; } ptr += trans_len; len -= trans_len; count -= trans_len; offset += trans_len; if (count == 0) { count = bytes; offset += skip_bytes; } } return NVME_SUCCESS; } static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len, NvmeTxDirection dir) { assert(sg->flags & NVME_SG_ALLOC); if (sg->flags & NVME_SG_DMA) { const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; dma_addr_t residual; if (dir == NVME_TX_DIRECTION_TO_DEVICE) { dma_buf_write(ptr, len, &residual, &sg->qsg, attrs); } else { dma_buf_read(ptr, len, &residual, &sg->qsg, attrs); } if (unlikely(residual)) { trace_pci_nvme_err_invalid_dma(); return NVME_INVALID_FIELD | NVME_DNR; } } else { size_t bytes; if (dir == NVME_TX_DIRECTION_TO_DEVICE) { bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len); } else { bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len); } if (unlikely(bytes != len)) { trace_pci_nvme_err_invalid_dma(); return NVME_INVALID_FIELD | NVME_DNR; } } return NVME_SUCCESS; } static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len, NvmeRequest *req) { uint16_t status; status = nvme_map_dptr(n, &req->sg, len, &req->cmd); if (status) { return status; } return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE); } static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len, NvmeRequest *req) { uint16_t status; status = nvme_map_dptr(n, &req->sg, len, &req->cmd); if (status) { return status; } return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE); } uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len, NvmeTxDirection dir, NvmeRequest *req) { NvmeNamespace *ns = req->ns; NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps); bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT); if (nvme_ns_ext(ns) && !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) { return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz, ns->lbaf.ms, 0, dir); } return nvme_tx(n, &req->sg, ptr, len, dir); } uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len, NvmeTxDirection dir, NvmeRequest *req) { NvmeNamespace *ns = req->ns; uint16_t status; if (nvme_ns_ext(ns)) { return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms, ns->lbasz, ns->lbasz, dir); } nvme_sg_unmap(&req->sg); status = nvme_map_mptr(n, &req->sg, len, &req->cmd); if (status) { return status; } return nvme_tx(n, &req->sg, ptr, len, dir); } static inline void nvme_blk_read(BlockBackend *blk, int64_t offset, uint32_t align, BlockCompletionFunc *cb, NvmeRequest *req) { assert(req->sg.flags & NVME_SG_ALLOC); if (req->sg.flags & NVME_SG_DMA) { req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, align, cb, req); } else { req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req); } } static inline void nvme_blk_write(BlockBackend *blk, int64_t offset, uint32_t align, BlockCompletionFunc *cb, NvmeRequest *req) { assert(req->sg.flags & NVME_SG_ALLOC); if (req->sg.flags & NVME_SG_DMA) { req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, align, cb, req); } else { req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req); } } static void nvme_update_cq_eventidx(const NvmeCQueue *cq) { trace_pci_nvme_update_cq_eventidx(cq->cqid, cq->head); stl_le_pci_dma(PCI_DEVICE(cq->ctrl), cq->ei_addr, cq->head, MEMTXATTRS_UNSPECIFIED); } static void nvme_update_cq_head(NvmeCQueue *cq) { ldl_le_pci_dma(PCI_DEVICE(cq->ctrl), cq->db_addr, &cq->head, MEMTXATTRS_UNSPECIFIED); trace_pci_nvme_update_cq_head(cq->cqid, cq->head); } static void nvme_post_cqes(void *opaque) { NvmeCQueue *cq = opaque; NvmeCtrl *n = cq->ctrl; NvmeRequest *req, *next; bool pending = cq->head != cq->tail; int ret; QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) { NvmeSQueue *sq; hwaddr addr; if (n->dbbuf_enabled) { nvme_update_cq_eventidx(cq); nvme_update_cq_head(cq); } if (nvme_cq_full(cq)) { break; } sq = req->sq; req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase); req->cqe.sq_id = cpu_to_le16(sq->sqid); req->cqe.sq_head = cpu_to_le16(sq->head); addr = cq->dma_addr + (cq->tail << NVME_CQES); ret = pci_dma_write(PCI_DEVICE(n), addr, (void *)&req->cqe, sizeof(req->cqe)); if (ret) { trace_pci_nvme_err_addr_write(addr); trace_pci_nvme_err_cfs(); stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); break; } QTAILQ_REMOVE(&cq->req_list, req, entry); nvme_inc_cq_tail(cq); nvme_sg_unmap(&req->sg); if (QTAILQ_EMPTY(&sq->req_list) && !nvme_sq_empty(sq)) { qemu_bh_schedule(sq->bh); } QTAILQ_INSERT_TAIL(&sq->req_list, req, entry); } if (cq->tail != cq->head) { if (cq->irq_enabled && !pending) { n->cq_pending++; } nvme_irq_assert(n, cq); } } static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req) { assert(cq->cqid == req->sq->cqid); trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid, le32_to_cpu(req->cqe.result), le32_to_cpu(req->cqe.dw1), req->status); if (req->status) { trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns), req->status, req->cmd.opcode); } QTAILQ_REMOVE(&req->sq->out_req_list, req, entry); QTAILQ_INSERT_TAIL(&cq->req_list, req, entry); qemu_bh_schedule(cq->bh); } static void nvme_process_aers(void *opaque) { NvmeCtrl *n = opaque; NvmeAsyncEvent *event, *next; trace_pci_nvme_process_aers(n->aer_queued); QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) { NvmeRequest *req; NvmeAerResult *result; /* can't post cqe if there is nothing to complete */ if (!n->outstanding_aers) { trace_pci_nvme_no_outstanding_aers(); break; } /* ignore if masked (cqe posted, but event not cleared) */ if (n->aer_mask & (1 << event->result.event_type)) { trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask); continue; } QTAILQ_REMOVE(&n->aer_queue, event, entry); n->aer_queued--; n->aer_mask |= 1 << event->result.event_type; n->outstanding_aers--; req = n->aer_reqs[n->outstanding_aers]; result = (NvmeAerResult *) &req->cqe.result; result->event_type = event->result.event_type; result->event_info = event->result.event_info; result->log_page = event->result.log_page; g_free(event); trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info, result->log_page); nvme_enqueue_req_completion(&n->admin_cq, req); } } static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type, uint8_t event_info, uint8_t log_page) { NvmeAsyncEvent *event; trace_pci_nvme_enqueue_event(event_type, event_info, log_page); if (n->aer_queued == n->params.aer_max_queued) { trace_pci_nvme_enqueue_event_noqueue(n->aer_queued); return; } event = g_new(NvmeAsyncEvent, 1); event->result = (NvmeAerResult) { .event_type = event_type, .event_info = event_info, .log_page = log_page, }; QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry); n->aer_queued++; nvme_process_aers(n); } static void nvme_smart_event(NvmeCtrl *n, uint8_t event) { uint8_t aer_info; /* Ref SPEC */ if (!(NVME_AEC_SMART(n->features.async_config) & event)) { return; } switch (event) { case NVME_SMART_SPARE: aer_info = NVME_AER_INFO_SMART_SPARE_THRESH; break; case NVME_SMART_TEMPERATURE: aer_info = NVME_AER_INFO_SMART_TEMP_THRESH; break; case NVME_SMART_RELIABILITY: case NVME_SMART_MEDIA_READ_ONLY: case NVME_SMART_FAILED_VOLATILE_MEDIA: case NVME_SMART_PMR_UNRELIABLE: aer_info = NVME_AER_INFO_SMART_RELIABILITY; break; default: return; } nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO); } static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type) { NvmeAsyncEvent *event, *next; n->aer_mask &= ~(1 << event_type); QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) { if (event->result.event_type == event_type) { QTAILQ_REMOVE(&n->aer_queue, event, entry); n->aer_queued--; g_free(event); } } } static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len) { uint8_t mdts = n->params.mdts; if (mdts && len > n->page_size << mdts) { trace_pci_nvme_err_mdts(len); return NVME_INVALID_FIELD | NVME_DNR; } return NVME_SUCCESS; } static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba, uint32_t nlb) { uint64_t nsze = le64_to_cpu(ns->id_ns.nsze); if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) { trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze); return NVME_LBA_RANGE | NVME_DNR; } return NVME_SUCCESS; } static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba, uint32_t nlb, int flags) { BlockDriverState *bs = blk_bs(ns->blkconf.blk); int64_t pnum = 0, bytes = nvme_l2b(ns, nlb); int64_t offset = nvme_l2b(ns, slba); int ret; /* * `pnum` holds the number of bytes after offset that shares the same * allocation status as the byte at offset. If `pnum` is different from * `bytes`, we should check the allocation status of the next range and * continue this until all bytes have been checked. */ do { bytes -= pnum; ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL); if (ret < 0) { return ret; } trace_pci_nvme_block_status(offset, bytes, pnum, ret, !!(ret & BDRV_BLOCK_ZERO)); if (!(ret & flags)) { return 1; } offset += pnum; } while (pnum != bytes); return 0; } static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba, uint32_t nlb) { int ret; Error *err = NULL; ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA); if (ret) { if (ret < 0) { error_setg_errno(&err, -ret, "unable to get block status"); error_report_err(err); return NVME_INTERNAL_DEV_ERROR; } return NVME_DULB; } return NVME_SUCCESS; } static void nvme_aio_err(NvmeRequest *req, int ret) { uint16_t status = NVME_SUCCESS; Error *local_err = NULL; switch (req->cmd.opcode) { case NVME_CMD_READ: status = NVME_UNRECOVERED_READ; break; case NVME_CMD_FLUSH: case NVME_CMD_WRITE: case NVME_CMD_WRITE_ZEROES: case NVME_CMD_ZONE_APPEND: case NVME_CMD_COPY: status = NVME_WRITE_FAULT; break; default: status = NVME_INTERNAL_DEV_ERROR; break; } if (ret == -ECANCELED) { status = NVME_CMD_ABORT_REQ; } trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status); error_setg_errno(&local_err, -ret, "aio failed"); error_report_err(local_err); /* * Set the command status code to the first encountered error but allow a * subsequent Internal Device Error to trump it. */ if (req->status && status != NVME_INTERNAL_DEV_ERROR) { return; } req->status = status; } static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba) { return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 : slba / ns->zone_size; } static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba) { uint32_t zone_idx = nvme_zone_idx(ns, slba); if (zone_idx >= ns->num_zones) { return NULL; } return &ns->zone_array[zone_idx]; } static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone) { uint64_t zslba = zone->d.zslba; switch (nvme_get_zone_state(zone)) { case NVME_ZONE_STATE_EMPTY: case NVME_ZONE_STATE_IMPLICITLY_OPEN: case NVME_ZONE_STATE_EXPLICITLY_OPEN: case NVME_ZONE_STATE_CLOSED: return NVME_SUCCESS; case NVME_ZONE_STATE_FULL: trace_pci_nvme_err_zone_is_full(zslba); return NVME_ZONE_FULL; case NVME_ZONE_STATE_OFFLINE: trace_pci_nvme_err_zone_is_offline(zslba); return NVME_ZONE_OFFLINE; case NVME_ZONE_STATE_READ_ONLY: trace_pci_nvme_err_zone_is_read_only(zslba); return NVME_ZONE_READ_ONLY; default: g_assert_not_reached(); } return NVME_INTERNAL_DEV_ERROR; } static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone, uint64_t slba, uint32_t nlb) { uint64_t zcap = nvme_zone_wr_boundary(zone); uint16_t status; status = nvme_check_zone_state_for_write(zone); if (status) { return status; } if (zone->d.za & NVME_ZA_ZRWA_VALID) { uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas; if (slba < zone->w_ptr || slba + nlb > ezrwa) { trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr); return NVME_ZONE_INVALID_WRITE; } } else { if (unlikely(slba != zone->w_ptr)) { trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba, zone->w_ptr); return NVME_ZONE_INVALID_WRITE; } } if (unlikely((slba + nlb) > zcap)) { trace_pci_nvme_err_zone_boundary(slba, nlb, zcap); return NVME_ZONE_BOUNDARY_ERROR; } return NVME_SUCCESS; } static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone) { switch (nvme_get_zone_state(zone)) { case NVME_ZONE_STATE_EMPTY: case NVME_ZONE_STATE_IMPLICITLY_OPEN: case NVME_ZONE_STATE_EXPLICITLY_OPEN: case NVME_ZONE_STATE_FULL: case NVME_ZONE_STATE_CLOSED: case NVME_ZONE_STATE_READ_ONLY: return NVME_SUCCESS; case NVME_ZONE_STATE_OFFLINE: trace_pci_nvme_err_zone_is_offline(zone->d.zslba); return NVME_ZONE_OFFLINE; default: g_assert_not_reached(); } return NVME_INTERNAL_DEV_ERROR; } static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba, uint32_t nlb) { NvmeZone *zone; uint64_t bndry, end; uint16_t status; zone = nvme_get_zone_by_slba(ns, slba); assert(zone); bndry = nvme_zone_rd_boundary(ns, zone); end = slba + nlb; status = nvme_check_zone_state_for_read(zone); if (status) { ; } else if (unlikely(end > bndry)) { if (!ns->params.cross_zone_read) { status = NVME_ZONE_BOUNDARY_ERROR; } else { /* * Read across zone boundary - check that all subsequent * zones that are being read have an appropriate state. */ do { zone++; status = nvme_check_zone_state_for_read(zone); if (status) { break; } } while (end > nvme_zone_rd_boundary(ns, zone)); } } return status; } static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone) { switch (nvme_get_zone_state(zone)) { case NVME_ZONE_STATE_FULL: return NVME_SUCCESS; case NVME_ZONE_STATE_IMPLICITLY_OPEN: case NVME_ZONE_STATE_EXPLICITLY_OPEN: nvme_aor_dec_open(ns); /* fallthrough */ case NVME_ZONE_STATE_CLOSED: nvme_aor_dec_active(ns); if (zone->d.za & NVME_ZA_ZRWA_VALID) { zone->d.za &= ~NVME_ZA_ZRWA_VALID; if (ns->params.numzrwa) { ns->zns.numzrwa++; } } /* fallthrough */ case NVME_ZONE_STATE_EMPTY: nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL); return NVME_SUCCESS; default: return NVME_ZONE_INVAL_TRANSITION; } } static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone) { switch (nvme_get_zone_state(zone)) { case NVME_ZONE_STATE_EXPLICITLY_OPEN: case NVME_ZONE_STATE_IMPLICITLY_OPEN: nvme_aor_dec_open(ns); nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED); /* fall through */ case NVME_ZONE_STATE_CLOSED: return NVME_SUCCESS; default: return NVME_ZONE_INVAL_TRANSITION; } } static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone) { switch (nvme_get_zone_state(zone)) { case NVME_ZONE_STATE_EXPLICITLY_OPEN: case NVME_ZONE_STATE_IMPLICITLY_OPEN: nvme_aor_dec_open(ns); /* fallthrough */ case NVME_ZONE_STATE_CLOSED: nvme_aor_dec_active(ns); if (zone->d.za & NVME_ZA_ZRWA_VALID) { if (ns->params.numzrwa) { ns->zns.numzrwa++; } } /* fallthrough */ case NVME_ZONE_STATE_FULL: zone->w_ptr = zone->d.zslba; zone->d.wp = zone->w_ptr; nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY); /* fallthrough */ case NVME_ZONE_STATE_EMPTY: return NVME_SUCCESS; default: return NVME_ZONE_INVAL_TRANSITION; } } static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns) { NvmeZone *zone; if (ns->params.max_open_zones && ns->nr_open_zones == ns->params.max_open_zones) { zone = QTAILQ_FIRST(&ns->imp_open_zones); if (zone) { /* * Automatically close this implicitly open zone. */ QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); nvme_zrm_close(ns, zone); } } } enum { NVME_ZRM_AUTO = 1 << 0, NVME_ZRM_ZRWA = 1 << 1, }; static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns, NvmeZone *zone, int flags) { int act = 0; uint16_t status; switch (nvme_get_zone_state(zone)) { case NVME_ZONE_STATE_EMPTY: act = 1; /* fallthrough */ case NVME_ZONE_STATE_CLOSED: if (n->params.auto_transition_zones) { nvme_zrm_auto_transition_zone(ns); } status = nvme_zns_check_resources(ns, act, 1, (flags & NVME_ZRM_ZRWA) ? 1 : 0); if (status) { return status; } if (act) { nvme_aor_inc_active(ns); } nvme_aor_inc_open(ns); if (flags & NVME_ZRM_AUTO) { nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN); return NVME_SUCCESS; } /* fallthrough */ case NVME_ZONE_STATE_IMPLICITLY_OPEN: if (flags & NVME_ZRM_AUTO) { return NVME_SUCCESS; } nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN); /* fallthrough */ case NVME_ZONE_STATE_EXPLICITLY_OPEN: if (flags & NVME_ZRM_ZRWA) { ns->zns.numzrwa--; zone->d.za |= NVME_ZA_ZRWA_VALID; } return NVME_SUCCESS; default: return NVME_ZONE_INVAL_TRANSITION; } } static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns, NvmeZone *zone) { return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO); } static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone, uint32_t nlb) { zone->d.wp += nlb; if (zone->d.wp == nvme_zone_wr_boundary(zone)) { nvme_zrm_finish(ns, zone); } } static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone, uint32_t nlbc) { uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg); nlbc = nzrwafgs * ns->zns.zrwafg; trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc); zone->w_ptr += nlbc; nvme_advance_zone_wp(ns, zone, nlbc); } static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req) { NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; NvmeZone *zone; uint64_t slba; uint32_t nlb; slba = le64_to_cpu(rw->slba); nlb = le16_to_cpu(rw->nlb) + 1; zone = nvme_get_zone_by_slba(ns, slba); assert(zone); if (zone->d.za & NVME_ZA_ZRWA_VALID) { uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1; uint64_t elba = slba + nlb - 1; if (elba > ezrwa) { nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa); } return; } nvme_advance_zone_wp(ns, zone, nlb); } static inline bool nvme_is_write(NvmeRequest *req) { NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; return rw->opcode == NVME_CMD_WRITE || rw->opcode == NVME_CMD_ZONE_APPEND || rw->opcode == NVME_CMD_WRITE_ZEROES; } static void nvme_misc_cb(void *opaque, int ret) { NvmeRequest *req = opaque; trace_pci_nvme_misc_cb(nvme_cid(req)); if (ret) { nvme_aio_err(req, ret); } nvme_enqueue_req_completion(nvme_cq(req), req); } void nvme_rw_complete_cb(void *opaque, int ret) { NvmeRequest *req = opaque; NvmeNamespace *ns = req->ns; BlockBackend *blk = ns->blkconf.blk; BlockAcctCookie *acct = &req->acct; BlockAcctStats *stats = blk_get_stats(blk); trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk)); if (ret) { block_acct_failed(stats, acct); nvme_aio_err(req, ret); } else { block_acct_done(stats, acct); } if (ns->params.zoned && nvme_is_write(req)) { nvme_finalize_zoned_write(ns, req); } nvme_enqueue_req_completion(nvme_cq(req), req); } static void nvme_rw_cb(void *opaque, int ret) { NvmeRequest *req = opaque; NvmeNamespace *ns = req->ns; BlockBackend *blk = ns->blkconf.blk; trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk)); if (ret) { goto out; } if (ns->lbaf.ms) { NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; uint64_t slba = le64_to_cpu(rw->slba); uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; uint64_t offset = nvme_moff(ns, slba); if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) { size_t mlen = nvme_m2b(ns, nlb); req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen, BDRV_REQ_MAY_UNMAP, nvme_rw_complete_cb, req); return; } if (nvme_ns_ext(ns) || req->cmd.mptr) { uint16_t status; nvme_sg_unmap(&req->sg); status = nvme_map_mdata(nvme_ctrl(req), nlb, req); if (status) { ret = -EFAULT; goto out; } if (req->cmd.opcode == NVME_CMD_READ) { return nvme_blk_read(blk, offset, 1, nvme_rw_complete_cb, req); } return nvme_blk_write(blk, offset, 1, nvme_rw_complete_cb, req); } } out: nvme_rw_complete_cb(req, ret); } static void nvme_verify_cb(void *opaque, int ret) { NvmeBounceContext *ctx = opaque; NvmeRequest *req = ctx->req; NvmeNamespace *ns = req->ns; BlockBackend *blk = ns->blkconf.blk; BlockAcctCookie *acct = &req->acct; BlockAcctStats *stats = blk_get_stats(blk); NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; uint64_t slba = le64_to_cpu(rw->slba); uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); uint16_t apptag = le16_to_cpu(rw->apptag); uint16_t appmask = le16_to_cpu(rw->appmask); uint64_t reftag = le32_to_cpu(rw->reftag); uint64_t cdw3 = le32_to_cpu(rw->cdw3); uint16_t status; reftag |= cdw3 << 32; trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag); if (ret) { block_acct_failed(stats, acct); nvme_aio_err(req, ret); goto out; } block_acct_done(stats, acct); if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce, ctx->mdata.iov.size, slba); if (status) { req->status = status; goto out; } req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size, ctx->mdata.bounce, ctx->mdata.iov.size, prinfo, slba, apptag, appmask, &reftag); } out: qemu_iovec_destroy(&ctx->data.iov); g_free(ctx->data.bounce); qemu_iovec_destroy(&ctx->mdata.iov); g_free(ctx->mdata.bounce); g_free(ctx); nvme_enqueue_req_completion(nvme_cq(req), req); } static void nvme_verify_mdata_in_cb(void *opaque, int ret) { NvmeBounceContext *ctx = opaque; NvmeRequest *req = ctx->req; NvmeNamespace *ns = req->ns; NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; uint64_t slba = le64_to_cpu(rw->slba); uint32_t nlb = le16_to_cpu(rw->nlb) + 1; size_t mlen = nvme_m2b(ns, nlb); uint64_t offset = nvme_moff(ns, slba); BlockBackend *blk = ns->blkconf.blk; trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk)); if (ret) { goto out; } ctx->mdata.bounce = g_malloc(mlen); qemu_iovec_reset(&ctx->mdata.iov); qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen); req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0, nvme_verify_cb, ctx); return; out: nvme_verify_cb(ctx, ret); } struct nvme_compare_ctx { struct { QEMUIOVector iov; uint8_t *bounce; } data; struct { QEMUIOVector iov; uint8_t *bounce; } mdata; }; static void nvme_compare_mdata_cb(void *opaque, int ret) { NvmeRequest *req = opaque; NvmeNamespace *ns = req->ns; NvmeCtrl *n = nvme_ctrl(req); NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); uint16_t apptag = le16_to_cpu(rw->apptag); uint16_t appmask = le16_to_cpu(rw->appmask); uint64_t reftag = le32_to_cpu(rw->reftag); uint64_t cdw3 = le32_to_cpu(rw->cdw3); struct nvme_compare_ctx *ctx = req->opaque; g_autofree uint8_t *buf = NULL; BlockBackend *blk = ns->blkconf.blk; BlockAcctCookie *acct = &req->acct; BlockAcctStats *stats = blk_get_stats(blk); uint16_t status = NVME_SUCCESS; reftag |= cdw3 << 32; trace_pci_nvme_compare_mdata_cb(nvme_cid(req)); if (ret) { block_acct_failed(stats, acct); nvme_aio_err(req, ret); goto out; } buf = g_malloc(ctx->mdata.iov.size); status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size, NVME_TX_DIRECTION_TO_DEVICE, req); if (status) { req->status = status; goto out; } if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { uint64_t slba = le64_to_cpu(rw->slba); uint8_t *bufp; uint8_t *mbufp = ctx->mdata.bounce; uint8_t *end = mbufp + ctx->mdata.iov.size; int16_t pil = 0; status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size, ctx->mdata.bounce, ctx->mdata.iov.size, prinfo, slba, apptag, appmask, &reftag); if (status) { req->status = status; goto out; } /* * When formatted with protection information, do not compare the DIF * tuple. */ if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) { pil = ns->lbaf.ms - nvme_pi_tuple_size(ns); } for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) { if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) { req->status = NVME_CMP_FAILURE | NVME_DNR; goto out; } } goto out; } if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) { req->status = NVME_CMP_FAILURE | NVME_DNR; goto out; } block_acct_done(stats, acct); out: qemu_iovec_destroy(&ctx->data.iov); g_free(ctx->data.bounce); qemu_iovec_destroy(&ctx->mdata.iov); g_free(ctx->mdata.bounce); g_free(ctx); nvme_enqueue_req_completion(nvme_cq(req), req); } static void nvme_compare_data_cb(void *opaque, int ret) { NvmeRequest *req = opaque; NvmeCtrl *n = nvme_ctrl(req); NvmeNamespace *ns = req->ns; BlockBackend *blk = ns->blkconf.blk; BlockAcctCookie *acct = &req->acct; BlockAcctStats *stats = blk_get_stats(blk); struct nvme_compare_ctx *ctx = req->opaque; g_autofree uint8_t *buf = NULL; uint16_t status; trace_pci_nvme_compare_data_cb(nvme_cid(req)); if (ret) { block_acct_failed(stats, acct); nvme_aio_err(req, ret); goto out; } buf = g_malloc(ctx->data.iov.size); status = nvme_bounce_data(n, buf, ctx->data.iov.size, NVME_TX_DIRECTION_TO_DEVICE, req); if (status) { req->status = status; goto out; } if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) { req->status = NVME_CMP_FAILURE | NVME_DNR; goto out; } if (ns->lbaf.ms) { NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; uint64_t slba = le64_to_cpu(rw->slba); uint32_t nlb = le16_to_cpu(rw->nlb) + 1; size_t mlen = nvme_m2b(ns, nlb); uint64_t offset = nvme_moff(ns, slba); ctx->mdata.bounce = g_malloc(mlen); qemu_iovec_init(&ctx->mdata.iov, 1); qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen); req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0, nvme_compare_mdata_cb, req); return; } block_acct_done(stats, acct); out: qemu_iovec_destroy(&ctx->data.iov); g_free(ctx->data.bounce); g_free(ctx); nvme_enqueue_req_completion(nvme_cq(req), req); } typedef struct NvmeDSMAIOCB { BlockAIOCB common; BlockAIOCB *aiocb; NvmeRequest *req; int ret; NvmeDsmRange *range; unsigned int nr; unsigned int idx; } NvmeDSMAIOCB; static void nvme_dsm_cancel(BlockAIOCB *aiocb) { NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common); /* break nvme_dsm_cb loop */ iocb->idx = iocb->nr; iocb->ret = -ECANCELED; if (iocb->aiocb) { blk_aio_cancel_async(iocb->aiocb); iocb->aiocb = NULL; } else { /* * We only reach this if nvme_dsm_cancel() has already been called or * the command ran to completion. */ assert(iocb->idx == iocb->nr); } } static const AIOCBInfo nvme_dsm_aiocb_info = { .aiocb_size = sizeof(NvmeDSMAIOCB), .cancel_async = nvme_dsm_cancel, }; static void nvme_dsm_cb(void *opaque, int ret); static void nvme_dsm_md_cb(void *opaque, int ret) { NvmeDSMAIOCB *iocb = opaque; NvmeRequest *req = iocb->req; NvmeNamespace *ns = req->ns; NvmeDsmRange *range; uint64_t slba; uint32_t nlb; if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) { goto done; } range = &iocb->range[iocb->idx - 1]; slba = le64_to_cpu(range->slba); nlb = le32_to_cpu(range->nlb); /* * Check that all block were discarded (zeroed); otherwise we do not zero * the metadata. */ ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO); if (ret) { if (ret < 0) { goto done; } nvme_dsm_cb(iocb, 0); return; } iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba), nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP, nvme_dsm_cb, iocb); return; done: nvme_dsm_cb(iocb, ret); } static void nvme_dsm_cb(void *opaque, int ret) { NvmeDSMAIOCB *iocb = opaque; NvmeRequest *req = iocb->req; NvmeCtrl *n = nvme_ctrl(req); NvmeNamespace *ns = req->ns; NvmeDsmRange *range; uint64_t slba; uint32_t nlb; if (iocb->ret < 0) { goto done; } else if (ret < 0) { iocb->ret = ret; goto done; } next: if (iocb->idx == iocb->nr) { goto done; } range = &iocb->range[iocb->idx++]; slba = le64_to_cpu(range->slba); nlb = le32_to_cpu(range->nlb); trace_pci_nvme_dsm_deallocate(slba, nlb); if (nlb > n->dmrsl) { trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl); goto next; } if (nvme_check_bounds(ns, slba, nlb)) { trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze); goto next; } iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba), nvme_l2b(ns, nlb), nvme_dsm_md_cb, iocb); return; done: iocb->aiocb = NULL; iocb->common.cb(iocb->common.opaque, iocb->ret); g_free(iocb->range); qemu_aio_unref(iocb); } static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req) { NvmeNamespace *ns = req->ns; NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd; uint32_t attr = le32_to_cpu(dsm->attributes); uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1; uint16_t status = NVME_SUCCESS; trace_pci_nvme_dsm(nr, attr); if (attr & NVME_DSMGMT_AD) { NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk, nvme_misc_cb, req); iocb->req = req; iocb->ret = 0; iocb->range = g_new(NvmeDsmRange, nr); iocb->nr = nr; iocb->idx = 0; status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr, req); if (status) { g_free(iocb->range); qemu_aio_unref(iocb); return status; } req->aiocb = &iocb->common; nvme_dsm_cb(iocb, 0); return NVME_NO_COMPLETE; } return status; } static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req) { NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; NvmeNamespace *ns = req->ns; BlockBackend *blk = ns->blkconf.blk; uint64_t slba = le64_to_cpu(rw->slba); uint32_t nlb = le16_to_cpu(rw->nlb) + 1; size_t len = nvme_l2b(ns, nlb); size_t data_len = len; int64_t offset = nvme_l2b(ns, slba); uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); uint32_t reftag = le32_to_cpu(rw->reftag); NvmeBounceContext *ctx = NULL; uint16_t status; trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb); if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { status = nvme_check_prinfo(ns, prinfo, slba, reftag); if (status) { return status; } if (prinfo & NVME_PRINFO_PRACT) { return NVME_INVALID_PROT_INFO | NVME_DNR; } } if (nvme_ns_ext(ns) && !(NVME_ID_CTRL_CTRATT_MEM(n->id_ctrl.ctratt))) { data_len += nvme_m2b(ns, nlb); } if (data_len > (n->page_size << n->params.vsl)) { return NVME_INVALID_FIELD | NVME_DNR; } status = nvme_check_bounds(ns, slba, nlb); if (status) { return status; } if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { status = nvme_check_dulbe(ns, slba, nlb); if (status) { return status; } } ctx = g_new0(NvmeBounceContext, 1); ctx->req = req; ctx->data.bounce = g_malloc(len); qemu_iovec_init(&ctx->data.iov, 1); qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len); block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size, BLOCK_ACCT_READ); req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0, nvme_verify_mdata_in_cb, ctx); return NVME_NO_COMPLETE; } typedef struct NvmeCopyAIOCB { BlockAIOCB common; BlockAIOCB *aiocb; NvmeRequest *req; NvmeCtrl *n; int ret; void *ranges; unsigned int format; int nr; int idx; uint8_t *bounce; QEMUIOVector iov; struct { BlockAcctCookie read; BlockAcctCookie write; } acct; uint64_t reftag; uint64_t slba; NvmeZone *zone; NvmeNamespace *sns; uint32_t tcl; } NvmeCopyAIOCB; static void nvme_copy_cancel(BlockAIOCB *aiocb) { NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common); iocb->ret = -ECANCELED; if (iocb->aiocb) { blk_aio_cancel_async(iocb->aiocb); iocb->aiocb = NULL; } } static const AIOCBInfo nvme_copy_aiocb_info = { .aiocb_size = sizeof(NvmeCopyAIOCB), .cancel_async = nvme_copy_cancel, }; static void nvme_copy_done(NvmeCopyAIOCB *iocb) { NvmeRequest *req = iocb->req; NvmeNamespace *ns = req->ns; BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk); if (iocb->idx != iocb->nr) { req->cqe.result = cpu_to_le32(iocb->idx); } qemu_iovec_destroy(&iocb->iov); g_free(iocb->bounce); if (iocb->ret < 0) { block_acct_failed(stats, &iocb->acct.read); block_acct_failed(stats, &iocb->acct.write); } else { block_acct_done(stats, &iocb->acct.read); block_acct_done(stats, &iocb->acct.write); } iocb->common.cb(iocb->common.opaque, iocb->ret); qemu_aio_unref(iocb); } static void nvme_do_copy(NvmeCopyAIOCB *iocb); static void nvme_copy_source_range_parse_format0_2(void *ranges, int idx, uint64_t *slba, uint32_t *nlb, uint32_t *snsid, uint16_t *apptag, uint16_t *appmask, uint64_t *reftag) { NvmeCopySourceRangeFormat0_2 *_ranges = ranges; if (snsid) { *snsid = le32_to_cpu(_ranges[idx].sparams); } if (slba) { *slba = le64_to_cpu(_ranges[idx].slba); } if (nlb) { *nlb = le16_to_cpu(_ranges[idx].nlb) + 1; } if (apptag) { *apptag = le16_to_cpu(_ranges[idx].apptag); } if (appmask) { *appmask = le16_to_cpu(_ranges[idx].appmask); } if (reftag) { *reftag = le32_to_cpu(_ranges[idx].reftag); } } static void nvme_copy_source_range_parse_format1_3(void *ranges, int idx, uint64_t *slba, uint32_t *nlb, uint32_t *snsid, uint16_t *apptag, uint16_t *appmask, uint64_t *reftag) { NvmeCopySourceRangeFormat1_3 *_ranges = ranges; if (snsid) { *snsid = le32_to_cpu(_ranges[idx].sparams); } if (slba) { *slba = le64_to_cpu(_ranges[idx].slba); } if (nlb) { *nlb = le16_to_cpu(_ranges[idx].nlb) + 1; } if (apptag) { *apptag = le16_to_cpu(_ranges[idx].apptag); } if (appmask) { *appmask = le16_to_cpu(_ranges[idx].appmask); } if (reftag) { *reftag = 0; *reftag |= (uint64_t)_ranges[idx].sr[4] << 40; *reftag |= (uint64_t)_ranges[idx].sr[5] << 32; *reftag |= (uint64_t)_ranges[idx].sr[6] << 24; *reftag |= (uint64_t)_ranges[idx].sr[7] << 16; *reftag |= (uint64_t)_ranges[idx].sr[8] << 8; *reftag |= (uint64_t)_ranges[idx].sr[9]; } } static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format, uint64_t *slba, uint32_t *nlb, uint32_t *snsid, uint16_t *apptag, uint16_t *appmask, uint64_t *reftag) { switch (format) { case NVME_COPY_FORMAT_0: case NVME_COPY_FORMAT_2: nvme_copy_source_range_parse_format0_2(ranges, idx, slba, nlb, snsid, apptag, appmask, reftag); break; case NVME_COPY_FORMAT_1: case NVME_COPY_FORMAT_3: nvme_copy_source_range_parse_format1_3(ranges, idx, slba, nlb, snsid, apptag, appmask, reftag); break; default: abort(); } } static inline uint16_t nvme_check_copy_mcl(NvmeNamespace *ns, NvmeCopyAIOCB *iocb, uint16_t nr) { uint32_t copy_len = 0; for (int idx = 0; idx < nr; idx++) { uint32_t nlb; nvme_copy_source_range_parse(iocb->ranges, idx, iocb->format, NULL, &nlb, NULL, NULL, NULL, NULL); copy_len += nlb; } iocb->tcl = copy_len; if (copy_len > ns->id_ns.mcl) { return NVME_CMD_SIZE_LIMIT | NVME_DNR; } return NVME_SUCCESS; } static void nvme_copy_out_completed_cb(void *opaque, int ret) { NvmeCopyAIOCB *iocb = opaque; NvmeRequest *req = iocb->req; NvmeNamespace *dns = req->ns; uint32_t nlb; nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL, &nlb, NULL, NULL, NULL, NULL); if (ret < 0) { iocb->ret = ret; goto out; } else if (iocb->ret < 0) { goto out; } if (dns->params.zoned) { nvme_advance_zone_wp(dns, iocb->zone, nlb); } iocb->idx++; iocb->slba += nlb; out: nvme_do_copy(iocb); } static void nvme_copy_out_cb(void *opaque, int ret) { NvmeCopyAIOCB *iocb = opaque; NvmeRequest *req = iocb->req; NvmeNamespace *dns = req->ns; uint32_t nlb; size_t mlen; uint8_t *mbounce; if (ret < 0 || iocb->ret < 0 || !dns->lbaf.ms) { goto out; } nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL, &nlb, NULL, NULL, NULL, NULL); mlen = nvme_m2b(dns, nlb); mbounce = iocb->bounce + nvme_l2b(dns, nlb); qemu_iovec_reset(&iocb->iov); qemu_iovec_add(&iocb->iov, mbounce, mlen); iocb->aiocb = blk_aio_pwritev(dns->blkconf.blk, nvme_moff(dns, iocb->slba), &iocb->iov, 0, nvme_copy_out_completed_cb, iocb); return; out: nvme_copy_out_completed_cb(iocb, ret); } static void nvme_copy_in_completed_cb(void *opaque, int ret) { NvmeCopyAIOCB *iocb = opaque; NvmeRequest *req = iocb->req; NvmeNamespace *sns = iocb->sns; NvmeNamespace *dns = req->ns; NvmeCopyCmd *copy = NULL; uint8_t *mbounce = NULL; uint32_t nlb; uint64_t slba; uint16_t apptag, appmask; uint64_t reftag; size_t len, mlen; uint16_t status; if (ret < 0) { iocb->ret = ret; goto out; } else if (iocb->ret < 0) { goto out; } nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, &nlb, NULL, &apptag, &appmask, &reftag); trace_pci_nvme_copy_out(iocb->slba, nlb); len = nvme_l2b(sns, nlb); if (NVME_ID_NS_DPS_TYPE(sns->id_ns.dps)) { copy = (NvmeCopyCmd *)&req->cmd; uint16_t prinfor = ((copy->control[0] >> 4) & 0xf); mlen = nvme_m2b(sns, nlb); mbounce = iocb->bounce + nvme_l2b(sns, nlb); status = nvme_dif_mangle_mdata(sns, mbounce, mlen, slba); if (status) { goto invalid; } status = nvme_dif_check(sns, iocb->bounce, len, mbounce, mlen, prinfor, slba, apptag, appmask, &reftag); if (status) { goto invalid; } } if (NVME_ID_NS_DPS_TYPE(dns->id_ns.dps)) { copy = (NvmeCopyCmd *)&req->cmd; uint16_t prinfow = ((copy->control[2] >> 2) & 0xf); mlen = nvme_m2b(dns, nlb); mbounce = iocb->bounce + nvme_l2b(dns, nlb); apptag = le16_to_cpu(copy->apptag); appmask = le16_to_cpu(copy->appmask); if (prinfow & NVME_PRINFO_PRACT) { status = nvme_check_prinfo(dns, prinfow, iocb->slba, iocb->reftag); if (status) { goto invalid; } nvme_dif_pract_generate_dif(dns, iocb->bounce, len, mbounce, mlen, apptag, &iocb->reftag); } else { status = nvme_dif_check(dns, iocb->bounce, len, mbounce, mlen, prinfow, iocb->slba, apptag, appmask, &iocb->reftag); if (status) { goto invalid; } } } status = nvme_check_bounds(dns, iocb->slba, nlb); if (status) { goto invalid; } if (dns->params.zoned) { status = nvme_check_zone_write(dns, iocb->zone, iocb->slba, nlb); if (status) { goto invalid; } if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) { iocb->zone->w_ptr += nlb; } } qemu_iovec_reset(&iocb->iov); qemu_iovec_add(&iocb->iov, iocb->bounce, len); block_acct_start(blk_get_stats(dns->blkconf.blk), &iocb->acct.write, 0, BLOCK_ACCT_WRITE); iocb->aiocb = blk_aio_pwritev(dns->blkconf.blk, nvme_l2b(dns, iocb->slba), &iocb->iov, 0, nvme_copy_out_cb, iocb); return; invalid: req->status = status; iocb->ret = -1; out: nvme_do_copy(iocb); } static void nvme_copy_in_cb(void *opaque, int ret) { NvmeCopyAIOCB *iocb = opaque; NvmeNamespace *sns = iocb->sns; uint64_t slba; uint32_t nlb; if (ret < 0 || iocb->ret < 0 || !sns->lbaf.ms) { goto out; } nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, &nlb, NULL, NULL, NULL, NULL); qemu_iovec_reset(&iocb->iov); qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(sns, nlb), nvme_m2b(sns, nlb)); iocb->aiocb = blk_aio_preadv(sns->blkconf.blk, nvme_moff(sns, slba), &iocb->iov, 0, nvme_copy_in_completed_cb, iocb); return; out: nvme_copy_in_completed_cb(iocb, ret); } static inline bool nvme_csi_supports_copy(uint8_t csi) { return csi == NVME_CSI_NVM || csi == NVME_CSI_ZONED; } static inline bool nvme_copy_ns_format_match(NvmeNamespace *sns, NvmeNamespace *dns) { return sns->lbaf.ds == dns->lbaf.ds && sns->lbaf.ms == dns->lbaf.ms; } static bool nvme_copy_matching_ns_format(NvmeNamespace *sns, NvmeNamespace *dns, bool pi_enable) { if (!nvme_csi_supports_copy(sns->csi) || !nvme_csi_supports_copy(dns->csi)) { return false; } if (!pi_enable && !nvme_copy_ns_format_match(sns, dns)) { return false; } if (pi_enable && (!nvme_copy_ns_format_match(sns, dns) || sns->id_ns.dps != dns->id_ns.dps)) { return false; } return true; } static inline bool nvme_copy_corresp_pi_match(NvmeNamespace *sns, NvmeNamespace *dns) { return sns->lbaf.ms == 0 && ((dns->lbaf.ms == 8 && dns->pif == 0) || (dns->lbaf.ms == 16 && dns->pif == 1)); } static bool nvme_copy_corresp_pi_format(NvmeNamespace *sns, NvmeNamespace *dns, bool sns_pi_en) { if (!nvme_csi_supports_copy(sns->csi) || !nvme_csi_supports_copy(dns->csi)) { return false; } if (!sns_pi_en && !nvme_copy_corresp_pi_match(sns, dns)) { return false; } if (sns_pi_en && !nvme_copy_corresp_pi_match(dns, sns)) { return false; } return true; } static void nvme_do_copy(NvmeCopyAIOCB *iocb) { NvmeRequest *req = iocb->req; NvmeNamespace *sns; NvmeNamespace *dns = req->ns; NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; uint16_t prinfor = ((copy->control[0] >> 4) & 0xf); uint16_t prinfow = ((copy->control[2] >> 2) & 0xf); uint64_t slba; uint32_t nlb; size_t len; uint16_t status; uint32_t dnsid = le32_to_cpu(req->cmd.nsid); uint32_t snsid = dnsid; if (iocb->ret < 0) { goto done; } if (iocb->idx == iocb->nr) { goto done; } if (iocb->format == 2 || iocb->format == 3) { nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, &nlb, &snsid, NULL, NULL, NULL); if (snsid != dnsid) { if (snsid == NVME_NSID_BROADCAST || !nvme_nsid_valid(iocb->n, snsid)) { status = NVME_INVALID_NSID | NVME_DNR; goto invalid; } iocb->sns = nvme_ns(iocb->n, snsid); if (unlikely(!iocb->sns)) { status = NVME_INVALID_FIELD | NVME_DNR; goto invalid; } } else { if (((slba + nlb) > iocb->slba) && ((slba + nlb) < (iocb->slba + iocb->tcl))) { status = NVME_CMD_OVERLAP_IO_RANGE | NVME_DNR; goto invalid; } } } else { nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba, &nlb, NULL, NULL, NULL, NULL); } sns = iocb->sns; if ((snsid == dnsid) && NVME_ID_NS_DPS_TYPE(sns->id_ns.dps) && ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) { status = NVME_INVALID_FIELD | NVME_DNR; goto invalid; } else if (snsid != dnsid) { if (!NVME_ID_NS_DPS_TYPE(sns->id_ns.dps) && !NVME_ID_NS_DPS_TYPE(dns->id_ns.dps)) { if (!nvme_copy_matching_ns_format(sns, dns, false)) { status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR; goto invalid; } } if (NVME_ID_NS_DPS_TYPE(sns->id_ns.dps) && NVME_ID_NS_DPS_TYPE(dns->id_ns.dps)) { if ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT)) { status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR; goto invalid; } else { if (!nvme_copy_matching_ns_format(sns, dns, true)) { status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR; goto invalid; } } } if (!NVME_ID_NS_DPS_TYPE(sns->id_ns.dps) && NVME_ID_NS_DPS_TYPE(dns->id_ns.dps)) { if (!(prinfow & NVME_PRINFO_PRACT)) { status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR; goto invalid; } else { if (!nvme_copy_corresp_pi_format(sns, dns, false)) { status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR; goto invalid; } } } if (NVME_ID_NS_DPS_TYPE(sns->id_ns.dps) && !NVME_ID_NS_DPS_TYPE(dns->id_ns.dps)) { if (!(prinfor & NVME_PRINFO_PRACT)) { status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR; goto invalid; } else { if (!nvme_copy_corresp_pi_format(sns, dns, true)) { status = NVME_CMD_INCOMP_NS_OR_FMT | NVME_DNR; goto invalid; } } } } len = nvme_l2b(sns, nlb); trace_pci_nvme_copy_source_range(slba, nlb); if (nlb > le16_to_cpu(sns->id_ns.mssrl)) { status = NVME_CMD_SIZE_LIMIT | NVME_DNR; goto invalid; } status = nvme_check_bounds(sns, slba, nlb); if (status) { goto invalid; } if (NVME_ERR_REC_DULBE(sns->features.err_rec)) { status = nvme_check_dulbe(sns, slba, nlb); if (status) { goto invalid; } } if (sns->params.zoned) { status = nvme_check_zone_read(sns, slba, nlb); if (status) { goto invalid; } } g_free(iocb->bounce); iocb->bounce = g_malloc_n(le16_to_cpu(sns->id_ns.mssrl), sns->lbasz + sns->lbaf.ms); qemu_iovec_reset(&iocb->iov); qemu_iovec_add(&iocb->iov, iocb->bounce, len); block_acct_start(blk_get_stats(sns->blkconf.blk), &iocb->acct.read, 0, BLOCK_ACCT_READ); iocb->aiocb = blk_aio_preadv(sns->blkconf.blk, nvme_l2b(sns, slba), &iocb->iov, 0, nvme_copy_in_cb, iocb); return; invalid: req->status = status; iocb->ret = -1; done: nvme_copy_done(iocb); } static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req) { NvmeNamespace *ns = req->ns; NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk, nvme_misc_cb, req); uint16_t nr = copy->nr + 1; uint8_t format = copy->control[0] & 0xf; size_t len = sizeof(NvmeCopySourceRangeFormat0_2); uint16_t status; trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format); iocb->ranges = NULL; iocb->zone = NULL; if (!(n->id_ctrl.ocfs & (1 << format)) || ((format == 2 || format == 3) && !(n->features.hbs.cdfe & (1 << format)))) { trace_pci_nvme_err_copy_invalid_format(format); status = NVME_INVALID_FIELD | NVME_DNR; goto invalid; } if (nr > ns->id_ns.msrc + 1) { status = NVME_CMD_SIZE_LIMIT | NVME_DNR; goto invalid; } if ((ns->pif == 0x0 && (format != 0x0 && format != 0x2)) || (ns->pif != 0x0 && (format != 0x1 && format != 0x3))) { status = NVME_INVALID_FORMAT | NVME_DNR; goto invalid; } if (ns->pif) { len = sizeof(NvmeCopySourceRangeFormat1_3); } iocb->format = format; iocb->ranges = g_malloc_n(nr, len); status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req); if (status) { goto invalid; } iocb->slba = le64_to_cpu(copy->sdlba); if (ns->params.zoned) { iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba); if (!iocb->zone) { status = NVME_LBA_RANGE | NVME_DNR; goto invalid; } status = nvme_zrm_auto(n, ns, iocb->zone); if (status) { goto invalid; } } status = nvme_check_copy_mcl(ns, iocb, nr); if (status) { goto invalid; } iocb->req = req; iocb->ret = 0; iocb->nr = nr; iocb->idx = 0; iocb->reftag = le32_to_cpu(copy->reftag); iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32; qemu_iovec_init(&iocb->iov, 1); req->aiocb = &iocb->common; iocb->sns = req->ns; iocb->n = n; iocb->bounce = NULL; nvme_do_copy(iocb); return NVME_NO_COMPLETE; invalid: g_free(iocb->ranges); qemu_aio_unref(iocb); return status; } static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req) { NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; NvmeNamespace *ns = req->ns; BlockBackend *blk = ns->blkconf.blk; uint64_t slba = le64_to_cpu(rw->slba); uint32_t nlb = le16_to_cpu(rw->nlb) + 1; uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); size_t data_len = nvme_l2b(ns, nlb); size_t len = data_len; int64_t offset = nvme_l2b(ns, slba); struct nvme_compare_ctx *ctx = NULL; uint16_t status; trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb); if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) { return NVME_INVALID_PROT_INFO | NVME_DNR; } if (nvme_ns_ext(ns)) { len += nvme_m2b(ns, nlb); } if (NVME_ID_CTRL_CTRATT_MEM(n->id_ctrl.ctratt)) { status = nvme_check_mdts(n, data_len); } else { status = nvme_check_mdts(n, len); } if (status) { return status; } status = nvme_check_bounds(ns, slba, nlb); if (status) { return status; } if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { status = nvme_check_dulbe(ns, slba, nlb); if (status) { return status; } } status = nvme_map_dptr(n, &req->sg, len, &req->cmd); if (status) { return status; } ctx = g_new(struct nvme_compare_ctx, 1); ctx->data.bounce = g_malloc(data_len); req->opaque = ctx; qemu_iovec_init(&ctx->data.iov, 1); qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len); block_acct_start(blk_get_stats(blk), &req->acct, data_len, BLOCK_ACCT_READ); req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0, nvme_compare_data_cb, req); return NVME_NO_COMPLETE; } typedef struct NvmeFlushAIOCB { BlockAIOCB common; BlockAIOCB *aiocb; NvmeRequest *req; int ret; NvmeNamespace *ns; uint32_t nsid; bool broadcast; } NvmeFlushAIOCB; static void nvme_flush_cancel(BlockAIOCB *acb) { NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common); iocb->ret = -ECANCELED; if (iocb->aiocb) { blk_aio_cancel_async(iocb->aiocb); iocb->aiocb = NULL; } } static const AIOCBInfo nvme_flush_aiocb_info = { .aiocb_size = sizeof(NvmeFlushAIOCB), .cancel_async = nvme_flush_cancel, }; static void nvme_do_flush(NvmeFlushAIOCB *iocb); static void nvme_flush_ns_cb(void *opaque, int ret) { NvmeFlushAIOCB *iocb = opaque; NvmeNamespace *ns = iocb->ns; if (ret < 0) { iocb->ret = ret; goto out; } else if (iocb->ret < 0) { goto out; } if (ns) { trace_pci_nvme_flush_ns(iocb->nsid); iocb->ns = NULL; iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb); return; } out: nvme_do_flush(iocb); } static void nvme_do_flush(NvmeFlushAIOCB *iocb) { NvmeRequest *req = iocb->req; NvmeCtrl *n = nvme_ctrl(req); int i; if (iocb->ret < 0) { goto done; } if (iocb->broadcast) { for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) { iocb->ns = nvme_ns(n, i); if (iocb->ns) { iocb->nsid = i; break; } } } if (!iocb->ns) { goto done; } nvme_flush_ns_cb(iocb, 0); return; done: iocb->common.cb(iocb->common.opaque, iocb->ret); qemu_aio_unref(iocb); } static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req) { NvmeFlushAIOCB *iocb; uint32_t nsid = le32_to_cpu(req->cmd.nsid); uint16_t status; iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req); iocb->req = req; iocb->ret = 0; iocb->ns = NULL; iocb->nsid = 0; iocb->broadcast = (nsid == NVME_NSID_BROADCAST); if (!iocb->broadcast) { if (!nvme_nsid_valid(n, nsid)) { status = NVME_INVALID_NSID | NVME_DNR; goto out; } iocb->ns = nvme_ns(n, nsid); if (!iocb->ns) { status = NVME_INVALID_FIELD | NVME_DNR; goto out; } iocb->nsid = nsid; } req->aiocb = &iocb->common; nvme_do_flush(iocb); return NVME_NO_COMPLETE; out: qemu_aio_unref(iocb); return status; } static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req) { NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; NvmeNamespace *ns = req->ns; uint64_t slba = le64_to_cpu(rw->slba); uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control)); uint64_t data_size = nvme_l2b(ns, nlb); uint64_t mapped_size = data_size; uint64_t data_offset; BlockBackend *blk = ns->blkconf.blk; uint16_t status; if (nvme_ns_ext(ns) && !(NVME_ID_CTRL_CTRATT_MEM(n->id_ctrl.ctratt))) { mapped_size += nvme_m2b(ns, nlb); if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { bool pract = prinfo & NVME_PRINFO_PRACT; if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) { mapped_size = data_size; } } } trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba); status = nvme_check_mdts(n, mapped_size); if (status) { goto invalid; } status = nvme_check_bounds(ns, slba, nlb); if (status) { goto invalid; } if (ns->params.zoned) { status = nvme_check_zone_read(ns, slba, nlb); if (status) { trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status); goto invalid; } } if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { status = nvme_check_dulbe(ns, slba, nlb); if (status) { goto invalid; } } if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { return nvme_dif_rw(n, req); } status = nvme_map_data(n, nlb, req); if (status) { goto invalid; } data_offset = nvme_l2b(ns, slba); block_acct_start(blk_get_stats(blk), &req->acct, data_size, BLOCK_ACCT_READ); nvme_blk_read(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req); return NVME_NO_COMPLETE; invalid: block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ); return status | NVME_DNR; } static void nvme_do_write_fdp(NvmeCtrl *n, NvmeRequest *req, uint64_t slba, uint32_t nlb) { NvmeNamespace *ns = req->ns; NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; uint64_t data_size = nvme_l2b(ns, nlb); uint32_t dw12 = le32_to_cpu(req->cmd.cdw12); uint8_t dtype = (dw12 >> 20) & 0xf; uint16_t pid = le16_to_cpu(rw->dspec); uint16_t ph, rg, ruhid; NvmeReclaimUnit *ru; if (dtype != NVME_DIRECTIVE_DATA_PLACEMENT || !nvme_parse_pid(ns, pid, &ph, &rg)) { ph = 0; rg = 0; } ruhid = ns->fdp.phs[ph]; ru = &ns->endgrp->fdp.ruhs[ruhid].rus[rg]; nvme_fdp_stat_inc(&ns->endgrp->fdp.hbmw, data_size); nvme_fdp_stat_inc(&ns->endgrp->fdp.mbmw, data_size); while (nlb) { if (nlb < ru->ruamw) { ru->ruamw -= nlb; break; } nlb -= ru->ruamw; nvme_update_ruh(n, ns, pid); } } static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append, bool wrz) { NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; NvmeNamespace *ns = req->ns; uint64_t slba = le64_to_cpu(rw->slba); uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; uint16_t ctrl = le16_to_cpu(rw->control); uint8_t prinfo = NVME_RW_PRINFO(ctrl); uint64_t data_size = nvme_l2b(ns, nlb); uint64_t mapped_size = data_size; uint64_t data_offset; NvmeZone *zone; NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe; BlockBackend *blk = ns->blkconf.blk; uint16_t status; if (nvme_ns_ext(ns) && !(NVME_ID_CTRL_CTRATT_MEM(n->id_ctrl.ctratt))) { mapped_size += nvme_m2b(ns, nlb); if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { bool pract = prinfo & NVME_PRINFO_PRACT; if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) { mapped_size -= nvme_m2b(ns, nlb); } } } trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode), nvme_nsid(ns), nlb, mapped_size, slba); if (!wrz) { status = nvme_check_mdts(n, mapped_size); if (status) { goto invalid; } } status = nvme_check_bounds(ns, slba, nlb); if (status) { goto invalid; } if (ns->params.zoned) { zone = nvme_get_zone_by_slba(ns, slba); assert(zone); if (append) { bool piremap = !!(ctrl & NVME_RW_PIREMAP); if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) { return NVME_INVALID_ZONE_OP | NVME_DNR; } if (unlikely(slba != zone->d.zslba)) { trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba); status = NVME_INVALID_FIELD; goto invalid; } if (n->params.zasl && data_size > (uint64_t)n->page_size << n->params.zasl) { trace_pci_nvme_err_zasl(data_size); return NVME_INVALID_FIELD | NVME_DNR; } slba = zone->w_ptr; rw->slba = cpu_to_le64(slba); res->slba = cpu_to_le64(slba); switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { case NVME_ID_NS_DPS_TYPE_1: if (!piremap) { return NVME_INVALID_PROT_INFO | NVME_DNR; } /* fallthrough */ case NVME_ID_NS_DPS_TYPE_2: if (piremap) { uint32_t reftag = le32_to_cpu(rw->reftag); rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba)); } break; case NVME_ID_NS_DPS_TYPE_3: if (piremap) { return NVME_INVALID_PROT_INFO | NVME_DNR; } break; } } status = nvme_check_zone_write(ns, zone, slba, nlb); if (status) { goto invalid; } status = nvme_zrm_auto(n, ns, zone); if (status) { goto invalid; } if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) { zone->w_ptr += nlb; } } else if (ns->endgrp && ns->endgrp->fdp.enabled) { nvme_do_write_fdp(n, req, slba, nlb); } data_offset = nvme_l2b(ns, slba); if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { return nvme_dif_rw(n, req); } if (!wrz) { status = nvme_map_data(n, nlb, req); if (status) { goto invalid; } block_acct_start(blk_get_stats(blk), &req->acct, data_size, BLOCK_ACCT_WRITE); nvme_blk_write(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req); } else { req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size, BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req); } return NVME_NO_COMPLETE; invalid: block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE); return status | NVME_DNR; } static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req) { return nvme_do_write(n, req, false, false); } static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req) { return nvme_do_write(n, req, false, true); } static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req) { return nvme_do_write(n, req, true, false); } static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c, uint64_t *slba, uint32_t *zone_idx) { uint32_t dw10 = le32_to_cpu(c->cdw10); uint32_t dw11 = le32_to_cpu(c->cdw11); if (!ns->params.zoned) { trace_pci_nvme_err_invalid_opc(c->opcode); return NVME_INVALID_OPCODE | NVME_DNR; } *slba = ((uint64_t)dw11) << 32 | dw10; if (unlikely(*slba >= ns->id_ns.nsze)) { trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze); *slba = 0; return NVME_LBA_RANGE | NVME_DNR; } *zone_idx = nvme_zone_idx(ns, *slba); assert(*zone_idx < ns->num_zones); return NVME_SUCCESS; } typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState, NvmeRequest *); enum NvmeZoneProcessingMask { NVME_PROC_CURRENT_ZONE = 0, NVME_PROC_OPENED_ZONES = 1 << 0, NVME_PROC_CLOSED_ZONES = 1 << 1, NVME_PROC_READ_ONLY_ZONES = 1 << 2, NVME_PROC_FULL_ZONES = 1 << 3, }; static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone, NvmeZoneState state, NvmeRequest *req) { NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd; int flags = 0; if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) { uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs); if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) { return NVME_INVALID_ZONE_OP | NVME_DNR; } if (zone->w_ptr % ns->zns.zrwafg) { return NVME_NOZRWA | NVME_DNR; } flags = NVME_ZRM_ZRWA; } return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags); } static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone, NvmeZoneState state, NvmeRequest *req) { return nvme_zrm_close(ns, zone); } static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone, NvmeZoneState state, NvmeRequest *req) { return nvme_zrm_finish(ns, zone); } static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone, NvmeZoneState state, NvmeRequest *req) { switch (state) { case NVME_ZONE_STATE_READ_ONLY: nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE); /* fall through */ case NVME_ZONE_STATE_OFFLINE: return NVME_SUCCESS; default: return NVME_ZONE_INVAL_TRANSITION; } } static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone) { uint16_t status; uint8_t state = nvme_get_zone_state(zone); if (state == NVME_ZONE_STATE_EMPTY) { status = nvme_aor_check(ns, 1, 0); if (status) { return status; } nvme_aor_inc_active(ns); zone->d.za |= NVME_ZA_ZD_EXT_VALID; nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED); return NVME_SUCCESS; } return NVME_ZONE_INVAL_TRANSITION; } static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone, enum NvmeZoneProcessingMask proc_mask, op_handler_t op_hndlr, NvmeRequest *req) { uint16_t status = NVME_SUCCESS; NvmeZoneState zs = nvme_get_zone_state(zone); bool proc_zone; switch (zs) { case NVME_ZONE_STATE_IMPLICITLY_OPEN: case NVME_ZONE_STATE_EXPLICITLY_OPEN: proc_zone = proc_mask & NVME_PROC_OPENED_ZONES; break; case NVME_ZONE_STATE_CLOSED: proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES; break; case NVME_ZONE_STATE_READ_ONLY: proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES; break; case NVME_ZONE_STATE_FULL: proc_zone = proc_mask & NVME_PROC_FULL_ZONES; break; default: proc_zone = false; } if (proc_zone) { status = op_hndlr(ns, zone, zs, req); } return status; } static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone, enum NvmeZoneProcessingMask proc_mask, op_handler_t op_hndlr, NvmeRequest *req) { NvmeZone *next; uint16_t status = NVME_SUCCESS; int i; if (!proc_mask) { status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req); } else { if (proc_mask & NVME_PROC_CLOSED_ZONES) { QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) { status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, req); if (status && status != NVME_NO_COMPLETE) { goto out; } } } if (proc_mask & NVME_PROC_OPENED_ZONES) { QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) { status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, req); if (status && status != NVME_NO_COMPLETE) { goto out; } } QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) { status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, req); if (status && status != NVME_NO_COMPLETE) { goto out; } } } if (proc_mask & NVME_PROC_FULL_ZONES) { QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) { status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, req); if (status && status != NVME_NO_COMPLETE) { goto out; } } } if (proc_mask & NVME_PROC_READ_ONLY_ZONES) { for (i = 0; i < ns->num_zones; i++, zone++) { status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, req); if (status && status != NVME_NO_COMPLETE) { goto out; } } } } out: return status; } typedef struct NvmeZoneResetAIOCB { BlockAIOCB common; BlockAIOCB *aiocb; NvmeRequest *req; int ret; bool all; int idx; NvmeZone *zone; } NvmeZoneResetAIOCB; static void nvme_zone_reset_cancel(BlockAIOCB *aiocb) { NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common); NvmeRequest *req = iocb->req; NvmeNamespace *ns = req->ns; iocb->idx = ns->num_zones; iocb->ret = -ECANCELED; if (iocb->aiocb) { blk_aio_cancel_async(iocb->aiocb); iocb->aiocb = NULL; } } static const AIOCBInfo nvme_zone_reset_aiocb_info = { .aiocb_size = sizeof(NvmeZoneResetAIOCB), .cancel_async = nvme_zone_reset_cancel, }; static void nvme_zone_reset_cb(void *opaque, int ret); static void nvme_zone_reset_epilogue_cb(void *opaque, int ret) { NvmeZoneResetAIOCB *iocb = opaque; NvmeRequest *req = iocb->req; NvmeNamespace *ns = req->ns; int64_t moff; int count; if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) { goto out; } moff = nvme_moff(ns, iocb->zone->d.zslba); count = nvme_m2b(ns, ns->zone_size); iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count, BDRV_REQ_MAY_UNMAP, nvme_zone_reset_cb, iocb); return; out: nvme_zone_reset_cb(iocb, ret); } static void nvme_zone_reset_cb(void *opaque, int ret) { NvmeZoneResetAIOCB *iocb = opaque; NvmeRequest *req = iocb->req; NvmeNamespace *ns = req->ns; if (iocb->ret < 0) { goto done; } else if (ret < 0) { iocb->ret = ret; goto done; } if (iocb->zone) { nvme_zrm_reset(ns, iocb->zone); if (!iocb->all) { goto done; } } while (iocb->idx < ns->num_zones) { NvmeZone *zone = &ns->zone_array[iocb->idx++]; switch (nvme_get_zone_state(zone)) { case NVME_ZONE_STATE_EMPTY: if (!iocb->all) { goto done; } continue; case NVME_ZONE_STATE_EXPLICITLY_OPEN: case NVME_ZONE_STATE_IMPLICITLY_OPEN: case NVME_ZONE_STATE_CLOSED: case NVME_ZONE_STATE_FULL: iocb->zone = zone; break; default: continue; } trace_pci_nvme_zns_zone_reset(zone->d.zslba); iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_l2b(ns, zone->d.zslba), nvme_l2b(ns, ns->zone_size), BDRV_REQ_MAY_UNMAP, nvme_zone_reset_epilogue_cb, iocb); return; } done: iocb->aiocb = NULL; iocb->common.cb(iocb->common.opaque, iocb->ret); qemu_aio_unref(iocb); } static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone, uint64_t elba, NvmeRequest *req) { NvmeNamespace *ns = req->ns; uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs); uint64_t wp = zone->d.wp; uint32_t nlb = elba - wp + 1; uint16_t status; if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) { return NVME_INVALID_ZONE_OP | NVME_DNR; } if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) { return NVME_INVALID_FIELD | NVME_DNR; } if (elba < wp || elba > wp + ns->zns.zrwas) { return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR; } if (nlb % ns->zns.zrwafg) { return NVME_INVALID_FIELD | NVME_DNR; } status = nvme_zrm_auto(n, ns, zone); if (status) { return status; } zone->w_ptr += nlb; nvme_advance_zone_wp(ns, zone, nlb); return NVME_SUCCESS; } static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req) { NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd; NvmeNamespace *ns = req->ns; NvmeZone *zone; NvmeZoneResetAIOCB *iocb; uint8_t *zd_ext; uint64_t slba = 0; uint32_t zone_idx = 0; uint16_t status; uint8_t action = cmd->zsa; bool all; enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE; all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL; req->status = NVME_SUCCESS; if (!all) { status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx); if (status) { return status; } } zone = &ns->zone_array[zone_idx]; if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) { trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba); return NVME_INVALID_FIELD | NVME_DNR; } switch (action) { case NVME_ZONE_ACTION_OPEN: if (all) { proc_mask = NVME_PROC_CLOSED_ZONES; } trace_pci_nvme_open_zone(slba, zone_idx, all); status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req); break; case NVME_ZONE_ACTION_CLOSE: if (all) { proc_mask = NVME_PROC_OPENED_ZONES; } trace_pci_nvme_close_zone(slba, zone_idx, all); status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req); break; case NVME_ZONE_ACTION_FINISH: if (all) { proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES; } trace_pci_nvme_finish_zone(slba, zone_idx, all); status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req); break; case NVME_ZONE_ACTION_RESET: trace_pci_nvme_reset_zone(slba, zone_idx, all); iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk, nvme_misc_cb, req); iocb->req = req; iocb->ret = 0; iocb->all = all; iocb->idx = zone_idx; iocb->zone = NULL; req->aiocb = &iocb->common; nvme_zone_reset_cb(iocb, 0); return NVME_NO_COMPLETE; case NVME_ZONE_ACTION_OFFLINE: if (all) { proc_mask = NVME_PROC_READ_ONLY_ZONES; } trace_pci_nvme_offline_zone(slba, zone_idx, all); status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req); break; case NVME_ZONE_ACTION_SET_ZD_EXT: trace_pci_nvme_set_descriptor_extension(slba, zone_idx); if (all || !ns->params.zd_extension_size) { return NVME_INVALID_FIELD | NVME_DNR; } zd_ext = nvme_get_zd_extension(ns, zone_idx); status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req); if (status) { trace_pci_nvme_err_zd_extension_map_error(zone_idx); return status; } status = nvme_set_zd_ext(ns, zone); if (status == NVME_SUCCESS) { trace_pci_nvme_zd_extension_set(zone_idx); return status; } break; case NVME_ZONE_ACTION_ZRWA_FLUSH: if (all) { return NVME_INVALID_FIELD | NVME_DNR; } return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req); default: trace_pci_nvme_err_invalid_mgmt_action(action); status = NVME_INVALID_FIELD; } if (status == NVME_ZONE_INVAL_TRANSITION) { trace_pci_nvme_err_invalid_zone_state_transition(action, slba, zone->d.za); } if (status) { status |= NVME_DNR; } return status; } static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl) { NvmeZoneState zs = nvme_get_zone_state(zl); switch (zafs) { case NVME_ZONE_REPORT_ALL: return true; case NVME_ZONE_REPORT_EMPTY: return zs == NVME_ZONE_STATE_EMPTY; case NVME_ZONE_REPORT_IMPLICITLY_OPEN: return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN; case NVME_ZONE_REPORT_EXPLICITLY_OPEN: return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN; case NVME_ZONE_REPORT_CLOSED: return zs == NVME_ZONE_STATE_CLOSED; case NVME_ZONE_REPORT_FULL: return zs == NVME_ZONE_STATE_FULL; case NVME_ZONE_REPORT_READ_ONLY: return zs == NVME_ZONE_STATE_READ_ONLY; case NVME_ZONE_REPORT_OFFLINE: return zs == NVME_ZONE_STATE_OFFLINE; default: return false; } } static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req) { NvmeCmd *cmd = &req->cmd; NvmeNamespace *ns = req->ns; /* cdw12 is zero-based number of dwords to return. Convert to bytes */ uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2; uint32_t dw13 = le32_to_cpu(cmd->cdw13); uint32_t zone_idx, zra, zrasf, partial; uint64_t max_zones, nr_zones = 0; uint16_t status; uint64_t slba; NvmeZoneDescr *z; NvmeZone *zone; NvmeZoneReportHeader *header; void *buf, *buf_p; size_t zone_entry_sz; int i; req->status = NVME_SUCCESS; status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx); if (status) { return status; } zra = dw13 & 0xff; if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) { return NVME_INVALID_FIELD | NVME_DNR; } if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) { return NVME_INVALID_FIELD | NVME_DNR; } zrasf = (dw13 >> 8) & 0xff; if (zrasf > NVME_ZONE_REPORT_OFFLINE) { return NVME_INVALID_FIELD | NVME_DNR; } if (data_size < sizeof(NvmeZoneReportHeader)) { return NVME_INVALID_FIELD | NVME_DNR; } status = nvme_check_mdts(n, data_size); if (status) { return status; } partial = (dw13 >> 16) & 0x01; zone_entry_sz = sizeof(NvmeZoneDescr); if (zra == NVME_ZONE_REPORT_EXTENDED) { zone_entry_sz += ns->params.zd_extension_size; } max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz; buf = g_malloc0(data_size); zone = &ns->zone_array[zone_idx]; for (i = zone_idx; i < ns->num_zones; i++) { if (partial && nr_zones >= max_zones) { break; } if (nvme_zone_matches_filter(zrasf, zone++)) { nr_zones++; } } header = buf; header->nr_zones = cpu_to_le64(nr_zones); buf_p = buf + sizeof(NvmeZoneReportHeader); for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) { zone = &ns->zone_array[zone_idx]; if (nvme_zone_matches_filter(zrasf, zone)) { z = buf_p; buf_p += sizeof(NvmeZoneDescr); z->zt = zone->d.zt; z->zs = zone->d.zs; z->zcap = cpu_to_le64(zone->d.zcap); z->zslba = cpu_to_le64(zone->d.zslba); z->za = zone->d.za; if (nvme_wp_is_valid(zone)) { z->wp = cpu_to_le64(zone->d.wp); } else { z->wp = cpu_to_le64(~0ULL); } if (zra == NVME_ZONE_REPORT_EXTENDED) { if (zone->d.za & NVME_ZA_ZD_EXT_VALID) { memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx), ns->params.zd_extension_size); } buf_p += ns->params.zd_extension_size; } max_zones--; } } status = nvme_c2h(n, (uint8_t *)buf, data_size, req); g_free(buf); return status; } static uint16_t nvme_io_mgmt_recv_ruhs(NvmeCtrl *n, NvmeRequest *req, size_t len) { NvmeNamespace *ns = req->ns; NvmeEnduranceGroup *endgrp; NvmeRuhStatus *hdr; NvmeRuhStatusDescr *ruhsd; unsigned int nruhsd; uint16_t rg, ph, *ruhid; size_t trans_len; g_autofree uint8_t *buf = NULL; if (!n->subsys) { return NVME_INVALID_FIELD | NVME_DNR; } if (ns->params.nsid == 0 || ns->params.nsid == 0xffffffff) { return NVME_INVALID_NSID | NVME_DNR; } if (!n->subsys->endgrp.fdp.enabled) { return NVME_FDP_DISABLED | NVME_DNR; } endgrp = ns->endgrp; nruhsd = ns->fdp.nphs * endgrp->fdp.nrg; trans_len = sizeof(NvmeRuhStatus) + nruhsd * sizeof(NvmeRuhStatusDescr); buf = g_malloc0(trans_len); trans_len = MIN(trans_len, len); hdr = (NvmeRuhStatus *)buf; ruhsd = (NvmeRuhStatusDescr *)(buf + sizeof(NvmeRuhStatus)); hdr->nruhsd = cpu_to_le16(nruhsd); ruhid = ns->fdp.phs; for (ph = 0; ph < ns->fdp.nphs; ph++, ruhid++) { NvmeRuHandle *ruh = &endgrp->fdp.ruhs[*ruhid]; for (rg = 0; rg < endgrp->fdp.nrg; rg++, ruhsd++) { uint16_t pid = nvme_make_pid(ns, rg, ph); ruhsd->pid = cpu_to_le16(pid); ruhsd->ruhid = *ruhid; ruhsd->earutr = 0; ruhsd->ruamw = cpu_to_le64(ruh->rus[rg].ruamw); } } return nvme_c2h(n, buf, trans_len, req); } static uint16_t nvme_io_mgmt_recv(NvmeCtrl *n, NvmeRequest *req) { NvmeCmd *cmd = &req->cmd; uint32_t cdw10 = le32_to_cpu(cmd->cdw10); uint32_t numd = le32_to_cpu(cmd->cdw11); uint8_t mo = (cdw10 & 0xff); size_t len = (numd + 1) << 2; switch (mo) { case NVME_IOMR_MO_NOP: return 0; case NVME_IOMR_MO_RUH_STATUS: return nvme_io_mgmt_recv_ruhs(n, req, len); default: return NVME_INVALID_FIELD | NVME_DNR; }; } static uint16_t nvme_io_mgmt_send_ruh_update(NvmeCtrl *n, NvmeRequest *req) { NvmeCmd *cmd = &req->cmd; NvmeNamespace *ns = req->ns; uint32_t cdw10 = le32_to_cpu(cmd->cdw10); uint16_t ret = NVME_SUCCESS; uint32_t npid = (cdw10 >> 16) + 1; unsigned int i = 0; g_autofree uint16_t *pids = NULL; uint32_t maxnpid; if (!ns->endgrp || !ns->endgrp->fdp.enabled) { return NVME_FDP_DISABLED | NVME_DNR; } maxnpid = n->subsys->endgrp.fdp.nrg * n->subsys->endgrp.fdp.nruh; if (unlikely(npid >= MIN(NVME_FDP_MAXPIDS, maxnpid))) { return NVME_INVALID_FIELD | NVME_DNR; } pids = g_new(uint16_t, npid); ret = nvme_h2c(n, pids, npid * sizeof(uint16_t), req); if (ret) { return ret; } for (; i < npid; i++) { if (!nvme_update_ruh(n, ns, pids[i])) { return NVME_INVALID_FIELD | NVME_DNR; } } return ret; } static uint16_t nvme_io_mgmt_send(NvmeCtrl *n, NvmeRequest *req) { NvmeCmd *cmd = &req->cmd; uint32_t cdw10 = le32_to_cpu(cmd->cdw10); uint8_t mo = (cdw10 & 0xff); switch (mo) { case NVME_IOMS_MO_NOP: return 0; case NVME_IOMS_MO_RUH_UPDATE: return nvme_io_mgmt_send_ruh_update(n, req); default: return NVME_INVALID_FIELD | NVME_DNR; }; } static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req) { NvmeNamespace *ns; uint32_t nsid = le32_to_cpu(req->cmd.nsid); trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req), req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode)); /* * In the base NVM command set, Flush may apply to all namespaces * (indicated by NSID being set to FFFFFFFFh). But if that feature is used * along with TP 4056 (Namespace Types), it may be pretty screwed up. * * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the * opcode with a specific command since we cannot determine a unique I/O * command set. Opcode 0h could have any other meaning than something * equivalent to flushing and say it DOES have completely different * semantics in some other command set - does an NSID of FFFFFFFFh then * mean "for all namespaces, apply whatever command set specific command * that uses the 0h opcode?" Or does it mean "for all namespaces, apply * whatever command that uses the 0h opcode if, and only if, it allows NSID * to be FFFFFFFFh"? * * Anyway (and luckily), for now, we do not care about this since the * device only supports namespace types that includes the NVM Flush command * (NVM and Zoned), so always do an NVM Flush. */ if (req->cmd.opcode == NVME_CMD_FLUSH) { return nvme_flush(n, req); } if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { return NVME_INVALID_NSID | NVME_DNR; } ns = nvme_ns(n, nsid); if (unlikely(!ns)) { return NVME_INVALID_FIELD | NVME_DNR; } if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) { trace_pci_nvme_err_invalid_opc(req->cmd.opcode); return NVME_INVALID_OPCODE | NVME_DNR; } if (ns->status) { return ns->status; } if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) { return NVME_INVALID_FIELD; } req->ns = ns; switch (req->cmd.opcode) { case NVME_CMD_WRITE_ZEROES: return nvme_write_zeroes(n, req); case NVME_CMD_ZONE_APPEND: return nvme_zone_append(n, req); case NVME_CMD_WRITE: return nvme_write(n, req); case NVME_CMD_READ: return nvme_read(n, req); case NVME_CMD_COMPARE: return nvme_compare(n, req); case NVME_CMD_DSM: return nvme_dsm(n, req); case NVME_CMD_VERIFY: return nvme_verify(n, req); case NVME_CMD_COPY: return nvme_copy(n, req); case NVME_CMD_ZONE_MGMT_SEND: return nvme_zone_mgmt_send(n, req); case NVME_CMD_ZONE_MGMT_RECV: return nvme_zone_mgmt_recv(n, req); case NVME_CMD_IO_MGMT_RECV: return nvme_io_mgmt_recv(n, req); case NVME_CMD_IO_MGMT_SEND: return nvme_io_mgmt_send(n, req); default: g_assert_not_reached(); } return NVME_INVALID_OPCODE | NVME_DNR; } static void nvme_cq_notifier(EventNotifier *e) { NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier); NvmeCtrl *n = cq->ctrl; if (!event_notifier_test_and_clear(e)) { return; } nvme_update_cq_head(cq); if (cq->tail == cq->head) { if (cq->irq_enabled) { n->cq_pending--; } nvme_irq_deassert(n, cq); } qemu_bh_schedule(cq->bh); } static int nvme_init_cq_ioeventfd(NvmeCQueue *cq) { NvmeCtrl *n = cq->ctrl; uint16_t offset = (cq->cqid << 3) + (1 << 2); int ret; ret = event_notifier_init(&cq->notifier, 0); if (ret < 0) { return ret; } event_notifier_set_handler(&cq->notifier, nvme_cq_notifier); memory_region_add_eventfd(&n->iomem, 0x1000 + offset, 4, false, 0, &cq->notifier); return 0; } static void nvme_sq_notifier(EventNotifier *e) { NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier); if (!event_notifier_test_and_clear(e)) { return; } nvme_process_sq(sq); } static int nvme_init_sq_ioeventfd(NvmeSQueue *sq) { NvmeCtrl *n = sq->ctrl; uint16_t offset = sq->sqid << 3; int ret; ret = event_notifier_init(&sq->notifier, 0); if (ret < 0) { return ret; } event_notifier_set_handler(&sq->notifier, nvme_sq_notifier); memory_region_add_eventfd(&n->iomem, 0x1000 + offset, 4, false, 0, &sq->notifier); return 0; } static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n) { uint16_t offset = sq->sqid << 3; n->sq[sq->sqid] = NULL; qemu_bh_delete(sq->bh); if (sq->ioeventfd_enabled) { memory_region_del_eventfd(&n->iomem, 0x1000 + offset, 4, false, 0, &sq->notifier); event_notifier_set_handler(&sq->notifier, NULL); event_notifier_cleanup(&sq->notifier); } g_free(sq->io_req); if (sq->sqid) { g_free(sq); } } static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req) { NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; NvmeRequest *r, *next; NvmeSQueue *sq; NvmeCQueue *cq; uint16_t qid = le16_to_cpu(c->qid); if (unlikely(!qid || nvme_check_sqid(n, qid))) { trace_pci_nvme_err_invalid_del_sq(qid); return NVME_INVALID_QID | NVME_DNR; } trace_pci_nvme_del_sq(qid); sq = n->sq[qid]; while (!QTAILQ_EMPTY(&sq->out_req_list)) { r = QTAILQ_FIRST(&sq->out_req_list); assert(r->aiocb); blk_aio_cancel(r->aiocb); } assert(QTAILQ_EMPTY(&sq->out_req_list)); if (!nvme_check_cqid(n, sq->cqid)) { cq = n->cq[sq->cqid]; QTAILQ_REMOVE(&cq->sq_list, sq, entry); nvme_post_cqes(cq); QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) { if (r->sq == sq) { QTAILQ_REMOVE(&cq->req_list, r, entry); QTAILQ_INSERT_TAIL(&sq->req_list, r, entry); } } } nvme_free_sq(sq, n); return NVME_SUCCESS; } static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr, uint16_t sqid, uint16_t cqid, uint16_t size) { int i; NvmeCQueue *cq; sq->ctrl = n; sq->dma_addr = dma_addr; sq->sqid = sqid; sq->size = size; sq->cqid = cqid; sq->head = sq->tail = 0; sq->io_req = g_new0(NvmeRequest, sq->size); QTAILQ_INIT(&sq->req_list); QTAILQ_INIT(&sq->out_req_list); for (i = 0; i < sq->size; i++) { sq->io_req[i].sq = sq; QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry); } sq->bh = qemu_bh_new_guarded(nvme_process_sq, sq, &DEVICE(sq->ctrl)->mem_reentrancy_guard); if (n->dbbuf_enabled) { sq->db_addr = n->dbbuf_dbs + (sqid << 3); sq->ei_addr = n->dbbuf_eis + (sqid << 3); if (n->params.ioeventfd && sq->sqid != 0) { if (!nvme_init_sq_ioeventfd(sq)) { sq->ioeventfd_enabled = true; } } } assert(n->cq[cqid]); cq = n->cq[cqid]; QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry); n->sq[sqid] = sq; } static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req) { NvmeSQueue *sq; NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd; uint16_t cqid = le16_to_cpu(c->cqid); uint16_t sqid = le16_to_cpu(c->sqid); uint16_t qsize = le16_to_cpu(c->qsize); uint16_t qflags = le16_to_cpu(c->sq_flags); uint64_t prp1 = le64_to_cpu(c->prp1); trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags); if (unlikely(!cqid || nvme_check_cqid(n, cqid))) { trace_pci_nvme_err_invalid_create_sq_cqid(cqid); return NVME_INVALID_CQID | NVME_DNR; } if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) { trace_pci_nvme_err_invalid_create_sq_sqid(sqid); return NVME_INVALID_QID | NVME_DNR; } if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) { trace_pci_nvme_err_invalid_create_sq_size(qsize); return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; } if (unlikely(prp1 & (n->page_size - 1))) { trace_pci_nvme_err_invalid_create_sq_addr(prp1); return NVME_INVALID_PRP_OFFSET | NVME_DNR; } if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) { trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags)); return NVME_INVALID_FIELD | NVME_DNR; } sq = g_malloc0(sizeof(*sq)); nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1); return NVME_SUCCESS; } struct nvme_stats { uint64_t units_read; uint64_t units_written; uint64_t read_commands; uint64_t write_commands; }; static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats) { BlockAcctStats *s = blk_get_stats(ns->blkconf.blk); stats->units_read += s->nr_bytes[BLOCK_ACCT_READ]; stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE]; stats->read_commands += s->nr_ops[BLOCK_ACCT_READ]; stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE]; } static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, uint64_t off, NvmeRequest *req) { uint32_t nsid = le32_to_cpu(req->cmd.nsid); struct nvme_stats stats = { 0 }; NvmeSmartLog smart = { 0 }; uint32_t trans_len; NvmeNamespace *ns; time_t current_ms; uint64_t u_read, u_written; if (off >= sizeof(smart)) { return NVME_INVALID_FIELD | NVME_DNR; } if (nsid != 0xffffffff) { ns = nvme_ns(n, nsid); if (!ns) { return NVME_INVALID_NSID | NVME_DNR; } nvme_set_blk_stats(ns, &stats); } else { int i; for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { ns = nvme_ns(n, i); if (!ns) { continue; } nvme_set_blk_stats(ns, &stats); } } trans_len = MIN(sizeof(smart) - off, buf_len); smart.critical_warning = n->smart_critical_warning; u_read = DIV_ROUND_UP(stats.units_read >> BDRV_SECTOR_BITS, 1000); u_written = DIV_ROUND_UP(stats.units_written >> BDRV_SECTOR_BITS, 1000); smart.data_units_read[0] = cpu_to_le64(u_read); smart.data_units_written[0] = cpu_to_le64(u_written); smart.host_read_commands[0] = cpu_to_le64(stats.read_commands); smart.host_write_commands[0] = cpu_to_le64(stats.write_commands); smart.temperature = cpu_to_le16(n->temperature); if ((n->temperature >= n->features.temp_thresh_hi) || (n->temperature <= n->features.temp_thresh_low)) { smart.critical_warning |= NVME_SMART_TEMPERATURE; } current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); smart.power_on_hours[0] = cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60); if (!rae) { nvme_clear_events(n, NVME_AER_TYPE_SMART); } return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req); } static uint16_t nvme_endgrp_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, uint64_t off, NvmeRequest *req) { uint32_t dw11 = le32_to_cpu(req->cmd.cdw11); uint16_t endgrpid = (dw11 >> 16) & 0xffff; struct nvme_stats stats = {}; NvmeEndGrpLog info = {}; int i; if (!n->subsys || endgrpid != 0x1) { return NVME_INVALID_FIELD | NVME_DNR; } if (off >= sizeof(info)) { return NVME_INVALID_FIELD | NVME_DNR; } for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { NvmeNamespace *ns = nvme_subsys_ns(n->subsys, i); if (!ns) { continue; } nvme_set_blk_stats(ns, &stats); } info.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read / 1000000000, 1000000000)); info.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000)); info.media_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000)); info.host_read_commands[0] = cpu_to_le64(stats.read_commands); info.host_write_commands[0] = cpu_to_le64(stats.write_commands); buf_len = MIN(sizeof(info) - off, buf_len); return nvme_c2h(n, (uint8_t *)&info + off, buf_len, req); } static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off, NvmeRequest *req) { uint32_t trans_len; NvmeFwSlotInfoLog fw_log = { .afi = 0x1, }; if (off >= sizeof(fw_log)) { return NVME_INVALID_FIELD | NVME_DNR; } strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' '); trans_len = MIN(sizeof(fw_log) - off, buf_len); return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req); } static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, uint64_t off, NvmeRequest *req) { uint32_t trans_len; NvmeErrorLog errlog; if (off >= sizeof(errlog)) { return NVME_INVALID_FIELD | NVME_DNR; } if (!rae) { nvme_clear_events(n, NVME_AER_TYPE_ERROR); } memset(&errlog, 0x0, sizeof(errlog)); trans_len = MIN(sizeof(errlog) - off, buf_len); return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req); } static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, uint64_t off, NvmeRequest *req) { uint32_t nslist[1024]; uint32_t trans_len; int i = 0; uint32_t nsid; if (off >= sizeof(nslist)) { trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist)); return NVME_INVALID_FIELD | NVME_DNR; } memset(nslist, 0x0, sizeof(nslist)); trans_len = MIN(sizeof(nslist) - off, buf_len); while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) != NVME_CHANGED_NSID_SIZE) { /* * If more than 1024 namespaces, the first entry in the log page should * be set to FFFFFFFFh and the others to 0 as spec. */ if (i == ARRAY_SIZE(nslist)) { memset(nslist, 0x0, sizeof(nslist)); nslist[0] = 0xffffffff; break; } nslist[i++] = nsid; clear_bit(nsid, n->changed_nsids); } /* * Remove all the remaining list entries in case returns directly due to * more than 1024 namespaces. */ if (nslist[0] == 0xffffffff) { bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE); } if (!rae) { nvme_clear_events(n, NVME_AER_TYPE_NOTICE); } return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req); } static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len, uint64_t off, NvmeRequest *req) { NvmeEffectsLog log = {}; const uint32_t *src_iocs = NULL; uint32_t trans_len; if (off >= sizeof(log)) { trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log)); return NVME_INVALID_FIELD | NVME_DNR; } switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) { case NVME_CC_CSS_NVM: src_iocs = nvme_cse_iocs_nvm; /* fall through */ case NVME_CC_CSS_ADMIN_ONLY: break; case NVME_CC_CSS_CSI: switch (csi) { case NVME_CSI_NVM: src_iocs = nvme_cse_iocs_nvm; break; case NVME_CSI_ZONED: src_iocs = nvme_cse_iocs_zoned; break; } } memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs)); if (src_iocs) { memcpy(log.iocs, src_iocs, sizeof(log.iocs)); } trans_len = MIN(sizeof(log) - off, buf_len); return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req); } static size_t sizeof_fdp_conf_descr(size_t nruh, size_t vss) { size_t entry_siz = sizeof(NvmeFdpDescrHdr) + nruh * sizeof(NvmeRuhDescr) + vss; return ROUND_UP(entry_siz, 8); } static uint16_t nvme_fdp_confs(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len, uint64_t off, NvmeRequest *req) { uint32_t log_size, trans_len; g_autofree uint8_t *buf = NULL; NvmeFdpDescrHdr *hdr; NvmeRuhDescr *ruhd; NvmeEnduranceGroup *endgrp; NvmeFdpConfsHdr *log; size_t nruh, fdp_descr_size; int i; if (endgrpid != 1 || !n->subsys) { return NVME_INVALID_FIELD | NVME_DNR; } endgrp = &n->subsys->endgrp; if (endgrp->fdp.enabled) { nruh = endgrp->fdp.nruh; } else { nruh = 1; } fdp_descr_size = sizeof_fdp_conf_descr(nruh, FDPVSS); log_size = sizeof(NvmeFdpConfsHdr) + fdp_descr_size; if (off >= log_size) { return NVME_INVALID_FIELD | NVME_DNR; } trans_len = MIN(log_size - off, buf_len); buf = g_malloc0(log_size); log = (NvmeFdpConfsHdr *)buf; hdr = (NvmeFdpDescrHdr *)(log + 1); ruhd = (NvmeRuhDescr *)(buf + sizeof(*log) + sizeof(*hdr)); log->num_confs = cpu_to_le16(0); log->size = cpu_to_le32(log_size); hdr->descr_size = cpu_to_le16(fdp_descr_size); if (endgrp->fdp.enabled) { hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, VALID, 1); hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, RGIF, endgrp->fdp.rgif); hdr->nrg = cpu_to_le16(endgrp->fdp.nrg); hdr->nruh = cpu_to_le16(endgrp->fdp.nruh); hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1); hdr->nnss = cpu_to_le32(NVME_MAX_NAMESPACES); hdr->runs = cpu_to_le64(endgrp->fdp.runs); for (i = 0; i < nruh; i++) { ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED; ruhd++; } } else { /* 1 bit for RUH in PIF -> 2 RUHs max. */ hdr->nrg = cpu_to_le16(1); hdr->nruh = cpu_to_le16(1); hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1); hdr->nnss = cpu_to_le32(1); hdr->runs = cpu_to_le64(96 * MiB); ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED; } return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req); } static uint16_t nvme_fdp_ruh_usage(NvmeCtrl *n, uint32_t endgrpid, uint32_t dw10, uint32_t dw12, uint32_t buf_len, uint64_t off, NvmeRequest *req) { NvmeRuHandle *ruh; NvmeRuhuLog *hdr; NvmeRuhuDescr *ruhud; NvmeEnduranceGroup *endgrp; g_autofree uint8_t *buf = NULL; uint32_t log_size, trans_len; uint16_t i; if (endgrpid != 1 || !n->subsys) { return NVME_INVALID_FIELD | NVME_DNR; } endgrp = &n->subsys->endgrp; if (!endgrp->fdp.enabled) { return NVME_FDP_DISABLED | NVME_DNR; } log_size = sizeof(NvmeRuhuLog) + endgrp->fdp.nruh * sizeof(NvmeRuhuDescr); if (off >= log_size) { return NVME_INVALID_FIELD | NVME_DNR; } trans_len = MIN(log_size - off, buf_len); buf = g_malloc0(log_size); hdr = (NvmeRuhuLog *)buf; ruhud = (NvmeRuhuDescr *)(hdr + 1); ruh = endgrp->fdp.ruhs; hdr->nruh = cpu_to_le16(endgrp->fdp.nruh); for (i = 0; i < endgrp->fdp.nruh; i++, ruhud++, ruh++) { ruhud->ruha = ruh->ruha; } return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req); } static uint16_t nvme_fdp_stats(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len, uint64_t off, NvmeRequest *req) { NvmeEnduranceGroup *endgrp; NvmeFdpStatsLog log = {}; uint32_t trans_len; if (off >= sizeof(NvmeFdpStatsLog)) { return NVME_INVALID_FIELD | NVME_DNR; } if (endgrpid != 1 || !n->subsys) { return NVME_INVALID_FIELD | NVME_DNR; } if (!n->subsys->endgrp.fdp.enabled) { return NVME_FDP_DISABLED | NVME_DNR; } endgrp = &n->subsys->endgrp; trans_len = MIN(sizeof(log) - off, buf_len); /* spec value is 128 bit, we only use 64 bit */ log.hbmw[0] = cpu_to_le64(endgrp->fdp.hbmw); log.mbmw[0] = cpu_to_le64(endgrp->fdp.mbmw); log.mbe[0] = cpu_to_le64(endgrp->fdp.mbe); return nvme_c2h(n, (uint8_t *)&log + off, trans_len, req); } static uint16_t nvme_fdp_events(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len, uint64_t off, NvmeRequest *req) { NvmeEnduranceGroup *endgrp; NvmeCmd *cmd = &req->cmd; bool host_events = (cmd->cdw10 >> 8) & 0x1; uint32_t log_size, trans_len; NvmeFdpEventBuffer *ebuf; g_autofree NvmeFdpEventsLog *elog = NULL; NvmeFdpEvent *event; if (endgrpid != 1 || !n->subsys) { return NVME_INVALID_FIELD | NVME_DNR; } endgrp = &n->subsys->endgrp; if (!endgrp->fdp.enabled) { return NVME_FDP_DISABLED | NVME_DNR; } if (host_events) { ebuf = &endgrp->fdp.host_events; } else { ebuf = &endgrp->fdp.ctrl_events; } log_size = sizeof(NvmeFdpEventsLog) + ebuf->nelems * sizeof(NvmeFdpEvent); if (off >= log_size) { return NVME_INVALID_FIELD | NVME_DNR; } trans_len = MIN(log_size - off, buf_len); elog = g_malloc0(log_size); elog->num_events = cpu_to_le32(ebuf->nelems); event = (NvmeFdpEvent *)(elog + 1); if (ebuf->nelems && ebuf->start == ebuf->next) { unsigned int nelems = (NVME_FDP_MAX_EVENTS - ebuf->start); /* wrap over, copy [start;NVME_FDP_MAX_EVENTS[ and [0; next[ */ memcpy(event, &ebuf->events[ebuf->start], sizeof(NvmeFdpEvent) * nelems); memcpy(event + nelems, ebuf->events, sizeof(NvmeFdpEvent) * ebuf->next); } else if (ebuf->start < ebuf->next) { memcpy(event, &ebuf->events[ebuf->start], sizeof(NvmeFdpEvent) * (ebuf->next - ebuf->start)); } return nvme_c2h(n, (uint8_t *)elog + off, trans_len, req); } static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req) { NvmeCmd *cmd = &req->cmd; uint32_t dw10 = le32_to_cpu(cmd->cdw10); uint32_t dw11 = le32_to_cpu(cmd->cdw11); uint32_t dw12 = le32_to_cpu(cmd->cdw12); uint32_t dw13 = le32_to_cpu(cmd->cdw13); uint8_t lid = dw10 & 0xff; uint8_t lsp = (dw10 >> 8) & 0xf; uint8_t rae = (dw10 >> 15) & 0x1; uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24; uint32_t numdl, numdu, lspi; uint64_t off, lpol, lpou; size_t len; uint16_t status; numdl = (dw10 >> 16); numdu = (dw11 & 0xffff); lspi = (dw11 >> 16); lpol = dw12; lpou = dw13; len = (((numdu << 16) | numdl) + 1) << 2; off = (lpou << 32ULL) | lpol; if (off & 0x3) { return NVME_INVALID_FIELD | NVME_DNR; } trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off); status = nvme_check_mdts(n, len); if (status) { return status; } switch (lid) { case NVME_LOG_ERROR_INFO: return nvme_error_info(n, rae, len, off, req); case NVME_LOG_SMART_INFO: return nvme_smart_info(n, rae, len, off, req); case NVME_LOG_FW_SLOT_INFO: return nvme_fw_log_info(n, len, off, req); case NVME_LOG_CHANGED_NSLIST: return nvme_changed_nslist(n, rae, len, off, req); case NVME_LOG_CMD_EFFECTS: return nvme_cmd_effects(n, csi, len, off, req); case NVME_LOG_ENDGRP: return nvme_endgrp_info(n, rae, len, off, req); case NVME_LOG_FDP_CONFS: return nvme_fdp_confs(n, lspi, len, off, req); case NVME_LOG_FDP_RUH_USAGE: return nvme_fdp_ruh_usage(n, lspi, dw10, dw12, len, off, req); case NVME_LOG_FDP_STATS: return nvme_fdp_stats(n, lspi, len, off, req); case NVME_LOG_FDP_EVENTS: return nvme_fdp_events(n, lspi, len, off, req); default: trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid); return NVME_INVALID_FIELD | NVME_DNR; } } static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n) { PCIDevice *pci = PCI_DEVICE(n); uint16_t offset = (cq->cqid << 3) + (1 << 2); n->cq[cq->cqid] = NULL; qemu_bh_delete(cq->bh); if (cq->ioeventfd_enabled) { memory_region_del_eventfd(&n->iomem, 0x1000 + offset, 4, false, 0, &cq->notifier); event_notifier_set_handler(&cq->notifier, NULL); event_notifier_cleanup(&cq->notifier); } if (msix_enabled(pci) && cq->irq_enabled) { msix_vector_unuse(pci, cq->vector); } if (cq->cqid) { g_free(cq); } } static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req) { NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; NvmeCQueue *cq; uint16_t qid = le16_to_cpu(c->qid); if (unlikely(!qid || nvme_check_cqid(n, qid))) { trace_pci_nvme_err_invalid_del_cq_cqid(qid); return NVME_INVALID_CQID | NVME_DNR; } cq = n->cq[qid]; if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) { trace_pci_nvme_err_invalid_del_cq_notempty(qid); return NVME_INVALID_QUEUE_DEL; } if (cq->irq_enabled && cq->tail != cq->head) { n->cq_pending--; } nvme_irq_deassert(n, cq); trace_pci_nvme_del_cq(qid); nvme_free_cq(cq, n); return NVME_SUCCESS; } static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr, uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled) { PCIDevice *pci = PCI_DEVICE(n); if (msix_enabled(pci) && irq_enabled) { msix_vector_use(pci, vector); } cq->ctrl = n; cq->cqid = cqid; cq->size = size; cq->dma_addr = dma_addr; cq->phase = 1; cq->irq_enabled = irq_enabled; cq->vector = vector; cq->head = cq->tail = 0; QTAILQ_INIT(&cq->req_list); QTAILQ_INIT(&cq->sq_list); if (n->dbbuf_enabled) { cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2); cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2); if (n->params.ioeventfd && cqid != 0) { if (!nvme_init_cq_ioeventfd(cq)) { cq->ioeventfd_enabled = true; } } } n->cq[cqid] = cq; cq->bh = qemu_bh_new_guarded(nvme_post_cqes, cq, &DEVICE(cq->ctrl)->mem_reentrancy_guard); } static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req) { NvmeCQueue *cq; NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd; uint16_t cqid = le16_to_cpu(c->cqid); uint16_t vector = le16_to_cpu(c->irq_vector); uint16_t qsize = le16_to_cpu(c->qsize); uint16_t qflags = le16_to_cpu(c->cq_flags); uint64_t prp1 = le64_to_cpu(c->prp1); uint32_t cc = ldq_le_p(&n->bar.cc); uint8_t iocqes = NVME_CC_IOCQES(cc); uint8_t iosqes = NVME_CC_IOSQES(cc); trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags, NVME_CQ_FLAGS_IEN(qflags) != 0); if (iosqes != NVME_SQES || iocqes != NVME_CQES) { trace_pci_nvme_err_invalid_create_cq_entry_size(iosqes, iocqes); return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; } if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) { trace_pci_nvme_err_invalid_create_cq_cqid(cqid); return NVME_INVALID_QID | NVME_DNR; } if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) { trace_pci_nvme_err_invalid_create_cq_size(qsize); return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; } if (unlikely(prp1 & (n->page_size - 1))) { trace_pci_nvme_err_invalid_create_cq_addr(prp1); return NVME_INVALID_PRP_OFFSET | NVME_DNR; } if (unlikely(!msix_enabled(PCI_DEVICE(n)) && vector)) { trace_pci_nvme_err_invalid_create_cq_vector(vector); return NVME_INVALID_IRQ_VECTOR | NVME_DNR; } if (unlikely(vector >= n->conf_msix_qsize)) { trace_pci_nvme_err_invalid_create_cq_vector(vector); return NVME_INVALID_IRQ_VECTOR | NVME_DNR; } if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) { trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags)); return NVME_INVALID_FIELD | NVME_DNR; } cq = g_malloc0(sizeof(*cq)); nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1, NVME_CQ_FLAGS_IEN(qflags)); /* * It is only required to set qs_created when creating a completion queue; * creating a submission queue without a matching completion queue will * fail. */ n->qs_created = true; return NVME_SUCCESS; } static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req) { uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {}; return nvme_c2h(n, id, sizeof(id), req); } static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req) { trace_pci_nvme_identify_ctrl(); return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req); } static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req) { NvmeIdentify *c = (NvmeIdentify *)&req->cmd; uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {}; NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id; trace_pci_nvme_identify_ctrl_csi(c->csi); switch (c->csi) { case NVME_CSI_NVM: id_nvm->vsl = n->params.vsl; id_nvm->dmrsl = cpu_to_le32(n->dmrsl); break; case NVME_CSI_ZONED: ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl; break; default: return NVME_INVALID_FIELD | NVME_DNR; } return nvme_c2h(n, id, sizeof(id), req); } static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active) { NvmeNamespace *ns; NvmeIdentify *c = (NvmeIdentify *)&req->cmd; uint32_t nsid = le32_to_cpu(c->nsid); trace_pci_nvme_identify_ns(nsid); if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { return NVME_INVALID_NSID | NVME_DNR; } ns = nvme_ns(n, nsid); if (unlikely(!ns)) { if (!active) { ns = nvme_subsys_ns(n->subsys, nsid); if (!ns) { return nvme_rpt_empty_id_struct(n, req); } } else { return nvme_rpt_empty_id_struct(n, req); } } if (active || ns->csi == NVME_CSI_NVM) { return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req); } return NVME_INVALID_CMD_SET | NVME_DNR; } static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req, bool attached) { NvmeIdentify *c = (NvmeIdentify *)&req->cmd; uint32_t nsid = le32_to_cpu(c->nsid); uint16_t min_id = le16_to_cpu(c->ctrlid); uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {}; uint16_t *ids = &list[1]; NvmeNamespace *ns; NvmeCtrl *ctrl; int cntlid, nr_ids = 0; trace_pci_nvme_identify_ctrl_list(c->cns, min_id); if (!n->subsys) { return NVME_INVALID_FIELD | NVME_DNR; } if (attached) { if (nsid == NVME_NSID_BROADCAST) { return NVME_INVALID_FIELD | NVME_DNR; } ns = nvme_subsys_ns(n->subsys, nsid); if (!ns) { return NVME_INVALID_FIELD | NVME_DNR; } } for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) { ctrl = nvme_subsys_ctrl(n->subsys, cntlid); if (!ctrl) { continue; } if (attached && !nvme_ns(ctrl, nsid)) { continue; } ids[nr_ids++] = cntlid; } list[0] = nr_ids; return nvme_c2h(n, (uint8_t *)list, sizeof(list), req); } static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req) { trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid)); return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap, sizeof(NvmePriCtrlCap), req); } static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req) { NvmeIdentify *c = (NvmeIdentify *)&req->cmd; uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid); uint16_t min_id = le16_to_cpu(c->ctrlid); uint8_t num_sec_ctrl = n->nr_sec_ctrls; NvmeSecCtrlList list = {0}; uint8_t i; for (i = 0; i < num_sec_ctrl; i++) { if (n->sec_ctrl_list[i].scid >= min_id) { list.numcntl = MIN(num_sec_ctrl - i, 127); memcpy(&list.sec, n->sec_ctrl_list + i, list.numcntl * sizeof(NvmeSecCtrlEntry)); break; } } trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl); return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req); } static uint16_t nvme_identify_ns_ind(NvmeCtrl *n, NvmeRequest *req, bool alloc) { NvmeNamespace *ns; NvmeIdentify *c = (NvmeIdentify *)&req->cmd; uint32_t nsid = le32_to_cpu(c->nsid); trace_pci_nvme_identify_ns_ind(nsid); if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { return NVME_INVALID_NSID | NVME_DNR; } ns = nvme_ns(n, nsid); if (unlikely(!ns)) { if (alloc) { ns = nvme_subsys_ns(n->subsys, nsid); if (!ns) { return nvme_rpt_empty_id_struct(n, req); } } else { return nvme_rpt_empty_id_struct(n, req); } } return nvme_c2h(n, (uint8_t *)&ns->id_ns_ind, sizeof(NvmeIdNsInd), req); } static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req, bool active) { NvmeNamespace *ns; NvmeIdentify *c = (NvmeIdentify *)&req->cmd; uint32_t nsid = le32_to_cpu(c->nsid); trace_pci_nvme_identify_ns_csi(nsid, c->csi); if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { return NVME_INVALID_NSID | NVME_DNR; } ns = nvme_ns(n, nsid); if (unlikely(!ns)) { if (!active) { ns = nvme_subsys_ns(n->subsys, nsid); if (!ns) { return nvme_rpt_empty_id_struct(n, req); } } else { return nvme_rpt_empty_id_struct(n, req); } } if (c->csi == NVME_CSI_NVM) { return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm), req); } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) { return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned), req); } return NVME_INVALID_FIELD | NVME_DNR; } static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req, bool active) { NvmeNamespace *ns; NvmeIdentify *c = (NvmeIdentify *)&req->cmd; uint32_t min_nsid = le32_to_cpu(c->nsid); uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; static const int data_len = sizeof(list); uint32_t *list_ptr = (uint32_t *)list; int i, j = 0; trace_pci_nvme_identify_nslist(min_nsid); /* * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values * since the Active Namespace ID List should return namespaces with ids * *higher* than the NSID specified in the command. This is also specified * in the spec (NVM Express v1.3d, Section 5.15.4). */ if (min_nsid >= NVME_NSID_BROADCAST - 1) { return NVME_INVALID_NSID | NVME_DNR; } for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { ns = nvme_ns(n, i); if (!ns) { if (!active) { ns = nvme_subsys_ns(n->subsys, i); if (!ns) { continue; } } else { continue; } } if (ns->params.nsid <= min_nsid) { continue; } list_ptr[j++] = cpu_to_le32(ns->params.nsid); if (j == data_len / sizeof(uint32_t)) { break; } } return nvme_c2h(n, list, data_len, req); } static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req, bool active) { NvmeNamespace *ns; NvmeIdentify *c = (NvmeIdentify *)&req->cmd; uint32_t min_nsid = le32_to_cpu(c->nsid); uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; static const int data_len = sizeof(list); uint32_t *list_ptr = (uint32_t *)list; int i, j = 0; trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi); /* * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid. */ if (min_nsid >= NVME_NSID_BROADCAST - 1) { return NVME_INVALID_NSID | NVME_DNR; } if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) { return NVME_INVALID_FIELD | NVME_DNR; } for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { ns = nvme_ns(n, i); if (!ns) { if (!active) { ns = nvme_subsys_ns(n->subsys, i); if (!ns) { continue; } } else { continue; } } if (ns->params.nsid <= min_nsid || c->csi != ns->csi) { continue; } list_ptr[j++] = cpu_to_le32(ns->params.nsid); if (j == data_len / sizeof(uint32_t)) { break; } } return nvme_c2h(n, list, data_len, req); } static uint16_t nvme_endurance_group_list(NvmeCtrl *n, NvmeRequest *req) { uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {}; uint16_t *nr_ids = &list[0]; uint16_t *ids = &list[1]; uint16_t endgid = le32_to_cpu(req->cmd.cdw11) & 0xffff; /* * The current nvme-subsys only supports Endurance Group #1. */ if (!endgid) { *nr_ids = 1; ids[0] = 1; } else { *nr_ids = 0; } return nvme_c2h(n, list, sizeof(list), req); } static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req) { NvmeNamespace *ns; NvmeIdentify *c = (NvmeIdentify *)&req->cmd; uint32_t nsid = le32_to_cpu(c->nsid); uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; uint8_t *pos = list; struct { NvmeIdNsDescr hdr; uint8_t v[NVME_NIDL_UUID]; } QEMU_PACKED uuid = {}; struct { NvmeIdNsDescr hdr; uint8_t v[NVME_NIDL_NGUID]; } QEMU_PACKED nguid = {}; struct { NvmeIdNsDescr hdr; uint64_t v; } QEMU_PACKED eui64 = {}; struct { NvmeIdNsDescr hdr; uint8_t v; } QEMU_PACKED csi = {}; trace_pci_nvme_identify_ns_descr_list(nsid); if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { return NVME_INVALID_NSID | NVME_DNR; } ns = nvme_ns(n, nsid); if (unlikely(!ns)) { return NVME_INVALID_FIELD | NVME_DNR; } if (!qemu_uuid_is_null(&ns->params.uuid)) { uuid.hdr.nidt = NVME_NIDT_UUID; uuid.hdr.nidl = NVME_NIDL_UUID; memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID); memcpy(pos, &uuid, sizeof(uuid)); pos += sizeof(uuid); } if (!nvme_nguid_is_null(&ns->params.nguid)) { nguid.hdr.nidt = NVME_NIDT_NGUID; nguid.hdr.nidl = NVME_NIDL_NGUID; memcpy(nguid.v, ns->params.nguid.data, NVME_NIDL_NGUID); memcpy(pos, &nguid, sizeof(nguid)); pos += sizeof(nguid); } if (ns->params.eui64) { eui64.hdr.nidt = NVME_NIDT_EUI64; eui64.hdr.nidl = NVME_NIDL_EUI64; eui64.v = cpu_to_be64(ns->params.eui64); memcpy(pos, &eui64, sizeof(eui64)); pos += sizeof(eui64); } csi.hdr.nidt = NVME_NIDT_CSI; csi.hdr.nidl = NVME_NIDL_CSI; csi.v = ns->csi; memcpy(pos, &csi, sizeof(csi)); pos += sizeof(csi); return nvme_c2h(n, list, sizeof(list), req); } static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req) { uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; static const int data_len = sizeof(list); trace_pci_nvme_identify_cmd_set(); NVME_SET_CSI(*list, NVME_CSI_NVM); NVME_SET_CSI(*list, NVME_CSI_ZONED); return nvme_c2h(n, list, data_len, req); } static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req) { NvmeIdentify *c = (NvmeIdentify *)&req->cmd; trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid), c->csi); switch (c->cns) { case NVME_ID_CNS_NS: return nvme_identify_ns(n, req, true); case NVME_ID_CNS_NS_PRESENT: return nvme_identify_ns(n, req, false); case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST: return nvme_identify_ctrl_list(n, req, true); case NVME_ID_CNS_CTRL_LIST: return nvme_identify_ctrl_list(n, req, false); case NVME_ID_CNS_PRIMARY_CTRL_CAP: return nvme_identify_pri_ctrl_cap(n, req); case NVME_ID_CNS_SECONDARY_CTRL_LIST: return nvme_identify_sec_ctrl_list(n, req); case NVME_ID_CNS_CS_NS: return nvme_identify_ns_csi(n, req, true); case NVME_ID_CNS_CS_IND_NS: return nvme_identify_ns_ind(n, req, false); case NVME_ID_CNS_CS_IND_NS_ALLOCATED: return nvme_identify_ns_ind(n, req, true); case NVME_ID_CNS_CS_NS_PRESENT: return nvme_identify_ns_csi(n, req, false); case NVME_ID_CNS_CTRL: return nvme_identify_ctrl(n, req); case NVME_ID_CNS_CS_CTRL: return nvme_identify_ctrl_csi(n, req); case NVME_ID_CNS_NS_ACTIVE_LIST: return nvme_identify_nslist(n, req, true); case NVME_ID_CNS_NS_PRESENT_LIST: return nvme_identify_nslist(n, req, false); case NVME_ID_CNS_CS_NS_ACTIVE_LIST: return nvme_identify_nslist_csi(n, req, true); case NVME_ID_CNS_ENDURANCE_GROUP_LIST: return nvme_endurance_group_list(n, req); case NVME_ID_CNS_CS_NS_PRESENT_LIST: return nvme_identify_nslist_csi(n, req, false); case NVME_ID_CNS_NS_DESCR_LIST: return nvme_identify_ns_descr_list(n, req); case NVME_ID_CNS_IO_COMMAND_SET: return nvme_identify_cmd_set(n, req); default: trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns)); return NVME_INVALID_FIELD | NVME_DNR; } } static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req) { uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff; uint16_t cid = (le32_to_cpu(req->cmd.cdw10) >> 16) & 0xffff; NvmeSQueue *sq = n->sq[sqid]; NvmeRequest *r, *next; int i; req->cqe.result = 1; if (nvme_check_sqid(n, sqid)) { return NVME_INVALID_FIELD | NVME_DNR; } if (sqid == 0) { for (i = 0; i < n->outstanding_aers; i++) { NvmeRequest *re = n->aer_reqs[i]; if (re->cqe.cid == cid) { memmove(n->aer_reqs + i, n->aer_reqs + i + 1, (n->outstanding_aers - i - 1) * sizeof(NvmeRequest *)); n->outstanding_aers--; re->status = NVME_CMD_ABORT_REQ; req->cqe.result = 0; nvme_enqueue_req_completion(&n->admin_cq, re); return NVME_SUCCESS; } } } QTAILQ_FOREACH_SAFE(r, &sq->out_req_list, entry, next) { if (r->cqe.cid == cid) { if (r->aiocb) { blk_aio_cancel_async(r->aiocb); } break; } } return NVME_SUCCESS; } static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts) { trace_pci_nvme_setfeat_timestamp(ts); n->host_timestamp = le64_to_cpu(ts); n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); } static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n) { uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms; union nvme_timestamp { struct { uint64_t timestamp:48; uint64_t sync:1; uint64_t origin:3; uint64_t rsvd1:12; }; uint64_t all; }; union nvme_timestamp ts; ts.all = 0; ts.timestamp = n->host_timestamp + elapsed_time; /* If the host timestamp is non-zero, set the timestamp origin */ ts.origin = n->host_timestamp ? 0x01 : 0x00; trace_pci_nvme_getfeat_timestamp(ts.all); return cpu_to_le64(ts.all); } static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) { uint64_t timestamp = nvme_get_timestamp(n); return nvme_c2h(n, (uint8_t *)×tamp, sizeof(timestamp), req); } static int nvme_get_feature_fdp(NvmeCtrl *n, uint32_t endgrpid, uint32_t *result) { *result = 0; if (!n->subsys || !n->subsys->endgrp.fdp.enabled) { return NVME_INVALID_FIELD | NVME_DNR; } *result = FIELD_DP16(0, FEAT_FDP, FDPE, 1); *result = FIELD_DP16(*result, FEAT_FDP, CONF_NDX, 0); return NVME_SUCCESS; } static uint16_t nvme_get_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns, NvmeRequest *req, uint32_t *result) { NvmeCmd *cmd = &req->cmd; uint32_t cdw11 = le32_to_cpu(cmd->cdw11); uint16_t ph = cdw11 & 0xffff; uint8_t noet = (cdw11 >> 16) & 0xff; uint16_t ruhid, ret; uint32_t nentries = 0; uint8_t s_events_ndx = 0; size_t s_events_siz = sizeof(NvmeFdpEventDescr) * noet; g_autofree NvmeFdpEventDescr *s_events = g_malloc0(s_events_siz); NvmeRuHandle *ruh; NvmeFdpEventDescr *s_event; if (!n->subsys || !n->subsys->endgrp.fdp.enabled) { return NVME_FDP_DISABLED | NVME_DNR; } if (!nvme_ph_valid(ns, ph)) { return NVME_INVALID_FIELD | NVME_DNR; } ruhid = ns->fdp.phs[ph]; ruh = &n->subsys->endgrp.fdp.ruhs[ruhid]; assert(ruh); if (unlikely(noet == 0)) { return NVME_INVALID_FIELD | NVME_DNR; } for (uint8_t event_type = 0; event_type < FDP_EVT_MAX; event_type++) { uint8_t shift = nvme_fdp_evf_shifts[event_type]; if (!shift && event_type) { /* * only first entry (event_type == 0) has a shift value of 0 * other entries are simply unpopulated. */ continue; } nentries++; s_event = &s_events[s_events_ndx]; s_event->evt = event_type; s_event->evta = (ruh->event_filter >> shift) & 0x1; /* break if all `noet` entries are filled */ if ((++s_events_ndx) == noet) { break; } } ret = nvme_c2h(n, s_events, s_events_siz, req); if (ret) { return ret; } *result = nentries; return NVME_SUCCESS; } static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req) { NvmeCmd *cmd = &req->cmd; uint32_t dw10 = le32_to_cpu(cmd->cdw10); uint32_t dw11 = le32_to_cpu(cmd->cdw11); uint32_t nsid = le32_to_cpu(cmd->nsid); uint32_t result = 0; uint8_t fid = NVME_GETSETFEAT_FID(dw10); NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10); uint16_t iv; NvmeNamespace *ns; int i; uint16_t endgrpid = 0, ret = NVME_SUCCESS; static const uint32_t nvme_feature_default[NVME_FID_MAX] = { [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT, }; trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11); if (!nvme_feature_support[fid]) { return NVME_INVALID_FIELD | NVME_DNR; } if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { /* * The Reservation Notification Mask and Reservation Persistence * features require a status code of Invalid Field in Command when * NSID is FFFFFFFFh. Since the device does not support those * features we can always return Invalid Namespace or Format as we * should do for all other features. */ return NVME_INVALID_NSID | NVME_DNR; } if (!nvme_ns(n, nsid)) { return NVME_INVALID_FIELD | NVME_DNR; } } switch (sel) { case NVME_GETFEAT_SELECT_CURRENT: break; case NVME_GETFEAT_SELECT_SAVED: /* no features are saveable by the controller; fallthrough */ case NVME_GETFEAT_SELECT_DEFAULT: goto defaults; case NVME_GETFEAT_SELECT_CAP: result = nvme_feature_cap[fid]; goto out; } switch (fid) { case NVME_TEMPERATURE_THRESHOLD: result = 0; /* * The controller only implements the Composite Temperature sensor, so * return 0 for all other sensors. */ if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { goto out; } switch (NVME_TEMP_THSEL(dw11)) { case NVME_TEMP_THSEL_OVER: result = n->features.temp_thresh_hi; goto out; case NVME_TEMP_THSEL_UNDER: result = n->features.temp_thresh_low; goto out; } return NVME_INVALID_FIELD | NVME_DNR; case NVME_ERROR_RECOVERY: if (!nvme_nsid_valid(n, nsid)) { return NVME_INVALID_NSID | NVME_DNR; } ns = nvme_ns(n, nsid); if (unlikely(!ns)) { return NVME_INVALID_FIELD | NVME_DNR; } result = ns->features.err_rec; goto out; case NVME_VOLATILE_WRITE_CACHE: result = 0; for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { ns = nvme_ns(n, i); if (!ns) { continue; } result = blk_enable_write_cache(ns->blkconf.blk); if (result) { break; } } trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled"); goto out; case NVME_ASYNCHRONOUS_EVENT_CONF: result = n->features.async_config; goto out; case NVME_TIMESTAMP: return nvme_get_feature_timestamp(n, req); case NVME_HOST_BEHAVIOR_SUPPORT: return nvme_c2h(n, (uint8_t *)&n->features.hbs, sizeof(n->features.hbs), req); case NVME_FDP_MODE: endgrpid = dw11 & 0xff; if (endgrpid != 0x1) { return NVME_INVALID_FIELD | NVME_DNR; } ret = nvme_get_feature_fdp(n, endgrpid, &result); if (ret) { return ret; } goto out; case NVME_FDP_EVENTS: if (!nvme_nsid_valid(n, nsid)) { return NVME_INVALID_NSID | NVME_DNR; } ns = nvme_ns(n, nsid); if (unlikely(!ns)) { return NVME_INVALID_FIELD | NVME_DNR; } ret = nvme_get_feature_fdp_events(n, ns, req, &result); if (ret) { return ret; } goto out; default: break; } defaults: switch (fid) { case NVME_TEMPERATURE_THRESHOLD: result = 0; if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { break; } if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) { result = NVME_TEMPERATURE_WARNING; } break; case NVME_NUMBER_OF_QUEUES: result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16); trace_pci_nvme_getfeat_numq(result); break; case NVME_INTERRUPT_VECTOR_CONF: iv = dw11 & 0xffff; if (iv >= n->conf_ioqpairs + 1) { return NVME_INVALID_FIELD | NVME_DNR; } result = iv; if (iv == n->admin_cq.vector) { result |= NVME_INTVC_NOCOALESCING; } break; case NVME_FDP_MODE: endgrpid = dw11 & 0xff; if (endgrpid != 0x1) { return NVME_INVALID_FIELD | NVME_DNR; } ret = nvme_get_feature_fdp(n, endgrpid, &result); if (ret) { return ret; } break; case NVME_WRITE_ATOMICITY: result = n->dn; break; default: result = nvme_feature_default[fid]; break; } out: req->cqe.result = cpu_to_le32(result); return ret; } static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) { uint16_t ret; uint64_t timestamp; ret = nvme_h2c(n, (uint8_t *)×tamp, sizeof(timestamp), req); if (ret) { return ret; } nvme_set_timestamp(n, timestamp); return NVME_SUCCESS; } static uint16_t nvme_set_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns, NvmeRequest *req) { NvmeCmd *cmd = &req->cmd; uint32_t cdw11 = le32_to_cpu(cmd->cdw11); uint16_t ph = cdw11 & 0xffff; uint8_t noet = (cdw11 >> 16) & 0xff; uint16_t ret, ruhid; uint8_t enable = le32_to_cpu(cmd->cdw12) & 0x1; uint8_t event_mask = 0; unsigned int i; g_autofree uint8_t *events = g_malloc0(noet); NvmeRuHandle *ruh = NULL; assert(ns); if (!n->subsys || !n->subsys->endgrp.fdp.enabled) { return NVME_FDP_DISABLED | NVME_DNR; } if (!nvme_ph_valid(ns, ph)) { return NVME_INVALID_FIELD | NVME_DNR; } ruhid = ns->fdp.phs[ph]; ruh = &n->subsys->endgrp.fdp.ruhs[ruhid]; ret = nvme_h2c(n, events, noet, req); if (ret) { return ret; } for (i = 0; i < noet; i++) { event_mask |= (1 << nvme_fdp_evf_shifts[events[i]]); } if (enable) { ruh->event_filter |= event_mask; } else { ruh->event_filter = ruh->event_filter & ~event_mask; } return NVME_SUCCESS; } static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req) { NvmeNamespace *ns = NULL; NvmeCmd *cmd = &req->cmd; uint32_t dw10 = le32_to_cpu(cmd->cdw10); uint32_t dw11 = le32_to_cpu(cmd->cdw11); uint32_t nsid = le32_to_cpu(cmd->nsid); uint8_t fid = NVME_GETSETFEAT_FID(dw10); uint8_t save = NVME_SETFEAT_SAVE(dw10); uint16_t status; int i; NvmeIdCtrl *id = &n->id_ctrl; NvmeAtomic *atomic = &n->atomic; trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11); if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) { return NVME_FID_NOT_SAVEABLE | NVME_DNR; } if (!nvme_feature_support[fid]) { return NVME_INVALID_FIELD | NVME_DNR; } if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { if (nsid != NVME_NSID_BROADCAST) { if (!nvme_nsid_valid(n, nsid)) { return NVME_INVALID_NSID | NVME_DNR; } ns = nvme_ns(n, nsid); if (unlikely(!ns)) { return NVME_INVALID_FIELD | NVME_DNR; } } } else if (nsid && nsid != NVME_NSID_BROADCAST) { if (!nvme_nsid_valid(n, nsid)) { return NVME_INVALID_NSID | NVME_DNR; } return NVME_FEAT_NOT_NS_SPEC | NVME_DNR; } if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) { return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; } switch (fid) { case NVME_TEMPERATURE_THRESHOLD: if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { break; } switch (NVME_TEMP_THSEL(dw11)) { case NVME_TEMP_THSEL_OVER: n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11); break; case NVME_TEMP_THSEL_UNDER: n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11); break; default: return NVME_INVALID_FIELD | NVME_DNR; } if ((n->temperature >= n->features.temp_thresh_hi) || (n->temperature <= n->features.temp_thresh_low)) { nvme_smart_event(n, NVME_SMART_TEMPERATURE); } break; case NVME_ERROR_RECOVERY: if (nsid == NVME_NSID_BROADCAST) { for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { ns = nvme_ns(n, i); if (!ns) { continue; } if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) { ns->features.err_rec = dw11; } } break; } assert(ns); if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) { ns->features.err_rec = dw11; } break; case NVME_VOLATILE_WRITE_CACHE: for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { ns = nvme_ns(n, i); if (!ns) { continue; } if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) { blk_flush(ns->blkconf.blk); } blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1); } break; case NVME_NUMBER_OF_QUEUES: if (n->qs_created) { return NVME_CMD_SEQ_ERROR | NVME_DNR; } /* * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR * and NSQR. */ if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) { return NVME_INVALID_FIELD | NVME_DNR; } trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1, ((dw11 >> 16) & 0xffff) + 1, n->conf_ioqpairs, n->conf_ioqpairs); req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16)); break; case NVME_ASYNCHRONOUS_EVENT_CONF: n->features.async_config = dw11; break; case NVME_TIMESTAMP: return nvme_set_feature_timestamp(n, req); case NVME_HOST_BEHAVIOR_SUPPORT: status = nvme_h2c(n, (uint8_t *)&n->features.hbs, sizeof(n->features.hbs), req); if (status) { return status; } for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { ns = nvme_ns(n, i); if (!ns) { continue; } ns->id_ns.nlbaf = ns->nlbaf - 1; if (!n->features.hbs.lbafee) { ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15); } } return status; case NVME_COMMAND_SET_PROFILE: if (dw11 & 0x1ff) { trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff); return NVME_CMD_SET_CMB_REJECTED | NVME_DNR; } break; case NVME_FDP_MODE: /* spec: abort with cmd seq err if there's one or more NS' in endgrp */ return NVME_CMD_SEQ_ERROR | NVME_DNR; case NVME_FDP_EVENTS: return nvme_set_feature_fdp_events(n, ns, req); case NVME_WRITE_ATOMICITY: n->dn = 0x1 & dw11; if (n->dn) { atomic->atomic_max_write_size = le16_to_cpu(id->awupf) + 1; } else { atomic->atomic_max_write_size = le16_to_cpu(id->awun) + 1; } if (atomic->atomic_max_write_size == 1) { atomic->atomic_writes = 0; } else { atomic->atomic_writes = 1; } break; default: return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; } return NVME_SUCCESS; } static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req) { trace_pci_nvme_aer(nvme_cid(req)); if (n->outstanding_aers > n->params.aerl) { trace_pci_nvme_aer_aerl_exceeded(); return NVME_AER_LIMIT_EXCEEDED; } n->aer_reqs[n->outstanding_aers] = req; n->outstanding_aers++; if (!QTAILQ_EMPTY(&n->aer_queue)) { nvme_process_aers(n); } return NVME_NO_COMPLETE; } static void nvme_update_dmrsl(NvmeCtrl *n) { int nsid; for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) { NvmeNamespace *ns = nvme_ns(n, nsid); if (!ns) { continue; } n->dmrsl = MIN_NON_ZERO(n->dmrsl, BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1)); } } static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns) { uint32_t cc = ldl_le_p(&n->bar.cc); ns->iocs = nvme_cse_iocs_none; switch (ns->csi) { case NVME_CSI_NVM: if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) { ns->iocs = nvme_cse_iocs_nvm; } break; case NVME_CSI_ZONED: if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) { ns->iocs = nvme_cse_iocs_zoned; } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) { ns->iocs = nvme_cse_iocs_nvm; } break; } } static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req) { NvmeNamespace *ns; NvmeCtrl *ctrl; uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {}; uint32_t nsid = le32_to_cpu(req->cmd.nsid); uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); uint8_t sel = dw10 & 0xf; uint16_t *nr_ids = &list[0]; uint16_t *ids = &list[1]; uint16_t ret; int i; trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf); if (!nvme_nsid_valid(n, nsid)) { return NVME_INVALID_NSID | NVME_DNR; } ns = nvme_subsys_ns(n->subsys, nsid); if (!ns) { return NVME_INVALID_FIELD | NVME_DNR; } ret = nvme_h2c(n, (uint8_t *)list, 4096, req); if (ret) { return ret; } if (!*nr_ids) { return NVME_NS_CTRL_LIST_INVALID | NVME_DNR; } *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1); for (i = 0; i < *nr_ids; i++) { ctrl = nvme_subsys_ctrl(n->subsys, ids[i]); if (!ctrl) { return NVME_NS_CTRL_LIST_INVALID | NVME_DNR; } switch (sel) { case NVME_NS_ATTACHMENT_ATTACH: if (nvme_ns(ctrl, nsid)) { return NVME_NS_ALREADY_ATTACHED | NVME_DNR; } if (ns->attached && !ns->params.shared) { return NVME_NS_PRIVATE | NVME_DNR; } nvme_attach_ns(ctrl, ns); nvme_select_iocs_ns(ctrl, ns); break; case NVME_NS_ATTACHMENT_DETACH: if (!nvme_ns(ctrl, nsid)) { return NVME_NS_NOT_ATTACHED | NVME_DNR; } ctrl->namespaces[nsid] = NULL; ns->attached--; nvme_update_dmrsl(ctrl); break; default: return NVME_INVALID_FIELD | NVME_DNR; } /* * Add namespace id to the changed namespace id list for event clearing * via Get Log Page command. */ if (!test_and_set_bit(nsid, ctrl->changed_nsids)) { nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE, NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED, NVME_LOG_CHANGED_NSLIST); } } return NVME_SUCCESS; } typedef struct NvmeFormatAIOCB { BlockAIOCB common; BlockAIOCB *aiocb; NvmeRequest *req; int ret; NvmeNamespace *ns; uint32_t nsid; bool broadcast; int64_t offset; uint8_t lbaf; uint8_t mset; uint8_t pi; uint8_t pil; } NvmeFormatAIOCB; static void nvme_format_cancel(BlockAIOCB *aiocb) { NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common); iocb->ret = -ECANCELED; if (iocb->aiocb) { blk_aio_cancel_async(iocb->aiocb); iocb->aiocb = NULL; } } static const AIOCBInfo nvme_format_aiocb_info = { .aiocb_size = sizeof(NvmeFormatAIOCB), .cancel_async = nvme_format_cancel, }; static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset, uint8_t pi, uint8_t pil) { uint8_t lbafl = lbaf & 0xf; uint8_t lbafu = lbaf >> 4; trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil); ns->id_ns.dps = (pil << 3) | pi; ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl; nvme_ns_init_format(ns); } static void nvme_do_format(NvmeFormatAIOCB *iocb); static void nvme_format_ns_cb(void *opaque, int ret) { NvmeFormatAIOCB *iocb = opaque; NvmeNamespace *ns = iocb->ns; int bytes; if (iocb->ret < 0) { goto done; } else if (ret < 0) { iocb->ret = ret; goto done; } assert(ns); if (iocb->offset < ns->size) { bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset); iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset, bytes, BDRV_REQ_MAY_UNMAP, nvme_format_ns_cb, iocb); iocb->offset += bytes; return; } nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil); ns->status = 0x0; iocb->ns = NULL; iocb->offset = 0; done: nvme_do_format(iocb); } static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi) { if (ns->params.zoned) { return NVME_INVALID_FORMAT | NVME_DNR; } if (lbaf > ns->id_ns.nlbaf) { return NVME_INVALID_FORMAT | NVME_DNR; } if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) { return NVME_INVALID_FORMAT | NVME_DNR; } if (pi && pi > NVME_ID_NS_DPS_TYPE_3) { return NVME_INVALID_FIELD | NVME_DNR; } return NVME_SUCCESS; } static void nvme_do_format(NvmeFormatAIOCB *iocb) { NvmeRequest *req = iocb->req; NvmeCtrl *n = nvme_ctrl(req); uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); uint8_t lbaf = dw10 & 0xf; uint8_t pi = (dw10 >> 5) & 0x7; uint16_t status; int i; if (iocb->ret < 0) { goto done; } if (iocb->broadcast) { for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) { iocb->ns = nvme_ns(n, i); if (iocb->ns) { iocb->nsid = i; break; } } } if (!iocb->ns) { goto done; } status = nvme_format_check(iocb->ns, lbaf, pi); if (status) { req->status = status; goto done; } iocb->ns->status = NVME_FORMAT_IN_PROGRESS; nvme_format_ns_cb(iocb, 0); return; done: iocb->common.cb(iocb->common.opaque, iocb->ret); qemu_aio_unref(iocb); } static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req) { NvmeFormatAIOCB *iocb; uint32_t nsid = le32_to_cpu(req->cmd.nsid); uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); uint8_t lbaf = dw10 & 0xf; uint8_t mset = (dw10 >> 4) & 0x1; uint8_t pi = (dw10 >> 5) & 0x7; uint8_t pil = (dw10 >> 8) & 0x1; uint8_t lbafu = (dw10 >> 12) & 0x3; uint16_t status; iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req); iocb->req = req; iocb->ret = 0; iocb->ns = NULL; iocb->nsid = 0; iocb->lbaf = lbaf; iocb->mset = mset; iocb->pi = pi; iocb->pil = pil; iocb->broadcast = (nsid == NVME_NSID_BROADCAST); iocb->offset = 0; if (n->features.hbs.lbafee) { iocb->lbaf |= lbafu << 4; } if (!iocb->broadcast) { if (!nvme_nsid_valid(n, nsid)) { status = NVME_INVALID_NSID | NVME_DNR; goto out; } iocb->ns = nvme_ns(n, nsid); if (!iocb->ns) { status = NVME_INVALID_FIELD | NVME_DNR; goto out; } } req->aiocb = &iocb->common; nvme_do_format(iocb); return NVME_NO_COMPLETE; out: qemu_aio_unref(iocb); return status; } static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total, int *num_prim, int *num_sec) { *num_total = le32_to_cpu(rt ? n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt); *num_prim = le16_to_cpu(rt ? n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap); *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa); } static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req, uint16_t cntlid, uint8_t rt, int nr) { int num_total, num_prim, num_sec; if (cntlid != n->cntlid) { return NVME_INVALID_CTRL_ID | NVME_DNR; } nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec); if (nr > num_total) { return NVME_INVALID_NUM_RESOURCES | NVME_DNR; } if (nr > num_total - num_sec) { return NVME_INVALID_RESOURCE_ID | NVME_DNR; } if (rt) { n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr); } else { n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr); } req->cqe.result = cpu_to_le32(nr); return req->status; } static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl, uint8_t rt, int nr) { int prev_nr, prev_total; if (rt) { prev_nr = le16_to_cpu(sctrl->nvi); prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa); sctrl->nvi = cpu_to_le16(nr); n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr); } else { prev_nr = le16_to_cpu(sctrl->nvq); prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa); sctrl->nvq = cpu_to_le16(nr); n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr); } } static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req, uint16_t cntlid, uint8_t rt, int nr) { int num_total, num_prim, num_sec, num_free, diff, limit; NvmeSecCtrlEntry *sctrl; sctrl = nvme_sctrl_for_cntlid(n, cntlid); if (!sctrl) { return NVME_INVALID_CTRL_ID | NVME_DNR; } if (sctrl->scs) { return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR; } limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm); if (nr > limit) { return NVME_INVALID_NUM_RESOURCES | NVME_DNR; } nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec); num_free = num_total - num_prim - num_sec; diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq); if (diff > num_free) { return NVME_INVALID_RESOURCE_ID | NVME_DNR; } nvme_update_virt_res(n, sctrl, rt, nr); req->cqe.result = cpu_to_le32(nr); return req->status; } static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online) { PCIDevice *pci = PCI_DEVICE(n); NvmeCtrl *sn = NULL; NvmeSecCtrlEntry *sctrl; int vf_index; sctrl = nvme_sctrl_for_cntlid(n, cntlid); if (!sctrl) { return NVME_INVALID_CTRL_ID | NVME_DNR; } if (!pci_is_vf(pci)) { vf_index = le16_to_cpu(sctrl->vfn) - 1; sn = NVME(pcie_sriov_get_vf_at_index(pci, vf_index)); } if (online) { if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) { return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR; } if (!sctrl->scs) { sctrl->scs = 0x1; nvme_ctrl_reset(sn, NVME_RESET_FUNCTION); } } else { nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0); nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0); if (sctrl->scs) { sctrl->scs = 0x0; if (sn) { nvme_ctrl_reset(sn, NVME_RESET_FUNCTION); } } } return NVME_SUCCESS; } static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req) { uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); uint32_t dw11 = le32_to_cpu(req->cmd.cdw11); uint8_t act = dw10 & 0xf; uint8_t rt = (dw10 >> 8) & 0x7; uint16_t cntlid = (dw10 >> 16) & 0xffff; int nr = dw11 & 0xffff; trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr); if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) { return NVME_INVALID_RESOURCE_ID | NVME_DNR; } switch (act) { case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN: return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr); case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC: return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr); case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE: return nvme_virt_set_state(n, cntlid, true); case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE: return nvme_virt_set_state(n, cntlid, false); default: return NVME_INVALID_FIELD | NVME_DNR; } } static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req) { PCIDevice *pci = PCI_DEVICE(n); uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1); uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2); int i; /* Address should be page aligned */ if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) { return NVME_INVALID_FIELD | NVME_DNR; } /* Save shadow buffer base addr for use during queue creation */ n->dbbuf_dbs = dbs_addr; n->dbbuf_eis = eis_addr; n->dbbuf_enabled = true; for (i = 0; i < n->params.max_ioqpairs + 1; i++) { NvmeSQueue *sq = n->sq[i]; NvmeCQueue *cq = n->cq[i]; if (sq) { /* * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3) * nvme_process_db() uses this hard-coded way to calculate * doorbell offsets. Be consistent with that here. */ sq->db_addr = dbs_addr + (i << 3); sq->ei_addr = eis_addr + (i << 3); stl_le_pci_dma(pci, sq->db_addr, sq->tail, MEMTXATTRS_UNSPECIFIED); if (n->params.ioeventfd && sq->sqid != 0) { if (!nvme_init_sq_ioeventfd(sq)) { sq->ioeventfd_enabled = true; } } } if (cq) { /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */ cq->db_addr = dbs_addr + (i << 3) + (1 << 2); cq->ei_addr = eis_addr + (i << 3) + (1 << 2); stl_le_pci_dma(pci, cq->db_addr, cq->head, MEMTXATTRS_UNSPECIFIED); if (n->params.ioeventfd && cq->cqid != 0) { if (!nvme_init_cq_ioeventfd(cq)) { cq->ioeventfd_enabled = true; } } } } trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr); return NVME_SUCCESS; } static uint16_t nvme_directive_send(NvmeCtrl *n, NvmeRequest *req) { return NVME_INVALID_FIELD | NVME_DNR; } static uint16_t nvme_directive_receive(NvmeCtrl *n, NvmeRequest *req) { NvmeNamespace *ns; uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); uint32_t dw11 = le32_to_cpu(req->cmd.cdw11); uint32_t nsid = le32_to_cpu(req->cmd.nsid); uint8_t doper, dtype; uint32_t numd, trans_len; NvmeDirectiveIdentify id = { .supported = 1 << NVME_DIRECTIVE_IDENTIFY, .enabled = 1 << NVME_DIRECTIVE_IDENTIFY, }; numd = dw10 + 1; doper = dw11 & 0xff; dtype = (dw11 >> 8) & 0xff; trans_len = MIN(sizeof(NvmeDirectiveIdentify), numd << 2); if (nsid == NVME_NSID_BROADCAST || dtype != NVME_DIRECTIVE_IDENTIFY || doper != NVME_DIRECTIVE_RETURN_PARAMS) { return NVME_INVALID_FIELD | NVME_DNR; } ns = nvme_ns(n, nsid); if (!ns) { return NVME_INVALID_FIELD | NVME_DNR; } switch (dtype) { case NVME_DIRECTIVE_IDENTIFY: switch (doper) { case NVME_DIRECTIVE_RETURN_PARAMS: if (ns->endgrp && ns->endgrp->fdp.enabled) { id.supported |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT; id.enabled |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT; id.persistent |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT; } return nvme_c2h(n, (uint8_t *)&id, trans_len, req); default: return NVME_INVALID_FIELD | NVME_DNR; } default: return NVME_INVALID_FIELD; } } static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req) { trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode, nvme_adm_opc_str(req->cmd.opcode)); if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) { trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode); return NVME_INVALID_OPCODE | NVME_DNR; } /* SGLs shall not be used for Admin commands in NVMe over PCIe */ if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) { return NVME_INVALID_FIELD | NVME_DNR; } if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) { return NVME_INVALID_FIELD; } switch (req->cmd.opcode) { case NVME_ADM_CMD_DELETE_SQ: return nvme_del_sq(n, req); case NVME_ADM_CMD_CREATE_SQ: return nvme_create_sq(n, req); case NVME_ADM_CMD_GET_LOG_PAGE: return nvme_get_log(n, req); case NVME_ADM_CMD_DELETE_CQ: return nvme_del_cq(n, req); case NVME_ADM_CMD_CREATE_CQ: return nvme_create_cq(n, req); case NVME_ADM_CMD_IDENTIFY: return nvme_identify(n, req); case NVME_ADM_CMD_ABORT: return nvme_abort(n, req); case NVME_ADM_CMD_SET_FEATURES: return nvme_set_feature(n, req); case NVME_ADM_CMD_GET_FEATURES: return nvme_get_feature(n, req); case NVME_ADM_CMD_ASYNC_EV_REQ: return nvme_aer(n, req); case NVME_ADM_CMD_NS_ATTACHMENT: return nvme_ns_attachment(n, req); case NVME_ADM_CMD_VIRT_MNGMT: return nvme_virt_mngmt(n, req); case NVME_ADM_CMD_DBBUF_CONFIG: return nvme_dbbuf_config(n, req); case NVME_ADM_CMD_FORMAT_NVM: return nvme_format(n, req); case NVME_ADM_CMD_DIRECTIVE_SEND: return nvme_directive_send(n, req); case NVME_ADM_CMD_DIRECTIVE_RECV: return nvme_directive_receive(n, req); default: g_assert_not_reached(); } return NVME_INVALID_OPCODE | NVME_DNR; } static void nvme_update_sq_eventidx(const NvmeSQueue *sq) { trace_pci_nvme_update_sq_eventidx(sq->sqid, sq->tail); stl_le_pci_dma(PCI_DEVICE(sq->ctrl), sq->ei_addr, sq->tail, MEMTXATTRS_UNSPECIFIED); } static void nvme_update_sq_tail(NvmeSQueue *sq) { ldl_le_pci_dma(PCI_DEVICE(sq->ctrl), sq->db_addr, &sq->tail, MEMTXATTRS_UNSPECIFIED); trace_pci_nvme_update_sq_tail(sq->sqid, sq->tail); } #define NVME_ATOMIC_NO_START 0 #define NVME_ATOMIC_START_ATOMIC 1 #define NVME_ATOMIC_START_NONATOMIC 2 static int nvme_atomic_write_check(NvmeCtrl *n, NvmeCmd *cmd, NvmeAtomic *atomic) { NvmeRwCmd *rw = (NvmeRwCmd *)cmd; uint64_t slba = le64_to_cpu(rw->slba); uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb); uint64_t elba = slba + nlb; bool cmd_atomic_wr = true; int i; if ((cmd->opcode == NVME_CMD_READ) || ((cmd->opcode == NVME_CMD_WRITE) && ((rw->nlb + 1) > atomic->atomic_max_write_size))) { cmd_atomic_wr = false; } /* * Walk the queues to see if there are any atomic conflicts. */ for (i = 1; i < n->params.max_ioqpairs + 1; i++) { NvmeSQueue *sq; NvmeRequest *req; NvmeRwCmd *req_rw; uint64_t req_slba; uint32_t req_nlb; uint64_t req_elba; sq = n->sq[i]; if (!sq) { continue; } /* * Walk all the requests on a given queue. */ QTAILQ_FOREACH(req, &sq->out_req_list, entry) { req_rw = (NvmeRwCmd *)&req->cmd; if (((req_rw->opcode == NVME_CMD_WRITE) || (req_rw->opcode == NVME_CMD_READ)) && (cmd->nsid == req->ns->params.nsid)) { req_slba = le64_to_cpu(req_rw->slba); req_nlb = (uint32_t)le16_to_cpu(req_rw->nlb); req_elba = req_slba + req_nlb; if (cmd_atomic_wr) { if ((elba >= req_slba) && (slba <= req_elba)) { return NVME_ATOMIC_NO_START; } } else { if (req->atomic_write && ((elba >= req_slba) && (slba <= req_elba))) { return NVME_ATOMIC_NO_START; } } } } } if (cmd_atomic_wr) { return NVME_ATOMIC_START_ATOMIC; } return NVME_ATOMIC_START_NONATOMIC; } static NvmeAtomic *nvme_get_atomic(NvmeCtrl *n, NvmeCmd *cmd) { if (n->atomic.atomic_writes) { return &n->atomic; } return NULL; } static void nvme_process_sq(void *opaque) { NvmeSQueue *sq = opaque; NvmeCtrl *n = sq->ctrl; NvmeCQueue *cq = n->cq[sq->cqid]; uint16_t status; hwaddr addr; NvmeCmd cmd; NvmeRequest *req; if (n->dbbuf_enabled) { nvme_update_sq_tail(sq); } while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) { NvmeAtomic *atomic; bool cmd_is_atomic; addr = sq->dma_addr + (sq->head << NVME_SQES); if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) { trace_pci_nvme_err_addr_read(addr); trace_pci_nvme_err_cfs(); stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); break; } atomic = nvme_get_atomic(n, &cmd); cmd_is_atomic = false; if (sq->sqid && atomic) { int ret; ret = nvme_atomic_write_check(n, &cmd, atomic); switch (ret) { case NVME_ATOMIC_NO_START: qemu_bh_schedule(sq->bh); return; case NVME_ATOMIC_START_ATOMIC: cmd_is_atomic = true; break; case NVME_ATOMIC_START_NONATOMIC: default: break; } } nvme_inc_sq_head(sq); req = QTAILQ_FIRST(&sq->req_list); QTAILQ_REMOVE(&sq->req_list, req, entry); QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry); nvme_req_clear(req); req->cqe.cid = cmd.cid; memcpy(&req->cmd, &cmd, sizeof(NvmeCmd)); if (sq->sqid && atomic) { req->atomic_write = cmd_is_atomic; } status = sq->sqid ? nvme_io_cmd(n, req) : nvme_admin_cmd(n, req); if (status != NVME_NO_COMPLETE) { req->status = status; nvme_enqueue_req_completion(cq, req); } if (n->dbbuf_enabled) { nvme_update_sq_eventidx(sq); nvme_update_sq_tail(sq); } } } static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size) { uint8_t *config; if (!msix_present(pci_dev)) { return; } assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr); config = pci_dev->config + pci_dev->msix_cap; pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE, table_size - 1); } static void nvme_activate_virt_res(NvmeCtrl *n) { PCIDevice *pci_dev = PCI_DEVICE(n); NvmePriCtrlCap *cap = &n->pri_ctrl_cap; NvmeSecCtrlEntry *sctrl; /* -1 to account for the admin queue */ if (pci_is_vf(pci_dev)) { sctrl = nvme_sctrl(n); cap->vqprt = sctrl->nvq; cap->viprt = sctrl->nvi; n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0; n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1; } else { cap->vqrfap = n->next_pri_ctrl_cap.vqrfap; cap->virfap = n->next_pri_ctrl_cap.virfap; n->conf_ioqpairs = le16_to_cpu(cap->vqprt) + le16_to_cpu(cap->vqrfap) - 1; n->conf_msix_qsize = le16_to_cpu(cap->viprt) + le16_to_cpu(cap->virfap); } } static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst) { PCIDevice *pci_dev = PCI_DEVICE(n); NvmeSecCtrlEntry *sctrl; NvmeNamespace *ns; int i; for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { ns = nvme_ns(n, i); if (!ns) { continue; } nvme_ns_drain(ns); } for (i = 0; i < n->params.max_ioqpairs + 1; i++) { if (n->sq[i] != NULL) { nvme_free_sq(n->sq[i], n); } } for (i = 0; i < n->params.max_ioqpairs + 1; i++) { if (n->cq[i] != NULL) { nvme_free_cq(n->cq[i], n); } } while (!QTAILQ_EMPTY(&n->aer_queue)) { NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue); QTAILQ_REMOVE(&n->aer_queue, event, entry); g_free(event); } if (n->params.sriov_max_vfs) { if (!pci_is_vf(pci_dev)) { for (i = 0; i < n->nr_sec_ctrls; i++) { sctrl = &n->sec_ctrl_list[i]; nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false); } } if (rst != NVME_RESET_CONTROLLER) { nvme_activate_virt_res(n); } } n->aer_queued = 0; n->aer_mask = 0; n->outstanding_aers = 0; n->qs_created = false; n->dn = n->params.atomic_dn; /* Set Disable Normal */ nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize); if (pci_is_vf(pci_dev)) { sctrl = nvme_sctrl(n); stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED); } else { stl_le_p(&n->bar.csts, 0); } stl_le_p(&n->bar.intms, 0); stl_le_p(&n->bar.intmc, 0); stl_le_p(&n->bar.cc, 0); n->dbbuf_dbs = 0; n->dbbuf_eis = 0; n->dbbuf_enabled = false; } static void nvme_ctrl_shutdown(NvmeCtrl *n) { NvmeNamespace *ns; int i; if (n->pmr.dev) { memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size); } for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { ns = nvme_ns(n, i); if (!ns) { continue; } nvme_ns_shutdown(ns); } } static void nvme_select_iocs(NvmeCtrl *n) { NvmeNamespace *ns; int i; for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { ns = nvme_ns(n, i); if (!ns) { continue; } nvme_select_iocs_ns(n, ns); } } static int nvme_start_ctrl(NvmeCtrl *n) { uint64_t cap = ldq_le_p(&n->bar.cap); uint32_t cc = ldl_le_p(&n->bar.cc); uint32_t aqa = ldl_le_p(&n->bar.aqa); uint64_t asq = ldq_le_p(&n->bar.asq); uint64_t acq = ldq_le_p(&n->bar.acq); uint32_t page_bits = NVME_CC_MPS(cc) + 12; uint32_t page_size = 1 << page_bits; NvmeSecCtrlEntry *sctrl = nvme_sctrl(n); if (pci_is_vf(PCI_DEVICE(n)) && !sctrl->scs) { trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi), le16_to_cpu(sctrl->nvq)); return -1; } if (unlikely(n->cq[0])) { trace_pci_nvme_err_startfail_cq(); return -1; } if (unlikely(n->sq[0])) { trace_pci_nvme_err_startfail_sq(); return -1; } if (unlikely(asq & (page_size - 1))) { trace_pci_nvme_err_startfail_asq_misaligned(asq); return -1; } if (unlikely(acq & (page_size - 1))) { trace_pci_nvme_err_startfail_acq_misaligned(acq); return -1; } if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) { trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc)); return -1; } if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) { trace_pci_nvme_err_startfail_page_too_small( NVME_CC_MPS(cc), NVME_CAP_MPSMIN(cap)); return -1; } if (unlikely(NVME_CC_MPS(cc) > NVME_CAP_MPSMAX(cap))) { trace_pci_nvme_err_startfail_page_too_large( NVME_CC_MPS(cc), NVME_CAP_MPSMAX(cap)); return -1; } if (unlikely(!NVME_AQA_ASQS(aqa))) { trace_pci_nvme_err_startfail_asqent_sz_zero(); return -1; } if (unlikely(!NVME_AQA_ACQS(aqa))) { trace_pci_nvme_err_startfail_acqent_sz_zero(); return -1; } n->page_bits = page_bits; n->page_size = page_size; n->max_prp_ents = n->page_size / sizeof(uint64_t); nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1); nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1); nvme_set_timestamp(n, 0ULL); nvme_select_iocs(n); return 0; } static void nvme_cmb_enable_regs(NvmeCtrl *n) { uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc); uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz); NVME_CMBLOC_SET_CDPCILS(cmbloc, 1); NVME_CMBLOC_SET_CDPMLS(cmbloc, 1); NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR); stl_le_p(&n->bar.cmbloc, cmbloc); NVME_CMBSZ_SET_SQS(cmbsz, 1); NVME_CMBSZ_SET_CQS(cmbsz, 0); NVME_CMBSZ_SET_LISTS(cmbsz, 1); NVME_CMBSZ_SET_RDS(cmbsz, 1); NVME_CMBSZ_SET_WDS(cmbsz, 1); NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */ NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb); stl_le_p(&n->bar.cmbsz, cmbsz); } static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data, unsigned size) { PCIDevice *pci = PCI_DEVICE(n); uint64_t cap = ldq_le_p(&n->bar.cap); uint32_t cc = ldl_le_p(&n->bar.cc); uint32_t intms = ldl_le_p(&n->bar.intms); uint32_t csts = ldl_le_p(&n->bar.csts); uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts); if (unlikely(offset & (sizeof(uint32_t) - 1))) { NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32, "MMIO write not 32-bit aligned," " offset=0x%"PRIx64"", offset); /* should be ignored, fall through for now */ } if (unlikely(size < sizeof(uint32_t))) { NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall, "MMIO write smaller than 32-bits," " offset=0x%"PRIx64", size=%u", offset, size); /* should be ignored, fall through for now */ } switch (offset) { case NVME_REG_INTMS: if (unlikely(msix_enabled(pci))) { NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, "undefined access to interrupt mask set" " when MSI-X is enabled"); /* should be ignored, fall through for now */ } intms |= data; stl_le_p(&n->bar.intms, intms); n->bar.intmc = n->bar.intms; trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms); nvme_irq_check(n); break; case NVME_REG_INTMC: if (unlikely(msix_enabled(pci))) { NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, "undefined access to interrupt mask clr" " when MSI-X is enabled"); /* should be ignored, fall through for now */ } intms &= ~data; stl_le_p(&n->bar.intms, intms); n->bar.intmc = n->bar.intms; trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms); nvme_irq_check(n); break; case NVME_REG_CC: stl_le_p(&n->bar.cc, data); trace_pci_nvme_mmio_cfg(data & 0xffffffff); if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) { trace_pci_nvme_mmio_shutdown_set(); nvme_ctrl_shutdown(n); csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT); csts |= NVME_CSTS_SHST_COMPLETE; } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) { trace_pci_nvme_mmio_shutdown_cleared(); csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT); } if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) { if (unlikely(nvme_start_ctrl(n))) { trace_pci_nvme_err_startfail(); csts = NVME_CSTS_FAILED; } else { trace_pci_nvme_mmio_start_success(); csts = NVME_CSTS_READY; } } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) { trace_pci_nvme_mmio_stopped(); nvme_ctrl_reset(n, NVME_RESET_CONTROLLER); break; } stl_le_p(&n->bar.csts, csts); break; case NVME_REG_CSTS: if (data & (1 << 4)) { NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported, "attempted to W1C CSTS.NSSRO" " but CAP.NSSRS is zero (not supported)"); } else if (data != 0) { NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts, "attempted to set a read only bit" " of controller status"); } break; case NVME_REG_NSSR: if (data == 0x4e564d65) { trace_pci_nvme_ub_mmiowr_ssreset_unsupported(); } else { /* The spec says that writes of other values have no effect */ return; } break; case NVME_REG_AQA: stl_le_p(&n->bar.aqa, data); trace_pci_nvme_mmio_aqattr(data & 0xffffffff); break; case NVME_REG_ASQ: stn_le_p(&n->bar.asq, size, data); trace_pci_nvme_mmio_asqaddr(data); break; case NVME_REG_ASQ + 4: stl_le_p((uint8_t *)&n->bar.asq + 4, data); trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq)); break; case NVME_REG_ACQ: trace_pci_nvme_mmio_acqaddr(data); stn_le_p(&n->bar.acq, size, data); break; case NVME_REG_ACQ + 4: stl_le_p((uint8_t *)&n->bar.acq + 4, data); trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq)); break; case NVME_REG_CMBLOC: NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved, "invalid write to reserved CMBLOC" " when CMBSZ is zero, ignored"); return; case NVME_REG_CMBSZ: NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly, "invalid write to read only CMBSZ, ignored"); return; case NVME_REG_CMBMSC: if (!NVME_CAP_CMBS(cap)) { return; } stn_le_p(&n->bar.cmbmsc, size, data); n->cmb.cmse = false; if (NVME_CMBMSC_CRE(data)) { nvme_cmb_enable_regs(n); if (NVME_CMBMSC_CMSE(data)) { uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc); hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT; if (cba + int128_get64(n->cmb.mem.size) < cba) { uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts); NVME_CMBSTS_SET_CBAI(cmbsts, 1); stl_le_p(&n->bar.cmbsts, cmbsts); return; } n->cmb.cba = cba; n->cmb.cmse = true; } } else { n->bar.cmbsz = 0; n->bar.cmbloc = 0; } return; case NVME_REG_CMBMSC + 4: stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data); return; case NVME_REG_PMRCAP: NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly, "invalid write to PMRCAP register, ignored"); return; case NVME_REG_PMRCTL: if (!NVME_CAP_PMRS(cap)) { return; } stl_le_p(&n->bar.pmrctl, data); if (NVME_PMRCTL_EN(data)) { memory_region_set_enabled(&n->pmr.dev->mr, true); pmrsts = 0; } else { memory_region_set_enabled(&n->pmr.dev->mr, false); NVME_PMRSTS_SET_NRDY(pmrsts, 1); n->pmr.cmse = false; } stl_le_p(&n->bar.pmrsts, pmrsts); return; case NVME_REG_PMRSTS: NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly, "invalid write to PMRSTS register, ignored"); return; case NVME_REG_PMREBS: NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly, "invalid write to PMREBS register, ignored"); return; case NVME_REG_PMRSWTP: NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly, "invalid write to PMRSWTP register, ignored"); return; case NVME_REG_PMRMSCL: if (!NVME_CAP_PMRS(cap)) { return; } stl_le_p(&n->bar.pmrmscl, data); n->pmr.cmse = false; if (NVME_PMRMSCL_CMSE(data)) { uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu); hwaddr cba = pmrmscu << 32 | (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT); if (cba + int128_get64(n->pmr.dev->mr.size) < cba) { NVME_PMRSTS_SET_CBAI(pmrsts, 1); stl_le_p(&n->bar.pmrsts, pmrsts); return; } n->pmr.cmse = true; n->pmr.cba = cba; } return; case NVME_REG_PMRMSCU: if (!NVME_CAP_PMRS(cap)) { return; } stl_le_p(&n->bar.pmrmscu, data); return; default: NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid, "invalid MMIO write," " offset=0x%"PRIx64", data=%"PRIx64"", offset, data); break; } } static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size) { NvmeCtrl *n = (NvmeCtrl *)opaque; uint8_t *ptr = (uint8_t *)&n->bar; trace_pci_nvme_mmio_read(addr, size); if (unlikely(addr & (sizeof(uint32_t) - 1))) { NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32, "MMIO read not 32-bit aligned," " offset=0x%"PRIx64"", addr); /* should RAZ, fall through for now */ } else if (unlikely(size < sizeof(uint32_t))) { NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall, "MMIO read smaller than 32-bits," " offset=0x%"PRIx64"", addr); /* should RAZ, fall through for now */ } if (addr > sizeof(n->bar) - size) { NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs, "MMIO read beyond last register," " offset=0x%"PRIx64", returning 0", addr); return 0; } if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs && addr != NVME_REG_CSTS) { trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size); return 0; } /* * When PMRWBM bit 1 is set then read from * from PMRSTS should ensure prior writes * made it to persistent media */ if (addr == NVME_REG_PMRSTS && (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) { memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size); } return ldn_le_p(ptr + addr, size); } static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val) { PCIDevice *pci = PCI_DEVICE(n); uint32_t qid; if (unlikely(addr & ((1 << 2) - 1))) { NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned, "doorbell write not 32-bit aligned," " offset=0x%"PRIx64", ignoring", addr); return; } if (((addr - 0x1000) >> 2) & 1) { /* Completion queue doorbell write */ uint16_t new_head = val & 0xffff; NvmeCQueue *cq; qid = (addr - (0x1000 + (1 << 2))) >> 3; if (unlikely(nvme_check_cqid(n, qid))) { NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq, "completion queue doorbell write" " for nonexistent queue," " sqid=%"PRIu32", ignoring", qid); /* * NVM Express v1.3d, Section 4.1 state: "If host software writes * an invalid value to the Submission Queue Tail Doorbell or * Completion Queue Head Doorbell register and an Asynchronous Event * Request command is outstanding, then an asynchronous event is * posted to the Admin Completion Queue with a status code of * Invalid Doorbell Write Value." * * Also note that the spec includes the "Invalid Doorbell Register" * status code, but nowhere does it specify when to use it. * However, it seems reasonable to use it here in a similar * fashion. */ if (n->outstanding_aers) { nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, NVME_AER_INFO_ERR_INVALID_DB_REGISTER, NVME_LOG_ERROR_INFO); } return; } cq = n->cq[qid]; if (unlikely(new_head >= cq->size)) { NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead, "completion queue doorbell write value" " beyond queue size, sqid=%"PRIu32"," " new_head=%"PRIu16", ignoring", qid, new_head); if (n->outstanding_aers) { nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, NVME_AER_INFO_ERR_INVALID_DB_VALUE, NVME_LOG_ERROR_INFO); } return; } trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head); /* scheduled deferred cqe posting if queue was previously full */ if (nvme_cq_full(cq)) { qemu_bh_schedule(cq->bh); } cq->head = new_head; if (!qid && n->dbbuf_enabled) { stl_le_pci_dma(pci, cq->db_addr, cq->head, MEMTXATTRS_UNSPECIFIED); } if (cq->tail == cq->head) { if (cq->irq_enabled) { n->cq_pending--; } nvme_irq_deassert(n, cq); } } else { /* Submission queue doorbell write */ uint16_t new_tail = val & 0xffff; NvmeSQueue *sq; qid = (addr - 0x1000) >> 3; if (unlikely(nvme_check_sqid(n, qid))) { NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq, "submission queue doorbell write" " for nonexistent queue," " sqid=%"PRIu32", ignoring", qid); if (n->outstanding_aers) { nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, NVME_AER_INFO_ERR_INVALID_DB_REGISTER, NVME_LOG_ERROR_INFO); } return; } sq = n->sq[qid]; if (unlikely(new_tail >= sq->size)) { NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail, "submission queue doorbell write value" " beyond queue size, sqid=%"PRIu32"," " new_tail=%"PRIu16", ignoring", qid, new_tail); if (n->outstanding_aers) { nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, NVME_AER_INFO_ERR_INVALID_DB_VALUE, NVME_LOG_ERROR_INFO); } return; } trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail); sq->tail = new_tail; if (!qid && n->dbbuf_enabled) { /* * The spec states "the host shall also update the controller's * corresponding doorbell property to match the value of that entry * in the Shadow Doorbell buffer." * * Since this context is currently a VM trap, we can safely enforce * the requirement from the device side in case the host is * misbehaving. * * Note, we shouldn't have to do this, but various drivers * including ones that run on Linux, are not updating Admin Queues, * so we can't trust reading it for an appropriate sq tail. */ stl_le_pci_dma(pci, sq->db_addr, sq->tail, MEMTXATTRS_UNSPECIFIED); } qemu_bh_schedule(sq->bh); } } static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { NvmeCtrl *n = (NvmeCtrl *)opaque; trace_pci_nvme_mmio_write(addr, data, size); if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs && addr != NVME_REG_CSTS) { trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size); return; } if (addr < sizeof(n->bar)) { nvme_write_bar(n, addr, data, size); } else { nvme_process_db(n, addr, data); } } static const MemoryRegionOps nvme_mmio_ops = { .read = nvme_mmio_read, .write = nvme_mmio_write, .endianness = DEVICE_LITTLE_ENDIAN, .impl = { .min_access_size = 2, .max_access_size = 8, }, }; static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { NvmeCtrl *n = (NvmeCtrl *)opaque; stn_le_p(&n->cmb.buf[addr], size, data); } static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size) { NvmeCtrl *n = (NvmeCtrl *)opaque; return ldn_le_p(&n->cmb.buf[addr], size); } static const MemoryRegionOps nvme_cmb_ops = { .read = nvme_cmb_read, .write = nvme_cmb_write, .endianness = DEVICE_LITTLE_ENDIAN, .impl = { .min_access_size = 1, .max_access_size = 8, }, }; static bool nvme_check_params(NvmeCtrl *n, Error **errp) { NvmeParams *params = &n->params; if (params->num_queues) { warn_report("num_queues is deprecated; please use max_ioqpairs " "instead"); params->max_ioqpairs = params->num_queues - 1; } if (n->namespace.blkconf.blk && n->subsys) { error_setg(errp, "subsystem support is unavailable with legacy " "namespace ('drive' property)"); return false; } if (params->max_ioqpairs < 1 || params->max_ioqpairs > NVME_MAX_IOQPAIRS) { error_setg(errp, "max_ioqpairs must be between 1 and %d", NVME_MAX_IOQPAIRS); return false; } if (params->msix_qsize < 1 || params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) { error_setg(errp, "msix_qsize must be between 1 and %d", PCI_MSIX_FLAGS_QSIZE + 1); return false; } if (!params->serial) { error_setg(errp, "serial property not set"); return false; } if (params->mqes < 1) { error_setg(errp, "mqes property cannot be less than 1"); return false; } if (n->pmr.dev) { if (params->msix_exclusive_bar) { error_setg(errp, "not enough BARs available to enable PMR"); return false; } if (host_memory_backend_is_mapped(n->pmr.dev)) { error_setg(errp, "can't use already busy memdev: %s", object_get_canonical_path_component(OBJECT(n->pmr.dev))); return false; } if (!is_power_of_2(n->pmr.dev->size)) { error_setg(errp, "pmr backend size needs to be power of 2 in size"); return false; } host_memory_backend_set_mapped(n->pmr.dev, true); } if (n->params.zasl > n->params.mdts) { error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less " "than or equal to mdts (Maximum Data Transfer Size)"); return false; } if (!n->params.vsl) { error_setg(errp, "vsl must be non-zero"); return false; } if (params->sriov_max_vfs) { if (!n->subsys) { error_setg(errp, "subsystem is required for the use of SR-IOV"); return false; } if (params->cmb_size_mb) { error_setg(errp, "CMB is not supported with SR-IOV"); return false; } if (n->pmr.dev) { error_setg(errp, "PMR is not supported with SR-IOV"); return false; } if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) { error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible" " must be set for the use of SR-IOV"); return false; } if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) { error_setg(errp, "sriov_vq_flexible must be greater than or equal" " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2); return false; } if (params->max_ioqpairs < params->sriov_vq_flexible + 2) { error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be" " greater than or equal to 2"); return false; } if (params->sriov_vi_flexible < params->sriov_max_vfs) { error_setg(errp, "sriov_vi_flexible must be greater than or equal" " to %d (sriov_max_vfs)", params->sriov_max_vfs); return false; } if (params->msix_qsize < params->sriov_vi_flexible + 1) { error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be" " greater than or equal to 1"); return false; } if (params->sriov_max_vi_per_vf && (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) { error_setg(errp, "sriov_max_vi_per_vf must meet:" " (sriov_max_vi_per_vf - 1) %% %d == 0 and" " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY); return false; } if (params->sriov_max_vq_per_vf && (params->sriov_max_vq_per_vf < 2 || (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) { error_setg(errp, "sriov_max_vq_per_vf must meet:" " (sriov_max_vq_per_vf - 1) %% %d == 0 and" " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY); return false; } } return true; } static void nvme_init_state(NvmeCtrl *n) { NvmePriCtrlCap *cap = &n->pri_ctrl_cap; NvmeSecCtrlEntry *list = n->sec_ctrl_list; NvmeSecCtrlEntry *sctrl; PCIDevice *pci = PCI_DEVICE(n); NvmeAtomic *atomic = &n->atomic; NvmeIdCtrl *id = &n->id_ctrl; uint8_t max_vfs; int i; if (pci_is_vf(pci)) { sctrl = nvme_sctrl(n); max_vfs = 0; n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0; n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1; } else { max_vfs = n->params.sriov_max_vfs; n->conf_ioqpairs = n->params.max_ioqpairs; n->conf_msix_qsize = n->params.msix_qsize; } n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1); n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1); n->temperature = NVME_TEMPERATURE; n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING; n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1); QTAILQ_INIT(&n->aer_queue); n->nr_sec_ctrls = max_vfs; for (i = 0; i < max_vfs; i++) { sctrl = &list[i]; sctrl->pcid = cpu_to_le16(n->cntlid); sctrl->vfn = cpu_to_le16(i + 1); } cap->cntlid = cpu_to_le16(n->cntlid); cap->crt = NVME_CRT_VQ | NVME_CRT_VI; if (pci_is_vf(pci)) { cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs); } else { cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs - n->params.sriov_vq_flexible); cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible); cap->vqrfap = cap->vqfrt; cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY); cap->vqfrsm = n->params.sriov_max_vq_per_vf ? cpu_to_le16(n->params.sriov_max_vq_per_vf) : cap->vqfrt / MAX(max_vfs, 1); } if (pci_is_vf(pci)) { cap->viprt = cpu_to_le16(n->conf_msix_qsize); } else { cap->viprt = cpu_to_le16(n->params.msix_qsize - n->params.sriov_vi_flexible); cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible); cap->virfap = cap->vifrt; cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY); cap->vifrsm = n->params.sriov_max_vi_per_vf ? cpu_to_le16(n->params.sriov_max_vi_per_vf) : cap->vifrt / MAX(max_vfs, 1); } /* Atomic Write */ id->awun = cpu_to_le16(n->params.atomic_awun); id->awupf = cpu_to_le16(n->params.atomic_awupf); n->dn = n->params.atomic_dn; if (id->awun || id->awupf) { if (id->awupf > id->awun) { id->awupf = 0; } if (n->dn) { atomic->atomic_max_write_size = id->awupf + 1; } else { atomic->atomic_max_write_size = id->awun + 1; } if (atomic->atomic_max_write_size == 1) { atomic->atomic_writes = 0; } else { atomic->atomic_writes = 1; } } } static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev) { uint64_t cmb_size = n->params.cmb_size_mb * MiB; uint64_t cap = ldq_le_p(&n->bar.cap); n->cmb.buf = g_malloc0(cmb_size); memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n, "nvme-cmb", cmb_size); pci_register_bar(pci_dev, NVME_CMB_BIR, PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 | PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem); NVME_CAP_SET_CMBS(cap, 1); stq_le_p(&n->bar.cap, cap); if (n->params.legacy_cmb) { nvme_cmb_enable_regs(n); n->cmb.cmse = true; } } static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev) { uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap); NVME_PMRCAP_SET_RDS(pmrcap, 1); NVME_PMRCAP_SET_WDS(pmrcap, 1); NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR); /* Turn on bit 1 support */ NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02); NVME_PMRCAP_SET_CMSS(pmrcap, 1); stl_le_p(&n->bar.pmrcap, pmrcap); pci_register_bar(pci_dev, NVME_PMR_BIR, PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 | PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr); memory_region_set_enabled(&n->pmr.dev->mr, false); } static uint64_t nvme_mbar_size(unsigned total_queues, unsigned total_irqs, unsigned *msix_table_offset, unsigned *msix_pba_offset) { uint64_t bar_size, msix_table_size; bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE; if (total_irqs == 0) { goto out; } bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB); if (msix_table_offset) { *msix_table_offset = bar_size; } msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs; bar_size += msix_table_size; bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB); if (msix_pba_offset) { *msix_pba_offset = bar_size; } bar_size += QEMU_ALIGN_UP(total_irqs, 64) / 8; out: return pow2ceil(bar_size); } static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset) { uint16_t vf_dev_id = n->params.use_intel_id ? PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME; NvmePriCtrlCap *cap = &n->pri_ctrl_cap; uint64_t bar_size = nvme_mbar_size(le16_to_cpu(cap->vqfrsm), le16_to_cpu(cap->vifrsm), NULL, NULL); pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id, n->params.sriov_max_vfs, n->params.sriov_max_vfs, NVME_VF_OFFSET, NVME_VF_STRIDE); pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size); } static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset) { Error *err = NULL; int ret; ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset, PCI_PM_SIZEOF, &err); if (err) { error_report_err(err); return ret; } pci_set_word(pci_dev->config + offset + PCI_PM_PMC, PCI_PM_CAP_VER_1_2); pci_set_word(pci_dev->config + offset + PCI_PM_CTRL, PCI_PM_CTRL_NO_SOFT_RESET); pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL, PCI_PM_CTRL_STATE_MASK); return 0; } static bool pcie_doe_spdm_rsp(DOECap *doe_cap) { void *req = pcie_doe_get_write_mbox_ptr(doe_cap); uint32_t req_len = pcie_doe_get_obj_len(req) * 4; void *rsp = doe_cap->read_mbox; uint32_t rsp_len = SPDM_SOCKET_MAX_MESSAGE_BUFFER_SIZE; uint32_t recvd = spdm_socket_rsp(doe_cap->spdm_socket, SPDM_SOCKET_TRANSPORT_TYPE_PCI_DOE, req, req_len, rsp, rsp_len); doe_cap->read_mbox_len += DIV_ROUND_UP(recvd, 4); return recvd != 0; } static DOEProtocol doe_spdm_prot[] = { { PCI_VENDOR_ID_PCI_SIG, PCI_SIG_DOE_CMA, pcie_doe_spdm_rsp }, { PCI_VENDOR_ID_PCI_SIG, PCI_SIG_DOE_SECURED_CMA, pcie_doe_spdm_rsp }, { } }; static bool nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp) { ERRP_GUARD(); uint8_t *pci_conf = pci_dev->config; uint64_t bar_size; unsigned msix_table_offset = 0, msix_pba_offset = 0; unsigned nr_vectors; int ret; pci_conf[PCI_INTERRUPT_PIN] = pci_is_vf(pci_dev) ? 0 : 1; pci_config_set_prog_interface(pci_conf, 0x2); if (n->params.use_intel_id) { pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL); pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME); } else { pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT); pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME); } pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS); nvme_add_pm_capability(pci_dev, 0x60); pcie_endpoint_cap_init(pci_dev, 0x80); pcie_cap_flr_init(pci_dev); if (n->params.sriov_max_vfs) { pcie_ari_init(pci_dev, 0x100); } if (n->params.msix_exclusive_bar && !pci_is_vf(pci_dev)) { bar_size = nvme_mbar_size(n->params.max_ioqpairs + 1, 0, NULL, NULL); memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme", bar_size); pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64, &n->iomem); ret = msix_init_exclusive_bar(pci_dev, n->params.msix_qsize, 4, errp); } else { assert(n->params.msix_qsize >= 1); /* add one to max_ioqpairs to account for the admin queue pair */ if (!pci_is_vf(pci_dev)) { nr_vectors = n->params.msix_qsize; bar_size = nvme_mbar_size(n->params.max_ioqpairs + 1, nr_vectors, &msix_table_offset, &msix_pba_offset); } else { NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev)); NvmePriCtrlCap *cap = &pn->pri_ctrl_cap; nr_vectors = le16_to_cpu(cap->vifrsm); bar_size = nvme_mbar_size(le16_to_cpu(cap->vqfrsm), nr_vectors, &msix_table_offset, &msix_pba_offset); } memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size); memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme", msix_table_offset); memory_region_add_subregion(&n->bar0, 0, &n->iomem); if (pci_is_vf(pci_dev)) { pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0); } else { pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0); } ret = msix_init(pci_dev, nr_vectors, &n->bar0, 0, msix_table_offset, &n->bar0, 0, msix_pba_offset, 0, errp); } if (ret == -ENOTSUP) { /* report that msix is not supported, but do not error out */ warn_report_err(*errp); *errp = NULL; } else if (ret < 0) { /* propagate error to caller */ return false; } nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize); pcie_cap_deverr_init(pci_dev); /* DOE Initialisation */ if (pci_dev->spdm_port) { uint16_t doe_offset = n->params.sriov_max_vfs ? PCI_CONFIG_SPACE_SIZE + PCI_ARI_SIZEOF : PCI_CONFIG_SPACE_SIZE; pcie_doe_init(pci_dev, &pci_dev->doe_spdm, doe_offset, doe_spdm_prot, true, 0); pci_dev->doe_spdm.spdm_socket = spdm_socket_connect(pci_dev->spdm_port, errp); if (pci_dev->doe_spdm.spdm_socket < 0) { return false; } } if (n->params.cmb_size_mb) { nvme_init_cmb(n, pci_dev); } if (n->pmr.dev) { nvme_init_pmr(n, pci_dev); } if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) { nvme_init_sriov(n, pci_dev, 0x120); } return true; } static void nvme_init_subnqn(NvmeCtrl *n) { NvmeSubsystem *subsys = n->subsys; NvmeIdCtrl *id = &n->id_ctrl; if (!subsys) { snprintf((char *)id->subnqn, sizeof(id->subnqn), "nqn.2019-08.org.qemu:%s", n->params.serial); } else { pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn); } } static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev) { NvmeIdCtrl *id = &n->id_ctrl; uint8_t *pci_conf = pci_dev->config; uint64_t cap = ldq_le_p(&n->bar.cap); NvmeSecCtrlEntry *sctrl = nvme_sctrl(n); uint32_t ctratt; id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID)); id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID)); strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' '); strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' '); strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' '); id->cntlid = cpu_to_le16(n->cntlid); id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR); ctratt = NVME_CTRATT_ELBAS; if (n->params.ctratt.mem) { ctratt |= NVME_CTRATT_MEM; } id->rab = 6; if (n->params.use_intel_id) { id->ieee[0] = 0xb3; id->ieee[1] = 0x02; id->ieee[2] = 0x00; } else { id->ieee[0] = 0x00; id->ieee[1] = 0x54; id->ieee[2] = 0x52; } id->mdts = n->params.mdts; id->ver = cpu_to_le32(NVME_SPEC_VER); id->oacs = cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF | NVME_OACS_DIRECTIVES); id->cntrltype = 0x1; /* * Because the controller always completes the Abort command immediately, * there can never be more than one concurrently executing Abort command, * so this value is never used for anything. Note that there can easily be * many Abort commands in the queues, but they are not considered * "executing" until processed by nvme_abort. * * The specification recommends a value of 3 for Abort Command Limit (four * concurrently outstanding Abort commands), so lets use that though it is * inconsequential. */ id->acl = 3; id->aerl = n->params.aerl; id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO; id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED; /* recommended default value (~70 C) */ id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING); id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL); id->sqes = (NVME_SQES << 4) | NVME_SQES; id->cqes = (NVME_CQES << 4) | NVME_CQES; id->nn = cpu_to_le32(NVME_MAX_NAMESPACES); id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP | NVME_ONCS_FEATURES | NVME_ONCS_DSM | NVME_ONCS_COMPARE | NVME_ONCS_COPY | NVME_ONCS_NVMCSA | NVME_ONCS_NVMAFC); /* * NOTE: If this device ever supports a command set that does NOT use 0x0 * as a Flush-equivalent operation, support for the broadcast NSID in Flush * should probably be removed. * * See comment in nvme_io_cmd. */ id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT; id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1 | NVME_OCFS_COPY_FORMAT_2 | NVME_OCFS_COPY_FORMAT_3); id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN | NVME_CTRL_SGLS_MPTR_SGL); nvme_init_subnqn(n); id->psd[0].mp = cpu_to_le16(0x9c4); id->psd[0].enlat = cpu_to_le32(0x10); id->psd[0].exlat = cpu_to_le32(0x4); if (n->subsys) { id->cmic |= NVME_CMIC_MULTI_CTRL; ctratt |= NVME_CTRATT_ENDGRPS; id->endgidmax = cpu_to_le16(0x1); if (n->subsys->endgrp.fdp.enabled) { ctratt |= NVME_CTRATT_FDPS; } } id->ctratt = cpu_to_le32(ctratt); NVME_CAP_SET_MQES(cap, n->params.mqes); NVME_CAP_SET_CQR(cap, 1); NVME_CAP_SET_TO(cap, 0xf); NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM); NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP); NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY); NVME_CAP_SET_MPSMAX(cap, 4); NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0); NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0); stq_le_p(&n->bar.cap, cap); stl_le_p(&n->bar.vs, NVME_SPEC_VER); n->bar.intmc = n->bar.intms = 0; if (pci_is_vf(pci_dev) && !sctrl->scs) { stl_le_p(&n->bar.csts, NVME_CSTS_FAILED); } } static int nvme_init_subsys(NvmeCtrl *n, Error **errp) { int cntlid; if (!n->subsys) { return 0; } cntlid = nvme_subsys_register_ctrl(n, errp); if (cntlid < 0) { return -1; } n->cntlid = cntlid; return 0; } void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns) { uint32_t nsid = ns->params.nsid; assert(nsid && nsid <= NVME_MAX_NAMESPACES); n->namespaces[nsid] = ns; ns->attached++; n->dmrsl = MIN_NON_ZERO(n->dmrsl, BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1)); } static void nvme_realize(PCIDevice *pci_dev, Error **errp) { NvmeCtrl *n = NVME(pci_dev); DeviceState *dev = DEVICE(pci_dev); NvmeNamespace *ns; NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev)); if (pci_is_vf(pci_dev)) { /* * VFs derive settings from the parent. PF's lifespan exceeds * that of VF's. */ memcpy(&n->params, &pn->params, sizeof(NvmeParams)); /* * Set PF's serial value to a new string memory to prevent 'serial' * property object release of PF when a VF is removed from the system. */ n->params.serial = g_strdup(pn->params.serial); n->subsys = pn->subsys; /* * Assigning this link (strong link) causes an `object_unref` later in * `object_release_link_property`. Increment the refcount to balance * this out. */ object_ref(OBJECT(pn->subsys)); } if (!nvme_check_params(n, errp)) { return; } qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS, dev, dev->id); if (nvme_init_subsys(n, errp)) { return; } nvme_init_state(n); if (!nvme_init_pci(n, pci_dev, errp)) { return; } nvme_init_ctrl(n, pci_dev); /* setup a namespace if the controller drive property was given */ if (n->namespace.blkconf.blk) { ns = &n->namespace; ns->params.nsid = 1; if (nvme_ns_setup(ns, errp)) { return; } nvme_attach_ns(n, ns); } } static void nvme_exit(PCIDevice *pci_dev) { NvmeCtrl *n = NVME(pci_dev); NvmeNamespace *ns; int i; nvme_ctrl_reset(n, NVME_RESET_FUNCTION); if (n->subsys) { for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { ns = nvme_ns(n, i); if (ns) { ns->attached--; } } nvme_subsys_unregister_ctrl(n->subsys, n); } g_free(n->cq); g_free(n->sq); g_free(n->aer_reqs); if (n->params.cmb_size_mb) { g_free(n->cmb.buf); } if (pci_dev->doe_spdm.spdm_socket > 0) { spdm_socket_close(pci_dev->doe_spdm.spdm_socket, SPDM_SOCKET_TRANSPORT_TYPE_PCI_DOE); } if (n->pmr.dev) { host_memory_backend_set_mapped(n->pmr.dev, false); } if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) { pcie_sriov_pf_exit(pci_dev); } if (n->params.msix_exclusive_bar && !pci_is_vf(pci_dev)) { msix_uninit_exclusive_bar(pci_dev); } else { msix_uninit(pci_dev, &n->bar0, &n->bar0); } memory_region_del_subregion(&n->bar0, &n->iomem); } static Property nvme_props[] = { DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf), DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND, HostMemoryBackend *), DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS, NvmeSubsystem *), DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial), DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0), DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0), DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64), DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65), DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3), DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64), DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7), DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7), DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false), DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false), DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, false), DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0), DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl, params.auto_transition_zones, true), DEFINE_PROP_UINT16("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0), DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl, params.sriov_vq_flexible, 0), DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl, params.sriov_vi_flexible, 0), DEFINE_PROP_UINT32("sriov_max_vi_per_vf", NvmeCtrl, params.sriov_max_vi_per_vf, 0), DEFINE_PROP_UINT32("sriov_max_vq_per_vf", NvmeCtrl, params.sriov_max_vq_per_vf, 0), DEFINE_PROP_BOOL("msix-exclusive-bar", NvmeCtrl, params.msix_exclusive_bar, false), DEFINE_PROP_UINT16("mqes", NvmeCtrl, params.mqes, 0x7ff), DEFINE_PROP_UINT16("spdm_port", PCIDevice, spdm_port, 0), DEFINE_PROP_BOOL("ctratt.mem", NvmeCtrl, params.ctratt.mem, false), DEFINE_PROP_BOOL("atomic.dn", NvmeCtrl, params.atomic_dn, 0), DEFINE_PROP_UINT16("atomic.awun", NvmeCtrl, params.atomic_awun, 0), DEFINE_PROP_UINT16("atomic.awupf", NvmeCtrl, params.atomic_awupf, 0), DEFINE_PROP_END_OF_LIST(), }; static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { NvmeCtrl *n = NVME(obj); uint8_t value = n->smart_critical_warning; visit_type_uint8(v, name, &value, errp); } static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { NvmeCtrl *n = NVME(obj); uint8_t value, old_value, cap = 0, index, event; if (!visit_type_uint8(v, name, &value, errp)) { return; } cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA; if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) { cap |= NVME_SMART_PMR_UNRELIABLE; } if ((value & cap) != value) { error_setg(errp, "unsupported smart critical warning bits: 0x%x", value & ~cap); return; } old_value = n->smart_critical_warning; n->smart_critical_warning = value; /* only inject new bits of smart critical warning */ for (index = 0; index < NVME_SMART_WARN_MAX; index++) { event = 1 << index; if (value & ~old_value & event) nvme_smart_event(n, event); } } static void nvme_pci_reset(DeviceState *qdev) { PCIDevice *pci_dev = PCI_DEVICE(qdev); NvmeCtrl *n = NVME(pci_dev); trace_pci_nvme_pci_reset(); nvme_ctrl_reset(n, NVME_RESET_FUNCTION); } static void nvme_sriov_post_write_config(PCIDevice *dev, uint16_t old_num_vfs) { NvmeCtrl *n = NVME(dev); NvmeSecCtrlEntry *sctrl; int i; for (i = pcie_sriov_num_vfs(dev); i < old_num_vfs; i++) { sctrl = &n->sec_ctrl_list[i]; nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false); } } static void nvme_pci_write_config(PCIDevice *dev, uint32_t address, uint32_t val, int len) { uint16_t old_num_vfs = pcie_sriov_num_vfs(dev); if (pcie_find_capability(dev, PCI_EXT_CAP_ID_DOE)) { pcie_doe_write_config(&dev->doe_spdm, address, val, len); } pci_default_write_config(dev, address, val, len); pcie_cap_flr_write_config(dev, address, val, len); nvme_sriov_post_write_config(dev, old_num_vfs); } static uint32_t nvme_pci_read_config(PCIDevice *dev, uint32_t address, int len) { uint32_t val; if (dev->spdm_port && pcie_find_capability(dev, PCI_EXT_CAP_ID_DOE)) { if (pcie_doe_read_config(&dev->doe_spdm, address, len, &val)) { return val; } } return pci_default_read_config(dev, address, len); } static const VMStateDescription nvme_vmstate = { .name = "nvme", .unmigratable = 1, }; static void nvme_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc); pc->realize = nvme_realize; pc->config_write = nvme_pci_write_config; pc->config_read = nvme_pci_read_config; pc->exit = nvme_exit; pc->class_id = PCI_CLASS_STORAGE_EXPRESS; pc->revision = 2; set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); dc->desc = "Non-Volatile Memory Express"; device_class_set_props(dc, nvme_props); dc->vmsd = &nvme_vmstate; device_class_set_legacy_reset(dc, nvme_pci_reset); } static void nvme_instance_init(Object *obj) { NvmeCtrl *n = NVME(obj); device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex, "bootindex", "/namespace@1,0", DEVICE(obj)); object_property_add(obj, "smart_critical_warning", "uint8", nvme_get_smart_warning, nvme_set_smart_warning, NULL, NULL); } static const TypeInfo nvme_info = { .name = TYPE_NVME, .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(NvmeCtrl), .instance_init = nvme_instance_init, .class_init = nvme_class_init, .interfaces = (InterfaceInfo[]) { { INTERFACE_PCIE_DEVICE }, { } }, }; static const TypeInfo nvme_bus_info = { .name = TYPE_NVME_BUS, .parent = TYPE_BUS, .instance_size = sizeof(NvmeBus), }; static void nvme_register_types(void) { type_register_static(&nvme_info); type_register_static(&nvme_bus_info); } type_init(nvme_register_types)