/*
 * Nuvoton NPCM7xx/8xx GMAC Module
 *
 * Copyright 2024 Google LLC
 * Authors:
 * Hao Wu <wuhaotsh@google.com>
 * Nabih Estefan <nabihestefan@google.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 * for more details.
 *
 * Unsupported/unimplemented features:
 * - MII is not implemented, MII_ADDR.BUSY and MII_DATA always return zero
 * - Precision timestamp (PTP) is not implemented.
 */

#include "qemu/osdep.h"

#include "hw/registerfields.h"
#include "hw/net/mii.h"
#include "hw/net/npcm_gmac.h"
#include "migration/vmstate.h"
#include "net/checksum.h"
#include "net/eth.h"
#include "net/net.h"
#include "qemu/cutils.h"
#include "qemu/log.h"
#include "qemu/units.h"
#include "sysemu/dma.h"
#include "trace.h"

REG32(NPCM_DMA_BUS_MODE, 0x1000)
REG32(NPCM_DMA_XMT_POLL_DEMAND, 0x1004)
REG32(NPCM_DMA_RCV_POLL_DEMAND, 0x1008)
REG32(NPCM_DMA_RX_BASE_ADDR, 0x100c)
REG32(NPCM_DMA_TX_BASE_ADDR, 0x1010)
REG32(NPCM_DMA_STATUS, 0x1014)
REG32(NPCM_DMA_CONTROL, 0x1018)
REG32(NPCM_DMA_INTR_ENA, 0x101c)
REG32(NPCM_DMA_MISSED_FRAME_CTR, 0x1020)
REG32(NPCM_DMA_HOST_TX_DESC, 0x1048)
REG32(NPCM_DMA_HOST_RX_DESC, 0x104c)
REG32(NPCM_DMA_CUR_TX_BUF_ADDR, 0x1050)
REG32(NPCM_DMA_CUR_RX_BUF_ADDR, 0x1054)
REG32(NPCM_DMA_HW_FEATURE, 0x1058)

REG32(NPCM_GMAC_MAC_CONFIG, 0x0)
REG32(NPCM_GMAC_FRAME_FILTER, 0x4)
REG32(NPCM_GMAC_HASH_HIGH, 0x8)
REG32(NPCM_GMAC_HASH_LOW, 0xc)
REG32(NPCM_GMAC_MII_ADDR, 0x10)
REG32(NPCM_GMAC_MII_DATA, 0x14)
REG32(NPCM_GMAC_FLOW_CTRL, 0x18)
REG32(NPCM_GMAC_VLAN_FLAG, 0x1c)
REG32(NPCM_GMAC_VERSION, 0x20)
REG32(NPCM_GMAC_WAKEUP_FILTER, 0x28)
REG32(NPCM_GMAC_PMT, 0x2c)
REG32(NPCM_GMAC_LPI_CTRL, 0x30)
REG32(NPCM_GMAC_TIMER_CTRL, 0x34)
REG32(NPCM_GMAC_INT_STATUS, 0x38)
REG32(NPCM_GMAC_INT_MASK, 0x3c)
REG32(NPCM_GMAC_MAC0_ADDR_HI, 0x40)
REG32(NPCM_GMAC_MAC0_ADDR_LO, 0x44)
REG32(NPCM_GMAC_MAC1_ADDR_HI, 0x48)
REG32(NPCM_GMAC_MAC1_ADDR_LO, 0x4c)
REG32(NPCM_GMAC_MAC2_ADDR_HI, 0x50)
REG32(NPCM_GMAC_MAC2_ADDR_LO, 0x54)
REG32(NPCM_GMAC_MAC3_ADDR_HI, 0x58)
REG32(NPCM_GMAC_MAC3_ADDR_LO, 0x5c)
REG32(NPCM_GMAC_RGMII_STATUS, 0xd8)
REG32(NPCM_GMAC_WATCHDOG, 0xdc)
REG32(NPCM_GMAC_PTP_TCR, 0x700)
REG32(NPCM_GMAC_PTP_SSIR, 0x704)
REG32(NPCM_GMAC_PTP_STSR, 0x708)
REG32(NPCM_GMAC_PTP_STNSR, 0x70c)
REG32(NPCM_GMAC_PTP_STSUR, 0x710)
REG32(NPCM_GMAC_PTP_STNSUR, 0x714)
REG32(NPCM_GMAC_PTP_TAR, 0x718)
REG32(NPCM_GMAC_PTP_TTSR, 0x71c)

/* Register Fields */
#define NPCM_GMAC_MII_ADDR_BUSY             BIT(0)
#define NPCM_GMAC_MII_ADDR_WRITE            BIT(1)
#define NPCM_GMAC_MII_ADDR_GR(rv)           extract16((rv), 6, 5)
#define NPCM_GMAC_MII_ADDR_PA(rv)           extract16((rv), 11, 5)

#define NPCM_GMAC_INT_MASK_LPIIM            BIT(10)
#define NPCM_GMAC_INT_MASK_PMTM             BIT(3)
#define NPCM_GMAC_INT_MASK_RGIM             BIT(0)

#define NPCM_DMA_BUS_MODE_SWR               BIT(0)

static const uint32_t npcm_gmac_cold_reset_values[NPCM_GMAC_NR_REGS] = {
    /* Reduce version to 3.2 so that the kernel can enable interrupt. */
    [R_NPCM_GMAC_VERSION]         = 0x00001032,
    [R_NPCM_GMAC_TIMER_CTRL]      = 0x03e80000,
    [R_NPCM_GMAC_MAC0_ADDR_HI]    = 0x8000ffff,
    [R_NPCM_GMAC_MAC0_ADDR_LO]    = 0xffffffff,
    [R_NPCM_GMAC_MAC1_ADDR_HI]    = 0x0000ffff,
    [R_NPCM_GMAC_MAC1_ADDR_LO]    = 0xffffffff,
    [R_NPCM_GMAC_MAC2_ADDR_HI]    = 0x0000ffff,
    [R_NPCM_GMAC_MAC2_ADDR_LO]    = 0xffffffff,
    [R_NPCM_GMAC_MAC3_ADDR_HI]    = 0x0000ffff,
    [R_NPCM_GMAC_MAC3_ADDR_LO]    = 0xffffffff,
    [R_NPCM_GMAC_PTP_TCR]         = 0x00002000,
    [R_NPCM_DMA_BUS_MODE]         = 0x00020101,
    [R_NPCM_DMA_HW_FEATURE]       = 0x100d4f37,
};

static const uint16_t phy_reg_init[] = {
    [MII_BMCR]      = MII_BMCR_AUTOEN | MII_BMCR_FD | MII_BMCR_SPEED1000,
    [MII_BMSR]      = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
                      MII_BMSR_10T_HD | MII_BMSR_EXTSTAT | MII_BMSR_AUTONEG |
                      MII_BMSR_LINK_ST | MII_BMSR_EXTCAP,
    [MII_PHYID1]    = 0x0362,
    [MII_PHYID2]    = 0x5e6a,
    [MII_ANAR]      = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD |
                      MII_ANAR_10 | MII_ANAR_CSMACD,
    [MII_ANLPAR]    = MII_ANLPAR_ACK | MII_ANLPAR_PAUSE |
                      MII_ANLPAR_TXFD | MII_ANLPAR_TX | MII_ANLPAR_10FD |
                      MII_ANLPAR_10 | MII_ANLPAR_CSMACD,
    [MII_ANER]      = 0x64 | MII_ANER_NWAY,
    [MII_ANNP]      = 0x2001,
    [MII_CTRL1000]  = MII_CTRL1000_FULL,
    [MII_STAT1000]  = MII_STAT1000_FULL,
    [MII_EXTSTAT]   = 0x3000, /* 1000BASTE_T full-duplex capable */
};

static void npcm_gmac_soft_reset(NPCMGMACState *gmac)
{
    memcpy(gmac->regs, npcm_gmac_cold_reset_values,
           NPCM_GMAC_NR_REGS * sizeof(uint32_t));
    /* Clear reset bits */
    gmac->regs[R_NPCM_DMA_BUS_MODE] &= ~NPCM_DMA_BUS_MODE_SWR;
}

static void gmac_phy_set_link(NPCMGMACState *gmac, bool active)
{
    /* Autonegotiation status mirrors link status.  */
    if (active) {
        gmac->phy_regs[0][MII_BMSR] |= (MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
    } else {
        gmac->phy_regs[0][MII_BMSR] &= ~(MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
    }
}

static bool gmac_can_receive(NetClientState *nc)
{
    NPCMGMACState *gmac = NPCM_GMAC(qemu_get_nic_opaque(nc));

    /* If GMAC receive is disabled. */
    if (!(gmac->regs[R_NPCM_GMAC_MAC_CONFIG] & NPCM_GMAC_MAC_CONFIG_RX_EN)) {
        return false;
    }

    /* If GMAC DMA RX is stopped. */
    if (!(gmac->regs[R_NPCM_DMA_CONTROL] & NPCM_DMA_CONTROL_START_STOP_RX)) {
        return false;
    }
    return true;
}

/*
 * Function that updates the GMAC IRQ
 * It find the logical OR of the enabled bits for NIS (if enabled)
 * It find the logical OR of the enabled bits for AIS (if enabled)
 */
static void gmac_update_irq(NPCMGMACState *gmac)
{
    /*
     * Check if the normal interrupts summary is enabled
     * if so, add the bits for the summary that are enabled
     */
    if (gmac->regs[R_NPCM_DMA_INTR_ENA] & gmac->regs[R_NPCM_DMA_STATUS] &
        (NPCM_DMA_INTR_ENAB_NIE_BITS)) {
        gmac->regs[R_NPCM_DMA_STATUS] |=  NPCM_DMA_STATUS_NIS;
    }
    /*
     * Check if the abnormal interrupts summary is enabled
     * if so, add the bits for the summary that are enabled
     */
    if (gmac->regs[R_NPCM_DMA_INTR_ENA] & gmac->regs[R_NPCM_DMA_STATUS] &
        (NPCM_DMA_INTR_ENAB_AIE_BITS)) {
        gmac->regs[R_NPCM_DMA_STATUS] |=  NPCM_DMA_STATUS_AIS;
    }

    /* Get the logical OR of both normal and abnormal interrupts */
    int level = !!((gmac->regs[R_NPCM_DMA_STATUS] &
                    gmac->regs[R_NPCM_DMA_INTR_ENA] &
                    NPCM_DMA_STATUS_NIS) |
                   (gmac->regs[R_NPCM_DMA_STATUS] &
                   gmac->regs[R_NPCM_DMA_INTR_ENA] &
                   NPCM_DMA_STATUS_AIS));

    /* Set the IRQ */
    trace_npcm_gmac_update_irq(DEVICE(gmac)->canonical_path,
                               gmac->regs[R_NPCM_DMA_STATUS],
                               gmac->regs[R_NPCM_DMA_INTR_ENA],
                               level);
    qemu_set_irq(gmac->irq, level);
}

static int gmac_read_rx_desc(dma_addr_t addr, struct NPCMGMACRxDesc *desc)
{
    if (dma_memory_read(&address_space_memory, addr, desc,
                        sizeof(*desc), MEMTXATTRS_UNSPECIFIED)) {
        qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to read descriptor @ 0x%"
                      HWADDR_PRIx "\n", __func__, addr);
        return -1;
    }
    desc->rdes0 = le32_to_cpu(desc->rdes0);
    desc->rdes1 = le32_to_cpu(desc->rdes1);
    desc->rdes2 = le32_to_cpu(desc->rdes2);
    desc->rdes3 = le32_to_cpu(desc->rdes3);
    return 0;
}

static int gmac_write_rx_desc(dma_addr_t addr, struct NPCMGMACRxDesc *desc)
{
    struct NPCMGMACRxDesc le_desc;
    le_desc.rdes0 = cpu_to_le32(desc->rdes0);
    le_desc.rdes1 = cpu_to_le32(desc->rdes1);
    le_desc.rdes2 = cpu_to_le32(desc->rdes2);
    le_desc.rdes3 = cpu_to_le32(desc->rdes3);
    if (dma_memory_write(&address_space_memory, addr, &le_desc,
                        sizeof(le_desc), MEMTXATTRS_UNSPECIFIED)) {
        qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to write descriptor @ 0x%"
                      HWADDR_PRIx "\n", __func__, addr);
        return -1;
    }
    return 0;
}

static int gmac_read_tx_desc(dma_addr_t addr, struct NPCMGMACTxDesc *desc)
{
    if (dma_memory_read(&address_space_memory, addr, desc,
                        sizeof(*desc), MEMTXATTRS_UNSPECIFIED)) {
        qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to read descriptor @ 0x%"
                      HWADDR_PRIx "\n", __func__, addr);
        return -1;
    }
    desc->tdes0 = le32_to_cpu(desc->tdes0);
    desc->tdes1 = le32_to_cpu(desc->tdes1);
    desc->tdes2 = le32_to_cpu(desc->tdes2);
    desc->tdes3 = le32_to_cpu(desc->tdes3);
    return 0;
}

static int gmac_write_tx_desc(dma_addr_t addr, struct NPCMGMACTxDesc *desc)
{
    struct NPCMGMACTxDesc le_desc;
    le_desc.tdes0 = cpu_to_le32(desc->tdes0);
    le_desc.tdes1 = cpu_to_le32(desc->tdes1);
    le_desc.tdes2 = cpu_to_le32(desc->tdes2);
    le_desc.tdes3 = cpu_to_le32(desc->tdes3);
    if (dma_memory_write(&address_space_memory, addr, &le_desc,
                        sizeof(le_desc), MEMTXATTRS_UNSPECIFIED)) {
        qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to write descriptor @ 0x%"
                      HWADDR_PRIx "\n", __func__, addr);
        return -1;
    }
    return 0;
}

static int gmac_rx_transfer_frame_to_buffer(uint32_t rx_buf_len,
                                            uint32_t *left_frame,
                                            uint32_t rx_buf_addr,
                                            bool *eof_transferred,
                                            const uint8_t **frame_ptr,
                                            uint16_t *transferred)
{
    uint32_t to_transfer;
    /*
     * Check that buffer is bigger than the frame being transfered
     * If bigger then transfer only whats left of frame
     * Else, fill frame with all the content possible
     */
    if (rx_buf_len >= *left_frame) {
        to_transfer = *left_frame;
        *eof_transferred = true;
    } else {
        to_transfer = rx_buf_len;
    }

    /* write frame part to memory */
    if (dma_memory_write(&address_space_memory, (uint64_t) rx_buf_addr,
                         *frame_ptr, to_transfer, MEMTXATTRS_UNSPECIFIED)) {
        return -1;
    }

    /* update frame pointer and size of whats left of frame */
    *frame_ptr += to_transfer;
    *left_frame -= to_transfer;
    *transferred += to_transfer;

    return 0;
}

static void gmac_dma_set_state(NPCMGMACState *gmac, int shift, uint32_t state)
{
    gmac->regs[R_NPCM_DMA_STATUS] = deposit32(gmac->regs[R_NPCM_DMA_STATUS],
        shift, 3, state);
}

static ssize_t gmac_receive(NetClientState *nc, const uint8_t *buf, size_t len)
{
    /*
     * Comments have steps that relate to the
     * receiving process steps in pg 386
     */
    NPCMGMACState *gmac = NPCM_GMAC(qemu_get_nic_opaque(nc));
    uint32_t left_frame = len;
    const uint8_t *frame_ptr = buf;
    uint32_t desc_addr;
    uint32_t rx_buf_len, rx_buf_addr;
    struct NPCMGMACRxDesc rx_desc;
    uint16_t transferred = 0;
    bool eof_transferred = false;

    trace_npcm_gmac_packet_receive(DEVICE(gmac)->canonical_path, len);
    if (!gmac_can_receive(nc)) {
        qemu_log_mask(LOG_GUEST_ERROR, "GMAC Currently is not able for Rx");
        return -1;
    }
    if (!gmac->regs[R_NPCM_DMA_HOST_RX_DESC]) {
        gmac->regs[R_NPCM_DMA_HOST_RX_DESC] =
            NPCM_DMA_HOST_RX_DESC_MASK(gmac->regs[R_NPCM_DMA_RX_BASE_ADDR]);
    }
    desc_addr = NPCM_DMA_HOST_RX_DESC_MASK(gmac->regs[R_NPCM_DMA_HOST_RX_DESC]);

    /* step 1 */
    gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
        NPCM_DMA_STATUS_RX_RUNNING_FETCHING_STATE);
    trace_npcm_gmac_packet_desc_read(DEVICE(gmac)->canonical_path, desc_addr);
    if (gmac_read_rx_desc(desc_addr, &rx_desc)) {
        qemu_log_mask(LOG_GUEST_ERROR, "RX Descriptor @ 0x%x cant be read\n",
                      desc_addr);
        gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
            NPCM_DMA_STATUS_RX_SUSPENDED_STATE);
        return -1;
    }

    /* step 2 */
    if (!(rx_desc.rdes0 & RX_DESC_RDES0_OWN)) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "RX Descriptor @ 0x%x is owned by software\n",
                      desc_addr);
        gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_RU;
        gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_RI;
        gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
            NPCM_DMA_STATUS_RX_SUSPENDED_STATE);
        gmac_update_irq(gmac);
        return len;
    }
    /* step 3 */
    /*
     * TODO --
     * Implement all frame filtering and processing (with its own interrupts)
     */
    trace_npcm_gmac_debug_desc_data(DEVICE(gmac)->canonical_path, &rx_desc,
                                    rx_desc.rdes0, rx_desc.rdes1, rx_desc.rdes2,
                                    rx_desc.rdes3);
    /* Clear rdes0 for the incoming descriptor and set FS in first descriptor.*/
    rx_desc.rdes0 = RX_DESC_RDES0_FIRST_DESC_MASK;

    gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
        NPCM_DMA_STATUS_RX_RUNNING_TRANSFERRING_STATE);

    /* Pad the frame with FCS as the kernel driver will strip it away. */
    left_frame += ETH_FCS_LEN;

    /* repeat while we still have frame to transfer to memory */
    while (!eof_transferred) {
        /* Return descriptor no matter what happens */
        rx_desc.rdes0 &= ~RX_DESC_RDES0_OWN;
        /* Set the frame to be an IPv4/IPv6 frame. */
        rx_desc.rdes0 |= RX_DESC_RDES0_FRM_TYPE_MASK;

        /* step 4 */
        rx_buf_len = RX_DESC_RDES1_BFFR1_SZ_MASK(rx_desc.rdes1);
        rx_buf_addr = rx_desc.rdes2;
        gmac->regs[R_NPCM_DMA_CUR_RX_BUF_ADDR] = rx_buf_addr;
        gmac_rx_transfer_frame_to_buffer(rx_buf_len, &left_frame, rx_buf_addr,
                                         &eof_transferred, &frame_ptr,
                                         &transferred);

        trace_npcm_gmac_packet_receiving_buffer(DEVICE(gmac)->canonical_path,
                                                rx_buf_len, rx_buf_addr);
        /* if we still have frame left and the second buffer is not chained */
         if (!(rx_desc.rdes1 & RX_DESC_RDES1_SEC_ADDR_CHND_MASK) && \
              !eof_transferred) {
            /* repeat process from above on buffer 2 */
            rx_buf_len = RX_DESC_RDES1_BFFR2_SZ_MASK(rx_desc.rdes1);
            rx_buf_addr = rx_desc.rdes3;
            gmac->regs[R_NPCM_DMA_CUR_RX_BUF_ADDR] = rx_buf_addr;
            gmac_rx_transfer_frame_to_buffer(rx_buf_len, &left_frame,
                                             rx_buf_addr, &eof_transferred,
                                             &frame_ptr, &transferred);
            trace_npcm_gmac_packet_receiving_buffer( \
                                                DEVICE(gmac)->canonical_path,
                                                rx_buf_len, rx_buf_addr);
        }
        /* update address for descriptor */
        gmac->regs[R_NPCM_DMA_HOST_RX_DESC] = rx_buf_addr;
        /* Return descriptor */
        rx_desc.rdes0 &= ~RX_DESC_RDES0_OWN;
        /* Update frame length transferred */
        rx_desc.rdes0 |= ((uint32_t)transferred)
            << RX_DESC_RDES0_FRAME_LEN_SHIFT;
        trace_npcm_gmac_debug_desc_data(DEVICE(gmac)->canonical_path, &rx_desc,
                                        rx_desc.rdes0, rx_desc.rdes1,
                                        rx_desc.rdes2, rx_desc.rdes3);

        /* step 5 */
        gmac_write_rx_desc(desc_addr, &rx_desc);
        trace_npcm_gmac_debug_desc_data(DEVICE(gmac)->canonical_path,
                                        &rx_desc, rx_desc.rdes0,
                                        rx_desc.rdes1, rx_desc.rdes2,
                                        rx_desc.rdes3);
        /* read new descriptor into rx_desc if needed*/
        if (!eof_transferred) {
            /* Get next descriptor address (chained or sequential) */
            if (rx_desc.rdes1 & RX_DESC_RDES1_RC_END_RING_MASK) {
                desc_addr = gmac->regs[R_NPCM_DMA_RX_BASE_ADDR];
            } else if (rx_desc.rdes1 & RX_DESC_RDES1_SEC_ADDR_CHND_MASK) {
                desc_addr = rx_desc.rdes3;
            } else {
                desc_addr += sizeof(rx_desc);
            }
            trace_npcm_gmac_packet_desc_read(DEVICE(gmac)->canonical_path,
                                             desc_addr);
            if (gmac_read_rx_desc(desc_addr, &rx_desc)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "RX Descriptor @ 0x%x cant be read\n",
                              desc_addr);
                gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_RU;
                gmac_update_irq(gmac);
                return len;
            }

            /* step 6 */
            if (!(rx_desc.rdes0 & RX_DESC_RDES0_OWN)) {
                if (!(gmac->regs[R_NPCM_DMA_CONTROL] & \
                     NPCM_DMA_CONTROL_FLUSH_MASK)) {
                    rx_desc.rdes0 |= RX_DESC_RDES0_DESC_ERR_MASK;
                }
                eof_transferred = true;
            }
            /* Clear rdes0 for the incoming descriptor */
            rx_desc.rdes0 = 0;
        }
    }
    gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
        NPCM_DMA_STATUS_RX_RUNNING_CLOSING_STATE);

    rx_desc.rdes0 |= RX_DESC_RDES0_LAST_DESC_MASK;
    if (!(rx_desc.rdes1 & RX_DESC_RDES1_DIS_INTR_COMP_MASK)) {
        gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_RI;
        gmac_update_irq(gmac);
    }
    trace_npcm_gmac_debug_desc_data(DEVICE(gmac)->canonical_path, &rx_desc,
                                    rx_desc.rdes0, rx_desc.rdes1, rx_desc.rdes2,
                                    rx_desc.rdes3);

    /* step 8 */
    gmac->regs[R_NPCM_DMA_CONTROL] |= NPCM_DMA_CONTROL_FLUSH_MASK;

    /* step 9 */
    trace_npcm_gmac_packet_received(DEVICE(gmac)->canonical_path, left_frame);
    gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
        NPCM_DMA_STATUS_RX_RUNNING_WAITING_STATE);
    gmac_write_rx_desc(desc_addr, &rx_desc);

    /* Get next descriptor address (chained or sequential) */
    if (rx_desc.rdes1 & RX_DESC_RDES1_RC_END_RING_MASK) {
        desc_addr = gmac->regs[R_NPCM_DMA_RX_BASE_ADDR];
    } else if (rx_desc.rdes1 & RX_DESC_RDES1_SEC_ADDR_CHND_MASK) {
        desc_addr = rx_desc.rdes3;
    } else {
        desc_addr += sizeof(rx_desc);
    }
    gmac->regs[R_NPCM_DMA_HOST_RX_DESC] = desc_addr;
    return len;
}

static int gmac_tx_get_csum(uint32_t tdes1)
{
    uint32_t mask = TX_DESC_TDES1_CHKSM_INS_CTRL_MASK(tdes1);
    int csum = 0;

    if (likely(mask > 0)) {
        csum |= CSUM_IP;
    }
    if (likely(mask > 1)) {
        csum |= CSUM_TCP | CSUM_UDP;
    }

    return csum;
}

static void gmac_try_send_next_packet(NPCMGMACState *gmac)
{
    /*
     * Comments about steps refer to steps for
     * transmitting in page 384 of datasheet
     */
    uint16_t tx_buffer_size = 2048;
    g_autofree uint8_t *tx_send_buffer = g_malloc(tx_buffer_size);
    uint32_t desc_addr;
    struct NPCMGMACTxDesc tx_desc;
    uint32_t tx_buf_addr, tx_buf_len;
    uint16_t length = 0;
    uint8_t *buf = tx_send_buffer;
    uint32_t prev_buf_size = 0;
    int csum = 0;

    /* steps 1&2 */
    if (!gmac->regs[R_NPCM_DMA_HOST_TX_DESC]) {
        gmac->regs[R_NPCM_DMA_HOST_TX_DESC] =
            NPCM_DMA_HOST_TX_DESC_MASK(gmac->regs[R_NPCM_DMA_TX_BASE_ADDR]);
    }
    desc_addr = gmac->regs[R_NPCM_DMA_HOST_TX_DESC];

    while (true) {
        gmac_dma_set_state(gmac, NPCM_DMA_STATUS_TX_PROCESS_STATE_SHIFT,
            NPCM_DMA_STATUS_TX_RUNNING_FETCHING_STATE);
        if (gmac_read_tx_desc(desc_addr, &tx_desc)) {
            qemu_log_mask(LOG_GUEST_ERROR,
                          "TX Descriptor @ 0x%x can't be read\n",
                          desc_addr);
            return;
        }
        /* step 3 */

        trace_npcm_gmac_packet_desc_read(DEVICE(gmac)->canonical_path,
            desc_addr);
        trace_npcm_gmac_debug_desc_data(DEVICE(gmac)->canonical_path, &tx_desc,
            tx_desc.tdes0, tx_desc.tdes1, tx_desc.tdes2, tx_desc.tdes3);

        /* 1 = DMA Owned, 0 = Software Owned */
        if (!(tx_desc.tdes0 & TX_DESC_TDES0_OWN)) {
            qemu_log_mask(LOG_GUEST_ERROR,
                          "TX Descriptor @ 0x%x is owned by software\n",
                          desc_addr);
            gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_TU;
            gmac_dma_set_state(gmac, NPCM_DMA_STATUS_TX_PROCESS_STATE_SHIFT,
                NPCM_DMA_STATUS_TX_SUSPENDED_STATE);
            gmac_update_irq(gmac);
            return;
        }

        gmac_dma_set_state(gmac, NPCM_DMA_STATUS_TX_PROCESS_STATE_SHIFT,
            NPCM_DMA_STATUS_TX_RUNNING_READ_STATE);
        /* Give the descriptor back regardless of what happens. */
        tx_desc.tdes0 &= ~TX_DESC_TDES0_OWN;

        if (tx_desc.tdes1 & TX_DESC_TDES1_FIRST_SEG_MASK) {
            csum = gmac_tx_get_csum(tx_desc.tdes1);
        }

        /* step 4 */
        tx_buf_addr = tx_desc.tdes2;
        gmac->regs[R_NPCM_DMA_CUR_TX_BUF_ADDR] = tx_buf_addr;
        tx_buf_len = TX_DESC_TDES1_BFFR1_SZ_MASK(tx_desc.tdes1);
        buf = &tx_send_buffer[prev_buf_size];

        if ((prev_buf_size + tx_buf_len) > sizeof(buf)) {
            tx_buffer_size = prev_buf_size + tx_buf_len;
            tx_send_buffer = g_realloc(tx_send_buffer, tx_buffer_size);
            buf = &tx_send_buffer[prev_buf_size];
        }

        /* step 5 */
        if (dma_memory_read(&address_space_memory, tx_buf_addr, buf,
                            tx_buf_len, MEMTXATTRS_UNSPECIFIED)) {
            qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to read packet @ 0x%x\n",
                        __func__, tx_buf_addr);
            return;
        }
        length += tx_buf_len;
        prev_buf_size += tx_buf_len;

        /* If not chained we'll have a second buffer. */
        if (!(tx_desc.tdes1 & TX_DESC_TDES1_SEC_ADDR_CHND_MASK)) {
            tx_buf_addr = tx_desc.tdes3;
            gmac->regs[R_NPCM_DMA_CUR_TX_BUF_ADDR] = tx_buf_addr;
            tx_buf_len = TX_DESC_TDES1_BFFR2_SZ_MASK(tx_desc.tdes1);
            buf = &tx_send_buffer[prev_buf_size];

            if ((prev_buf_size + tx_buf_len) > sizeof(buf)) {
                tx_buffer_size = prev_buf_size + tx_buf_len;
                tx_send_buffer = g_realloc(tx_send_buffer, tx_buffer_size);
                buf = &tx_send_buffer[prev_buf_size];
            }

            if (dma_memory_read(&address_space_memory, tx_buf_addr, buf,
                                tx_buf_len, MEMTXATTRS_UNSPECIFIED)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "%s: Failed to read packet @ 0x%x\n",
                              __func__, tx_buf_addr);
                return;
            }
            length += tx_buf_len;
            prev_buf_size += tx_buf_len;
        }
        if (tx_desc.tdes1 & TX_DESC_TDES1_LAST_SEG_MASK) {
            net_checksum_calculate(tx_send_buffer, length, csum);
            qemu_send_packet(qemu_get_queue(gmac->nic), tx_send_buffer, length);
            trace_npcm_gmac_packet_sent(DEVICE(gmac)->canonical_path, length);
            buf = tx_send_buffer;
            length = 0;
        }

        /* step 6 */
        gmac_dma_set_state(gmac, NPCM_DMA_STATUS_TX_PROCESS_STATE_SHIFT,
            NPCM_DMA_STATUS_TX_RUNNING_CLOSING_STATE);
        gmac_write_tx_desc(desc_addr, &tx_desc);
        if (tx_desc.tdes1 & TX_DESC_TDES1_TX_END_RING_MASK) {
            desc_addr = gmac->regs[R_NPCM_DMA_TX_BASE_ADDR];
        } else if (tx_desc.tdes1 & TX_DESC_TDES1_SEC_ADDR_CHND_MASK) {
            desc_addr = tx_desc.tdes3;
        } else {
            desc_addr += sizeof(tx_desc);
        }
        gmac->regs[R_NPCM_DMA_HOST_TX_DESC] = desc_addr;

        /* step 7 */
        if (tx_desc.tdes1 & TX_DESC_TDES1_INTERR_COMP_MASK) {
            gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_TI;
            gmac_update_irq(gmac);
        }
    }
}

static void gmac_cleanup(NetClientState *nc)
{
    /* Nothing to do yet. */
}

static void gmac_set_link(NetClientState *nc)
{
    NPCMGMACState *gmac = qemu_get_nic_opaque(nc);

    trace_npcm_gmac_set_link(!nc->link_down);
    gmac_phy_set_link(gmac, !nc->link_down);
}

static void npcm_gmac_mdio_access(NPCMGMACState *gmac, uint16_t v)
{
    bool busy = v & NPCM_GMAC_MII_ADDR_BUSY;
    uint8_t is_write;
    uint8_t pa, gr;
    uint16_t data;

    if (busy) {
        is_write = v & NPCM_GMAC_MII_ADDR_WRITE;
        pa = NPCM_GMAC_MII_ADDR_PA(v);
        gr = NPCM_GMAC_MII_ADDR_GR(v);
        /* Both pa and gr are 5 bits, so they are less than 32. */
        g_assert(pa < NPCM_GMAC_MAX_PHYS);
        g_assert(gr < NPCM_GMAC_MAX_PHY_REGS);


        if (v & NPCM_GMAC_MII_ADDR_WRITE) {
            data = gmac->regs[R_NPCM_GMAC_MII_DATA];
            /* Clear reset bit for BMCR register */
            switch (gr) {
            case MII_BMCR:
                data &= ~MII_BMCR_RESET;
                /* Autonegotiation is a W1C bit*/
                if (data & MII_BMCR_ANRESTART) {
                    /* Tells autonegotiation to not restart again */
                    data &= ~MII_BMCR_ANRESTART;
                }
                if ((data & MII_BMCR_AUTOEN) &&
                    !(gmac->phy_regs[pa][MII_BMSR] & MII_BMSR_AN_COMP)) {
                    /* sets autonegotiation as complete */
                    gmac->phy_regs[pa][MII_BMSR] |= MII_BMSR_AN_COMP;
                    /* Resolve AN automatically->need to set this */
                    gmac->phy_regs[0][MII_ANLPAR] = 0x0000;
                }
            }
            gmac->phy_regs[pa][gr] = data;
        } else {
            data = gmac->phy_regs[pa][gr];
            gmac->regs[R_NPCM_GMAC_MII_DATA] = data;
        }
        trace_npcm_gmac_mdio_access(DEVICE(gmac)->canonical_path, is_write, pa,
                                        gr, data);
    }
    gmac->regs[R_NPCM_GMAC_MII_ADDR] = v & ~NPCM_GMAC_MII_ADDR_BUSY;
}

static uint64_t npcm_gmac_read(void *opaque, hwaddr offset, unsigned size)
{
    NPCMGMACState *gmac = opaque;
    uint32_t v = 0;

    switch (offset) {
    /* Write only registers */
    case A_NPCM_DMA_XMT_POLL_DEMAND:
    case A_NPCM_DMA_RCV_POLL_DEMAND:
        qemu_log_mask(LOG_GUEST_ERROR,
                      "%s: Read of write-only reg: offset: 0x%04" HWADDR_PRIx
                      "\n", DEVICE(gmac)->canonical_path, offset);
        break;

    default:
        v = gmac->regs[offset / sizeof(uint32_t)];
    }

    trace_npcm_gmac_reg_read(DEVICE(gmac)->canonical_path, offset, v);
    return v;
}

static void npcm_gmac_write(void *opaque, hwaddr offset,
                              uint64_t v, unsigned size)
{
    NPCMGMACState *gmac = opaque;

    trace_npcm_gmac_reg_write(DEVICE(gmac)->canonical_path, offset, v);

    switch (offset) {
    /* Read only registers */
    case A_NPCM_GMAC_VERSION:
    case A_NPCM_GMAC_INT_STATUS:
    case A_NPCM_GMAC_RGMII_STATUS:
    case A_NPCM_GMAC_PTP_STSR:
    case A_NPCM_GMAC_PTP_STNSR:
    case A_NPCM_DMA_MISSED_FRAME_CTR:
    case A_NPCM_DMA_HOST_TX_DESC:
    case A_NPCM_DMA_HOST_RX_DESC:
    case A_NPCM_DMA_CUR_TX_BUF_ADDR:
    case A_NPCM_DMA_CUR_RX_BUF_ADDR:
    case A_NPCM_DMA_HW_FEATURE:
        qemu_log_mask(LOG_GUEST_ERROR,
                      "%s: Write of read-only reg: offset: 0x%04" HWADDR_PRIx
                      ", value: 0x%04" PRIx64 "\n",
                      DEVICE(gmac)->canonical_path, offset, v);
        break;

    case A_NPCM_GMAC_MAC_CONFIG:
        gmac->regs[offset / sizeof(uint32_t)] = v;
        break;

    case A_NPCM_GMAC_MII_ADDR:
        npcm_gmac_mdio_access(gmac, v);
        break;

    case A_NPCM_GMAC_MAC0_ADDR_HI:
        gmac->regs[offset / sizeof(uint32_t)] = v;
        gmac->conf.macaddr.a[0] = v >> 8;
        gmac->conf.macaddr.a[1] = v >> 0;
        break;

    case A_NPCM_GMAC_MAC0_ADDR_LO:
        gmac->regs[offset / sizeof(uint32_t)] = v;
        gmac->conf.macaddr.a[2] = v >> 24;
        gmac->conf.macaddr.a[3] = v >> 16;
        gmac->conf.macaddr.a[4] = v >> 8;
        gmac->conf.macaddr.a[5] = v >> 0;
        break;

    case A_NPCM_GMAC_MAC1_ADDR_HI:
    case A_NPCM_GMAC_MAC1_ADDR_LO:
    case A_NPCM_GMAC_MAC2_ADDR_HI:
    case A_NPCM_GMAC_MAC2_ADDR_LO:
    case A_NPCM_GMAC_MAC3_ADDR_HI:
    case A_NPCM_GMAC_MAC3_ADDR_LO:
        gmac->regs[offset / sizeof(uint32_t)] = v;
        qemu_log_mask(LOG_UNIMP,
                      "%s: Only MAC Address 0 is supported. This request "
                      "is ignored.\n", DEVICE(gmac)->canonical_path);
        break;

    case A_NPCM_DMA_BUS_MODE:
        gmac->regs[offset / sizeof(uint32_t)] = v;
        if (v & NPCM_DMA_BUS_MODE_SWR) {
            npcm_gmac_soft_reset(gmac);
        }
        break;

    case A_NPCM_DMA_RCV_POLL_DEMAND:
        /* We dont actually care about the value */
        gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
            NPCM_DMA_STATUS_RX_RUNNING_WAITING_STATE);
        break;

    case A_NPCM_DMA_XMT_POLL_DEMAND:
        /* We dont actually care about the value */
        gmac_try_send_next_packet(gmac);
        break;

    case A_NPCM_DMA_CONTROL:
        gmac->regs[offset / sizeof(uint32_t)] = v;
        if (v & NPCM_DMA_CONTROL_START_STOP_TX) {
            gmac_try_send_next_packet(gmac);
        } else {
            gmac_dma_set_state(gmac, NPCM_DMA_STATUS_TX_PROCESS_STATE_SHIFT,
                NPCM_DMA_STATUS_TX_STOPPED_STATE);
        }
        if (v & NPCM_DMA_CONTROL_START_STOP_RX) {
            gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
                NPCM_DMA_STATUS_RX_RUNNING_WAITING_STATE);
            qemu_flush_queued_packets(qemu_get_queue(gmac->nic));
        } else {
            gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
                NPCM_DMA_STATUS_RX_STOPPED_STATE);
        }
        break;

    case A_NPCM_DMA_STATUS:
        /* Check that RO bits are not written to */
        if (NPCM_DMA_STATUS_RO_MASK(v)) {
            qemu_log_mask(LOG_GUEST_ERROR,
                          "%s: Write of read-only bits of reg: offset: 0x%04"
                           HWADDR_PRIx ", value: 0x%04" PRIx64 "\n",
                           DEVICE(gmac)->canonical_path, offset, v);
        }
        /* for W1C bits, implement W1C */
        gmac->regs[offset / sizeof(uint32_t)] &= ~NPCM_DMA_STATUS_W1C_MASK(v);
        if (v & NPCM_DMA_STATUS_RU) {
            /* Clearing RU bit indicates descriptor is owned by DMA again. */
            gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
                NPCM_DMA_STATUS_RX_RUNNING_WAITING_STATE);
            qemu_flush_queued_packets(qemu_get_queue(gmac->nic));
        }
        break;

    default:
        gmac->regs[offset / sizeof(uint32_t)] = v;
        break;
    }

    gmac_update_irq(gmac);
}

static void npcm_gmac_reset(DeviceState *dev)
{
    NPCMGMACState *gmac = NPCM_GMAC(dev);

    npcm_gmac_soft_reset(gmac);
    memcpy(gmac->phy_regs[0], phy_reg_init, sizeof(phy_reg_init));

    trace_npcm_gmac_reset(DEVICE(gmac)->canonical_path,
                          gmac->phy_regs[0][MII_BMSR]);
}

static NetClientInfo net_npcm_gmac_info = {
    .type = NET_CLIENT_DRIVER_NIC,
    .size = sizeof(NICState),
    .can_receive = gmac_can_receive,
    .receive = gmac_receive,
    .cleanup = gmac_cleanup,
    .link_status_changed = gmac_set_link,
};

static const struct MemoryRegionOps npcm_gmac_ops = {
    .read = npcm_gmac_read,
    .write = npcm_gmac_write,
    .endianness = DEVICE_LITTLE_ENDIAN,
    .valid = {
        .min_access_size = 4,
        .max_access_size = 4,
        .unaligned = false,
    },
};

static void npcm_gmac_realize(DeviceState *dev, Error **errp)
{
    NPCMGMACState *gmac = NPCM_GMAC(dev);
    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);

    memory_region_init_io(&gmac->iomem, OBJECT(gmac), &npcm_gmac_ops, gmac,
                          TYPE_NPCM_GMAC, 8 * KiB);
    sysbus_init_mmio(sbd, &gmac->iomem);
    sysbus_init_irq(sbd, &gmac->irq);

    qemu_macaddr_default_if_unset(&gmac->conf.macaddr);

    gmac->nic = qemu_new_nic(&net_npcm_gmac_info, &gmac->conf, TYPE_NPCM_GMAC,
                             dev->id, &dev->mem_reentrancy_guard, gmac);
    qemu_format_nic_info_str(qemu_get_queue(gmac->nic), gmac->conf.macaddr.a);
    gmac->regs[R_NPCM_GMAC_MAC0_ADDR_HI] = (gmac->conf.macaddr.a[0] << 8) + \
                                            gmac->conf.macaddr.a[1];
    gmac->regs[R_NPCM_GMAC_MAC0_ADDR_LO] = (gmac->conf.macaddr.a[2] << 24) + \
                                           (gmac->conf.macaddr.a[3] << 16) + \
                                           (gmac->conf.macaddr.a[4] << 8) + \
                                            gmac->conf.macaddr.a[5];
}

static void npcm_gmac_unrealize(DeviceState *dev)
{
    NPCMGMACState *gmac = NPCM_GMAC(dev);

    qemu_del_nic(gmac->nic);
}

static const VMStateDescription vmstate_npcm_gmac = {
    .name = TYPE_NPCM_GMAC,
    .version_id = 0,
    .minimum_version_id = 0,
    .fields = (VMStateField[]) {
        VMSTATE_UINT32_ARRAY(regs, NPCMGMACState, NPCM_GMAC_NR_REGS),
        VMSTATE_END_OF_LIST(),
    },
};

static Property npcm_gmac_properties[] = {
    DEFINE_NIC_PROPERTIES(NPCMGMACState, conf),
    DEFINE_PROP_END_OF_LIST(),
};

static void npcm_gmac_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);

    set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
    dc->desc = "NPCM GMAC Controller";
    dc->realize = npcm_gmac_realize;
    dc->unrealize = npcm_gmac_unrealize;
    dc->reset = npcm_gmac_reset;
    dc->vmsd = &vmstate_npcm_gmac;
    device_class_set_props(dc, npcm_gmac_properties);
}

static const TypeInfo npcm_gmac_types[] = {
    {
        .name = TYPE_NPCM_GMAC,
        .parent = TYPE_SYS_BUS_DEVICE,
        .instance_size = sizeof(NPCMGMACState),
        .class_init = npcm_gmac_class_init,
    },
};
DEFINE_TYPES(npcm_gmac_types)