/* * Nuvoton NPCM7xx EMC Module * * Copyright 2020 Google LLC * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * Unsupported/unimplemented features: * - MCMDR.FDUP (full duplex) is ignored, half duplex is not supported * - Only CAM0 is supported, CAM[1-15] are not * - writes to CAMEN.[1-15] are ignored, these bits always read as zeroes * - MII is not implemented, MIIDA.BUSY and MIID always return zero * - MCMDR.LBK is not implemented * - MCMDR.{OPMOD,ENSQE,AEP,ARP} are not supported * - H/W FIFOs are not supported, MCMDR.FFTCR is ignored * - MGSTA.SQE is not supported * - pause and control frames are not implemented * - MGSTA.CCNT is not supported * - MPCNT, DMARFS are not implemented */ #include "qemu/osdep.h" /* For crc32 */ #include #include "hw/irq.h" #include "hw/qdev-clock.h" #include "hw/qdev-properties.h" #include "hw/net/npcm7xx_emc.h" #include "net/eth.h" #include "migration/vmstate.h" #include "qemu/bitops.h" #include "qemu/error-report.h" #include "qemu/log.h" #include "qemu/module.h" #include "qemu/units.h" #include "sysemu/dma.h" #include "trace.h" #define CRC_LENGTH 4 /* * The maximum size of a (layer 2) ethernet frame as defined by 802.3. * 1518 = 6(dest macaddr) + 6(src macaddr) + 2(proto) + 4(crc) + 1500(payload) * This does not include an additional 4 for the vlan field (802.1q). */ #define MAX_ETH_FRAME_SIZE 1518 static const char *emc_reg_name(int regno) { #define REG(name) case REG_ ## name: return #name; switch (regno) { REG(CAMCMR) REG(CAMEN) REG(TXDLSA) REG(RXDLSA) REG(MCMDR) REG(MIID) REG(MIIDA) REG(FFTCR) REG(TSDR) REG(RSDR) REG(DMARFC) REG(MIEN) REG(MISTA) REG(MGSTA) REG(MPCNT) REG(MRPC) REG(MRPCC) REG(MREPC) REG(DMARFS) REG(CTXDSA) REG(CTXBSA) REG(CRXDSA) REG(CRXBSA) case REG_CAMM_BASE + 0: return "CAM0M"; case REG_CAML_BASE + 0: return "CAM0L"; case REG_CAMM_BASE + 2 ... REG_CAMML_LAST: /* Only CAM0 is supported, fold the others into something simple. */ if (regno & 1) { return "CAML"; } else { return "CAMM"; } default: return "UNKNOWN"; } #undef REG } static void emc_reset(NPCM7xxEMCState *emc) { uint32_t value; trace_npcm7xx_emc_reset(emc->emc_num); memset(&emc->regs[0], 0, sizeof(emc->regs)); /* These regs have non-zero reset values. */ emc->regs[REG_TXDLSA] = 0xfffffffc; emc->regs[REG_RXDLSA] = 0xfffffffc; emc->regs[REG_MIIDA] = 0x00900000; emc->regs[REG_FFTCR] = 0x0101; emc->regs[REG_DMARFC] = 0x0800; emc->regs[REG_MPCNT] = 0x7fff; emc->tx_active = false; emc->rx_active = false; /* Set the MAC address in the register space. */ value = (emc->conf.macaddr.a[0] << 24) | (emc->conf.macaddr.a[1] << 16) | (emc->conf.macaddr.a[2] << 8) | emc->conf.macaddr.a[3]; emc->regs[REG_CAMM_BASE] = value; value = (emc->conf.macaddr.a[4] << 24) | (emc->conf.macaddr.a[5] << 16); emc->regs[REG_CAML_BASE] = value; } static void npcm7xx_emc_reset(DeviceState *dev) { NPCM7xxEMCState *emc = NPCM7XX_EMC(dev); emc_reset(emc); } static void emc_soft_reset(NPCM7xxEMCState *emc) { /* * The docs say at least MCMDR.{LBK,OPMOD} bits are not changed during a * soft reset, but does not go into further detail. For now, KISS. */ uint32_t mcmdr = emc->regs[REG_MCMDR]; emc_reset(emc); emc->regs[REG_MCMDR] = mcmdr & (REG_MCMDR_LBK | REG_MCMDR_OPMOD); qemu_set_irq(emc->tx_irq, 0); qemu_set_irq(emc->rx_irq, 0); } static void emc_set_link(NetClientState *nc) { /* Nothing to do yet. */ } /* MISTA.TXINTR is the union of the individual bits with their enables. */ static void emc_update_mista_txintr(NPCM7xxEMCState *emc) { /* Only look at the bits we support. */ uint32_t mask = (REG_MISTA_TXBERR | REG_MISTA_TDU | REG_MISTA_TXCP); if (emc->regs[REG_MISTA] & emc->regs[REG_MIEN] & mask) { emc->regs[REG_MISTA] |= REG_MISTA_TXINTR; } else { emc->regs[REG_MISTA] &= ~REG_MISTA_TXINTR; } } /* MISTA.RXINTR is the union of the individual bits with their enables. */ static void emc_update_mista_rxintr(NPCM7xxEMCState *emc) { /* Only look at the bits we support. */ uint32_t mask = (REG_MISTA_RXBERR | REG_MISTA_RDU | REG_MISTA_RXGD); if (emc->regs[REG_MISTA] & emc->regs[REG_MIEN] & mask) { emc->regs[REG_MISTA] |= REG_MISTA_RXINTR; } else { emc->regs[REG_MISTA] &= ~REG_MISTA_RXINTR; } } /* N.B. emc_update_mista_txintr must have already been called. */ static void emc_update_tx_irq(NPCM7xxEMCState *emc) { int level = !!(emc->regs[REG_MISTA] & emc->regs[REG_MIEN] & REG_MISTA_TXINTR); trace_npcm7xx_emc_update_tx_irq(level); qemu_set_irq(emc->tx_irq, level); } /* N.B. emc_update_mista_rxintr must have already been called. */ static void emc_update_rx_irq(NPCM7xxEMCState *emc) { int level = !!(emc->regs[REG_MISTA] & emc->regs[REG_MIEN] & REG_MISTA_RXINTR); trace_npcm7xx_emc_update_rx_irq(level); qemu_set_irq(emc->rx_irq, level); } /* Update IRQ states due to changes in MIEN,MISTA. */ static void emc_update_irq_from_reg_change(NPCM7xxEMCState *emc) { emc_update_mista_txintr(emc); emc_update_tx_irq(emc); emc_update_mista_rxintr(emc); emc_update_rx_irq(emc); } static int emc_read_tx_desc(dma_addr_t addr, NPCM7xxEMCTxDesc *desc) { if (dma_memory_read(&address_space_memory, addr, desc, sizeof(*desc), MEMTXATTRS_UNSPECIFIED)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to read descriptor @ 0x%" HWADDR_PRIx "\n", __func__, addr); return -1; } desc->flags = le32_to_cpu(desc->flags); desc->txbsa = le32_to_cpu(desc->txbsa); desc->status_and_length = le32_to_cpu(desc->status_and_length); desc->ntxdsa = le32_to_cpu(desc->ntxdsa); return 0; } static int emc_write_tx_desc(const NPCM7xxEMCTxDesc *desc, dma_addr_t addr) { NPCM7xxEMCTxDesc le_desc; le_desc.flags = cpu_to_le32(desc->flags); le_desc.txbsa = cpu_to_le32(desc->txbsa); le_desc.status_and_length = cpu_to_le32(desc->status_and_length); le_desc.ntxdsa = cpu_to_le32(desc->ntxdsa); if (dma_memory_write(&address_space_memory, addr, &le_desc, sizeof(le_desc), MEMTXATTRS_UNSPECIFIED)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to write descriptor @ 0x%" HWADDR_PRIx "\n", __func__, addr); return -1; } return 0; } static int emc_read_rx_desc(dma_addr_t addr, NPCM7xxEMCRxDesc *desc) { if (dma_memory_read(&address_space_memory, addr, desc, sizeof(*desc), MEMTXATTRS_UNSPECIFIED)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to read descriptor @ 0x%" HWADDR_PRIx "\n", __func__, addr); return -1; } desc->status_and_length = le32_to_cpu(desc->status_and_length); desc->rxbsa = le32_to_cpu(desc->rxbsa); desc->reserved = le32_to_cpu(desc->reserved); desc->nrxdsa = le32_to_cpu(desc->nrxdsa); return 0; } static int emc_write_rx_desc(const NPCM7xxEMCRxDesc *desc, dma_addr_t addr) { NPCM7xxEMCRxDesc le_desc; le_desc.status_and_length = cpu_to_le32(desc->status_and_length); le_desc.rxbsa = cpu_to_le32(desc->rxbsa); le_desc.reserved = cpu_to_le32(desc->reserved); le_desc.nrxdsa = cpu_to_le32(desc->nrxdsa); if (dma_memory_write(&address_space_memory, addr, &le_desc, sizeof(le_desc), MEMTXATTRS_UNSPECIFIED)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to write descriptor @ 0x%" HWADDR_PRIx "\n", __func__, addr); return -1; } return 0; } static void emc_set_mista(NPCM7xxEMCState *emc, uint32_t flags) { trace_npcm7xx_emc_set_mista(flags); emc->regs[REG_MISTA] |= flags; if (extract32(flags, 16, 16)) { emc_update_mista_txintr(emc); } if (extract32(flags, 0, 16)) { emc_update_mista_rxintr(emc); } } static void emc_halt_tx(NPCM7xxEMCState *emc, uint32_t mista_flag) { emc->tx_active = false; emc_set_mista(emc, mista_flag); } static void emc_halt_rx(NPCM7xxEMCState *emc, uint32_t mista_flag) { emc->rx_active = false; emc_set_mista(emc, mista_flag); } static void emc_enable_rx_and_flush(NPCM7xxEMCState *emc) { emc->rx_active = true; qemu_flush_queued_packets(qemu_get_queue(emc->nic)); } static void emc_set_next_tx_descriptor(NPCM7xxEMCState *emc, const NPCM7xxEMCTxDesc *tx_desc, uint32_t desc_addr) { /* Update the current descriptor, if only to reset the owner flag. */ if (emc_write_tx_desc(tx_desc, desc_addr)) { /* * We just read it so this shouldn't generally happen. * Error already reported. */ emc_set_mista(emc, REG_MISTA_TXBERR); } emc->regs[REG_CTXDSA] = TX_DESC_NTXDSA(tx_desc->ntxdsa); } static void emc_set_next_rx_descriptor(NPCM7xxEMCState *emc, const NPCM7xxEMCRxDesc *rx_desc, uint32_t desc_addr) { /* Update the current descriptor, if only to reset the owner flag. */ if (emc_write_rx_desc(rx_desc, desc_addr)) { /* * We just read it so this shouldn't generally happen. * Error already reported. */ emc_set_mista(emc, REG_MISTA_RXBERR); } emc->regs[REG_CRXDSA] = RX_DESC_NRXDSA(rx_desc->nrxdsa); } static void emc_try_send_next_packet(NPCM7xxEMCState *emc) { /* Working buffer for sending out packets. Most packets fit in this. */ #define TX_BUFFER_SIZE 2048 uint8_t tx_send_buffer[TX_BUFFER_SIZE]; uint32_t desc_addr = TX_DESC_NTXDSA(emc->regs[REG_CTXDSA]); NPCM7xxEMCTxDesc tx_desc; uint32_t next_buf_addr, length; uint8_t *buf; g_autofree uint8_t *malloced_buf = NULL; if (emc_read_tx_desc(desc_addr, &tx_desc)) { /* Error reading descriptor, already reported. */ emc_halt_tx(emc, REG_MISTA_TXBERR); emc_update_tx_irq(emc); return; } /* Nothing we can do if we don't own the descriptor. */ if (!(tx_desc.flags & TX_DESC_FLAG_OWNER_MASK)) { trace_npcm7xx_emc_cpu_owned_desc(desc_addr); emc_halt_tx(emc, REG_MISTA_TDU); emc_update_tx_irq(emc); return; } /* Give the descriptor back regardless of what happens. */ tx_desc.flags &= ~TX_DESC_FLAG_OWNER_MASK; tx_desc.status_and_length &= 0xffff; /* * Despite the h/w documentation saying the tx buffer is word aligned, * the linux driver does not word align the buffer. There is value in not * aligning the buffer: See the description of NET_IP_ALIGN in linux * kernel sources. */ next_buf_addr = tx_desc.txbsa; emc->regs[REG_CTXBSA] = next_buf_addr; length = TX_DESC_PKT_LEN(tx_desc.status_and_length); buf = &tx_send_buffer[0]; if (length > sizeof(tx_send_buffer)) { malloced_buf = g_malloc(length); buf = malloced_buf; } if (dma_memory_read(&address_space_memory, next_buf_addr, buf, length, MEMTXATTRS_UNSPECIFIED)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to read packet @ 0x%x\n", __func__, next_buf_addr); emc_set_mista(emc, REG_MISTA_TXBERR); emc_set_next_tx_descriptor(emc, &tx_desc, desc_addr); emc_update_tx_irq(emc); trace_npcm7xx_emc_tx_done(emc->regs[REG_CTXDSA]); return; } if ((tx_desc.flags & TX_DESC_FLAG_PADEN) && (length < MIN_PACKET_LENGTH)) { memset(buf + length, 0, MIN_PACKET_LENGTH - length); length = MIN_PACKET_LENGTH; } /* N.B. emc_receive can get called here. */ qemu_send_packet(qemu_get_queue(emc->nic), buf, length); trace_npcm7xx_emc_sent_packet(length); tx_desc.status_and_length |= TX_DESC_STATUS_TXCP; if (tx_desc.flags & TX_DESC_FLAG_INTEN) { emc_set_mista(emc, REG_MISTA_TXCP); } if (emc->regs[REG_MISTA] & emc->regs[REG_MIEN] & REG_MISTA_TXINTR) { tx_desc.status_and_length |= TX_DESC_STATUS_TXINTR; } emc_set_next_tx_descriptor(emc, &tx_desc, desc_addr); emc_update_tx_irq(emc); trace_npcm7xx_emc_tx_done(emc->regs[REG_CTXDSA]); } static bool emc_can_receive(NetClientState *nc) { NPCM7xxEMCState *emc = NPCM7XX_EMC(qemu_get_nic_opaque(nc)); bool can_receive = emc->rx_active; trace_npcm7xx_emc_can_receive(can_receive); return can_receive; } /* If result is false then *fail_reason contains the reason. */ static bool emc_receive_filter1(NPCM7xxEMCState *emc, const uint8_t *buf, size_t len, const char **fail_reason) { eth_pkt_types_e pkt_type = get_eth_packet_type(PKT_GET_ETH_HDR(buf)); switch (pkt_type) { case ETH_PKT_BCAST: if (emc->regs[REG_CAMCMR] & REG_CAMCMR_CCAM) { return true; } else { *fail_reason = "Broadcast packet disabled"; return !!(emc->regs[REG_CAMCMR] & REG_CAMCMR_ABP); } case ETH_PKT_MCAST: if (emc->regs[REG_CAMCMR] & REG_CAMCMR_CCAM) { return true; } else { *fail_reason = "Multicast packet disabled"; return !!(emc->regs[REG_CAMCMR] & REG_CAMCMR_AMP); } case ETH_PKT_UCAST: { bool matches; uint32_t value; struct MACAddr mac; if (emc->regs[REG_CAMCMR] & REG_CAMCMR_AUP) { return true; } value = emc->regs[REG_CAMM_BASE]; mac.a[0] = value >> 24; mac.a[1] = value >> 16; mac.a[2] = value >> 8; mac.a[3] = value >> 0; value = emc->regs[REG_CAML_BASE]; mac.a[4] = value >> 24; mac.a[5] = value >> 16; matches = ((emc->regs[REG_CAMCMR] & REG_CAMCMR_ECMP) && /* We only support one CAM register, CAM0. */ (emc->regs[REG_CAMEN] & (1 << 0)) && memcmp(buf, mac.a, ETH_ALEN) == 0); if (emc->regs[REG_CAMCMR] & REG_CAMCMR_CCAM) { *fail_reason = "MACADDR matched, comparison complemented"; return !matches; } else { *fail_reason = "MACADDR didn't match"; return matches; } } default: g_assert_not_reached(); } } static bool emc_receive_filter(NPCM7xxEMCState *emc, const uint8_t *buf, size_t len) { const char *fail_reason = NULL; bool ok = emc_receive_filter1(emc, buf, len, &fail_reason); if (!ok) { trace_npcm7xx_emc_packet_filtered_out(fail_reason); } return ok; } static ssize_t emc_receive(NetClientState *nc, const uint8_t *buf, size_t len1) { NPCM7xxEMCState *emc = NPCM7XX_EMC(qemu_get_nic_opaque(nc)); const uint32_t len = len1; size_t max_frame_len; bool long_frame; uint32_t desc_addr; NPCM7xxEMCRxDesc rx_desc; uint32_t crc; uint8_t *crc_ptr; uint32_t buf_addr; trace_npcm7xx_emc_receiving_packet(len); if (!emc_can_receive(nc)) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Unexpected packet\n", __func__); return -1; } if (len < ETH_HLEN || /* Defensive programming: drop unsupportable large packets. */ len > 0xffff - CRC_LENGTH) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Dropped frame of %u bytes\n", __func__, len); return len; } /* * DENI is set if EMC received the Length/Type field of the incoming * packet, so it will be set regardless of what happens next. */ emc_set_mista(emc, REG_MISTA_DENI); if (!emc_receive_filter(emc, buf, len)) { emc_update_rx_irq(emc); return len; } /* Huge frames (> DMARFC) are dropped. */ max_frame_len = REG_DMARFC_RXMS(emc->regs[REG_DMARFC]); if (len + CRC_LENGTH > max_frame_len) { trace_npcm7xx_emc_packet_dropped(len); emc_set_mista(emc, REG_MISTA_DFOI); emc_update_rx_irq(emc); return len; } /* * Long Frames (> MAX_ETH_FRAME_SIZE) are also dropped, unless MCMDR.ALP * is set. */ long_frame = false; if (len + CRC_LENGTH > MAX_ETH_FRAME_SIZE) { if (emc->regs[REG_MCMDR] & REG_MCMDR_ALP) { long_frame = true; } else { trace_npcm7xx_emc_packet_dropped(len); emc_set_mista(emc, REG_MISTA_PTLE); emc_update_rx_irq(emc); return len; } } desc_addr = RX_DESC_NRXDSA(emc->regs[REG_CRXDSA]); if (emc_read_rx_desc(desc_addr, &rx_desc)) { /* Error reading descriptor, already reported. */ emc_halt_rx(emc, REG_MISTA_RXBERR); emc_update_rx_irq(emc); return len; } /* Nothing we can do if we don't own the descriptor. */ if (!(rx_desc.status_and_length & RX_DESC_STATUS_OWNER_MASK)) { trace_npcm7xx_emc_cpu_owned_desc(desc_addr); emc_halt_rx(emc, REG_MISTA_RDU); emc_update_rx_irq(emc); return len; } crc = 0; crc_ptr = (uint8_t *) &crc; if (!(emc->regs[REG_MCMDR] & REG_MCMDR_SPCRC)) { crc = cpu_to_be32(crc32(~0, buf, len)); } /* Give the descriptor back regardless of what happens. */ rx_desc.status_and_length &= ~RX_DESC_STATUS_OWNER_MASK; buf_addr = rx_desc.rxbsa; emc->regs[REG_CRXBSA] = buf_addr; if (dma_memory_write(&address_space_memory, buf_addr, buf, len, MEMTXATTRS_UNSPECIFIED) || (!(emc->regs[REG_MCMDR] & REG_MCMDR_SPCRC) && dma_memory_write(&address_space_memory, buf_addr + len, crc_ptr, 4, MEMTXATTRS_UNSPECIFIED))) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Bus error writing packet\n", __func__); emc_set_mista(emc, REG_MISTA_RXBERR); emc_set_next_rx_descriptor(emc, &rx_desc, desc_addr); emc_update_rx_irq(emc); trace_npcm7xx_emc_rx_done(emc->regs[REG_CRXDSA]); return len; } trace_npcm7xx_emc_received_packet(len); /* Note: We've already verified len+4 <= 0xffff. */ rx_desc.status_and_length = len; if (!(emc->regs[REG_MCMDR] & REG_MCMDR_SPCRC)) { rx_desc.status_and_length += 4; } rx_desc.status_and_length |= RX_DESC_STATUS_RXGD; emc_set_mista(emc, REG_MISTA_RXGD); if (emc->regs[REG_MISTA] & emc->regs[REG_MIEN] & REG_MISTA_RXINTR) { rx_desc.status_and_length |= RX_DESC_STATUS_RXINTR; } if (long_frame) { rx_desc.status_and_length |= RX_DESC_STATUS_PTLE; } emc_set_next_rx_descriptor(emc, &rx_desc, desc_addr); emc_update_rx_irq(emc); trace_npcm7xx_emc_rx_done(emc->regs[REG_CRXDSA]); return len; } static uint64_t npcm7xx_emc_read(void *opaque, hwaddr offset, unsigned size) { NPCM7xxEMCState *emc = opaque; uint32_t reg = offset / sizeof(uint32_t); uint32_t result; if (reg >= NPCM7XX_NUM_EMC_REGS) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Invalid offset 0x%04" HWADDR_PRIx "\n", __func__, offset); return 0; } switch (reg) { case REG_MIID: /* * We don't implement MII. For determinism, always return zero as * writes record the last value written for debugging purposes. */ qemu_log_mask(LOG_UNIMP, "%s: Read of MIID, returning 0\n", __func__); result = 0; break; case REG_TSDR: case REG_RSDR: qemu_log_mask(LOG_GUEST_ERROR, "%s: Read of write-only reg, %s/%d\n", __func__, emc_reg_name(reg), reg); return 0; default: result = emc->regs[reg]; break; } trace_npcm7xx_emc_reg_read(emc->emc_num, result, emc_reg_name(reg), reg); return result; } static void npcm7xx_emc_write(void *opaque, hwaddr offset, uint64_t v, unsigned size) { NPCM7xxEMCState *emc = opaque; uint32_t reg = offset / sizeof(uint32_t); uint32_t value = v; g_assert(size == sizeof(uint32_t)); if (reg >= NPCM7XX_NUM_EMC_REGS) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Invalid offset 0x%04" HWADDR_PRIx "\n", __func__, offset); return; } trace_npcm7xx_emc_reg_write(emc->emc_num, emc_reg_name(reg), reg, value); switch (reg) { case REG_CAMCMR: emc->regs[reg] = value; break; case REG_CAMEN: /* Only CAM0 is supported, don't pretend otherwise. */ if (value & ~1) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Only CAM0 is supported, cannot enable others" ": 0x%x\n", __func__, value); } emc->regs[reg] = value & 1; break; case REG_CAMM_BASE + 0: emc->regs[reg] = value; break; case REG_CAML_BASE + 0: emc->regs[reg] = value; break; case REG_MCMDR: { uint32_t prev; if (value & REG_MCMDR_SWR) { emc_soft_reset(emc); /* On h/w the reset happens over multiple cycles. For now KISS. */ break; } prev = emc->regs[reg]; emc->regs[reg] = value; /* Update tx state. */ if (!(prev & REG_MCMDR_TXON) && (value & REG_MCMDR_TXON)) { emc->regs[REG_CTXDSA] = emc->regs[REG_TXDLSA]; /* * Linux kernel turns TX on with CPU still holding descriptor, * which suggests we should wait for a write to TSDR before trying * to send a packet: so we don't send one here. */ } else if ((prev & REG_MCMDR_TXON) && !(value & REG_MCMDR_TXON)) { emc->regs[REG_MGSTA] |= REG_MGSTA_TXHA; } if (!(value & REG_MCMDR_TXON)) { emc_halt_tx(emc, 0); } /* Update rx state. */ if (!(prev & REG_MCMDR_RXON) && (value & REG_MCMDR_RXON)) { emc->regs[REG_CRXDSA] = emc->regs[REG_RXDLSA]; } else if ((prev & REG_MCMDR_RXON) && !(value & REG_MCMDR_RXON)) { emc->regs[REG_MGSTA] |= REG_MGSTA_RXHA; } if (value & REG_MCMDR_RXON) { emc_enable_rx_and_flush(emc); } else { emc_halt_rx(emc, 0); } break; } case REG_TXDLSA: case REG_RXDLSA: case REG_DMARFC: case REG_MIID: emc->regs[reg] = value; break; case REG_MIEN: emc->regs[reg] = value; emc_update_irq_from_reg_change(emc); break; case REG_MISTA: /* Clear the bits that have 1 in "value". */ emc->regs[reg] &= ~value; emc_update_irq_from_reg_change(emc); break; case REG_MGSTA: /* Clear the bits that have 1 in "value". */ emc->regs[reg] &= ~value; break; case REG_TSDR: if (emc->regs[REG_MCMDR] & REG_MCMDR_TXON) { emc->tx_active = true; /* Keep trying to send packets until we run out. */ while (emc->tx_active) { emc_try_send_next_packet(emc); } } break; case REG_RSDR: if (emc->regs[REG_MCMDR] & REG_MCMDR_RXON) { emc_enable_rx_and_flush(emc); } break; case REG_MIIDA: emc->regs[reg] = value & ~REG_MIIDA_BUSY; break; case REG_MRPC: case REG_MRPCC: case REG_MREPC: case REG_CTXDSA: case REG_CTXBSA: case REG_CRXDSA: case REG_CRXBSA: qemu_log_mask(LOG_GUEST_ERROR, "%s: Write to read-only reg %s/%d\n", __func__, emc_reg_name(reg), reg); break; default: qemu_log_mask(LOG_UNIMP, "%s: Write to unimplemented reg %s/%d\n", __func__, emc_reg_name(reg), reg); break; } } static const struct MemoryRegionOps npcm7xx_emc_ops = { .read = npcm7xx_emc_read, .write = npcm7xx_emc_write, .endianness = DEVICE_LITTLE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, .unaligned = false, }, }; static void emc_cleanup(NetClientState *nc) { /* Nothing to do yet. */ } static NetClientInfo net_npcm7xx_emc_info = { .type = NET_CLIENT_DRIVER_NIC, .size = sizeof(NICState), .can_receive = emc_can_receive, .receive = emc_receive, .cleanup = emc_cleanup, .link_status_changed = emc_set_link, }; static void npcm7xx_emc_realize(DeviceState *dev, Error **errp) { NPCM7xxEMCState *emc = NPCM7XX_EMC(dev); SysBusDevice *sbd = SYS_BUS_DEVICE(emc); memory_region_init_io(&emc->iomem, OBJECT(emc), &npcm7xx_emc_ops, emc, TYPE_NPCM7XX_EMC, 4 * KiB); sysbus_init_mmio(sbd, &emc->iomem); sysbus_init_irq(sbd, &emc->tx_irq); sysbus_init_irq(sbd, &emc->rx_irq); qemu_macaddr_default_if_unset(&emc->conf.macaddr); emc->nic = qemu_new_nic(&net_npcm7xx_emc_info, &emc->conf, object_get_typename(OBJECT(dev)), dev->id, &dev->mem_reentrancy_guard, emc); qemu_format_nic_info_str(qemu_get_queue(emc->nic), emc->conf.macaddr.a); } static void npcm7xx_emc_unrealize(DeviceState *dev) { NPCM7xxEMCState *emc = NPCM7XX_EMC(dev); qemu_del_nic(emc->nic); } static const VMStateDescription vmstate_npcm7xx_emc = { .name = TYPE_NPCM7XX_EMC, .version_id = 0, .minimum_version_id = 0, .fields = (VMStateField[]) { VMSTATE_UINT8(emc_num, NPCM7xxEMCState), VMSTATE_UINT32_ARRAY(regs, NPCM7xxEMCState, NPCM7XX_NUM_EMC_REGS), VMSTATE_BOOL(tx_active, NPCM7xxEMCState), VMSTATE_BOOL(rx_active, NPCM7xxEMCState), VMSTATE_END_OF_LIST(), }, }; static Property npcm7xx_emc_properties[] = { DEFINE_NIC_PROPERTIES(NPCM7xxEMCState, conf), DEFINE_PROP_END_OF_LIST(), }; static void npcm7xx_emc_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); dc->desc = "NPCM7xx EMC Controller"; dc->realize = npcm7xx_emc_realize; dc->unrealize = npcm7xx_emc_unrealize; dc->reset = npcm7xx_emc_reset; dc->vmsd = &vmstate_npcm7xx_emc; device_class_set_props(dc, npcm7xx_emc_properties); } static const TypeInfo npcm7xx_emc_info = { .name = TYPE_NPCM7XX_EMC, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(NPCM7xxEMCState), .class_init = npcm7xx_emc_class_init, }; static void npcm7xx_emc_register_type(void) { type_register_static(&npcm7xx_emc_info); } type_init(npcm7xx_emc_register_type)