/* * QEMU Cadence GEM emulation * * Copyright (c) 2011 Xilinx, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include /* For crc32 */ #include "hw/irq.h" #include "hw/net/cadence_gem.h" #include "hw/qdev-properties.h" #include "hw/registerfields.h" #include "migration/vmstate.h" #include "qapi/error.h" #include "qemu/log.h" #include "qemu/module.h" #include "sysemu/dma.h" #include "net/checksum.h" #include "net/eth.h" #define CADENCE_GEM_ERR_DEBUG 0 #define DB_PRINT(...) do {\ if (CADENCE_GEM_ERR_DEBUG) { \ qemu_log(": %s: ", __func__); \ qemu_log(__VA_ARGS__); \ } \ } while (0) REG32(NWCTRL, 0x0) /* Network Control reg */ FIELD(NWCTRL, LOOPBACK , 0, 1) FIELD(NWCTRL, LOOPBACK_LOCAL , 1, 1) FIELD(NWCTRL, ENABLE_RECEIVE, 2, 1) FIELD(NWCTRL, ENABLE_TRANSMIT, 3, 1) FIELD(NWCTRL, MAN_PORT_EN , 4, 1) FIELD(NWCTRL, CLEAR_ALL_STATS_REGS , 5, 1) FIELD(NWCTRL, INC_ALL_STATS_REGS, 6, 1) FIELD(NWCTRL, STATS_WRITE_EN, 7, 1) FIELD(NWCTRL, BACK_PRESSURE, 8, 1) FIELD(NWCTRL, TRANSMIT_START , 9, 1) FIELD(NWCTRL, TRANSMIT_HALT, 10, 1) FIELD(NWCTRL, TX_PAUSE_FRAME_RE, 11, 1) FIELD(NWCTRL, TX_PAUSE_FRAME_ZE, 12, 1) FIELD(NWCTRL, STATS_TAKE_SNAP, 13, 1) FIELD(NWCTRL, STATS_READ_SNAP, 14, 1) FIELD(NWCTRL, STORE_RX_TS, 15, 1) FIELD(NWCTRL, PFC_ENABLE, 16, 1) FIELD(NWCTRL, PFC_PRIO_BASED, 17, 1) FIELD(NWCTRL, FLUSH_RX_PKT_PCLK , 18, 1) FIELD(NWCTRL, TX_LPI_EN, 19, 1) FIELD(NWCTRL, PTP_UNICAST_ENA, 20, 1) FIELD(NWCTRL, ALT_SGMII_MODE, 21, 1) FIELD(NWCTRL, STORE_UDP_OFFSET, 22, 1) FIELD(NWCTRL, EXT_TSU_PORT_EN, 23, 1) FIELD(NWCTRL, ONE_STEP_SYNC_MO, 24, 1) FIELD(NWCTRL, PFC_CTRL , 25, 1) FIELD(NWCTRL, EXT_RXQ_SEL_EN , 26, 1) FIELD(NWCTRL, OSS_CORRECTION_FIELD, 27, 1) FIELD(NWCTRL, SEL_MII_ON_RGMII, 28, 1) FIELD(NWCTRL, TWO_PT_FIVE_GIG, 29, 1) FIELD(NWCTRL, IFG_EATS_QAV_CREDIT, 30, 1) REG32(NWCFG, 0x4) /* Network Config reg */ FIELD(NWCFG, SPEED, 0, 1) FIELD(NWCFG, FULL_DUPLEX, 1, 1) FIELD(NWCFG, DISCARD_NON_VLAN_FRAMES, 2, 1) FIELD(NWCFG, JUMBO_FRAMES, 3, 1) FIELD(NWCFG, PROMISC, 4, 1) FIELD(NWCFG, NO_BROADCAST, 5, 1) FIELD(NWCFG, MULTICAST_HASH_EN, 6, 1) FIELD(NWCFG, UNICAST_HASH_EN, 7, 1) FIELD(NWCFG, RECV_1536_BYTE_FRAMES, 8, 1) FIELD(NWCFG, EXTERNAL_ADDR_MATCH_EN, 9, 1) FIELD(NWCFG, GIGABIT_MODE_ENABLE, 10, 1) FIELD(NWCFG, PCS_SELECT, 11, 1) FIELD(NWCFG, RETRY_TEST, 12, 1) FIELD(NWCFG, PAUSE_ENABLE, 13, 1) FIELD(NWCFG, RECV_BUF_OFFSET, 14, 2) FIELD(NWCFG, LEN_ERR_DISCARD, 16, 1) FIELD(NWCFG, FCS_REMOVE, 17, 1) FIELD(NWCFG, MDC_CLOCK_DIV, 18, 3) FIELD(NWCFG, DATA_BUS_WIDTH, 21, 2) FIELD(NWCFG, DISABLE_COPY_PAUSE_FRAMES, 23, 1) FIELD(NWCFG, RECV_CSUM_OFFLOAD_EN, 24, 1) FIELD(NWCFG, EN_HALF_DUPLEX_RX, 25, 1) FIELD(NWCFG, IGNORE_RX_FCS, 26, 1) FIELD(NWCFG, SGMII_MODE_ENABLE, 27, 1) FIELD(NWCFG, IPG_STRETCH_ENABLE, 28, 1) FIELD(NWCFG, NSP_ACCEPT, 29, 1) FIELD(NWCFG, IGNORE_IPG_RX_ER, 30, 1) FIELD(NWCFG, UNI_DIRECTION_ENABLE, 31, 1) REG32(NWSTATUS, 0x8) /* Network Status reg */ REG32(USERIO, 0xc) /* User IO reg */ REG32(DMACFG, 0x10) /* DMA Control reg */ FIELD(DMACFG, SEND_BCAST_TO_ALL_QS, 31, 1) FIELD(DMACFG, DMA_ADDR_BUS_WIDTH, 30, 1) FIELD(DMACFG, TX_BD_EXT_MODE_EN , 29, 1) FIELD(DMACFG, RX_BD_EXT_MODE_EN , 28, 1) FIELD(DMACFG, FORCE_MAX_AMBA_BURST_TX, 26, 1) FIELD(DMACFG, FORCE_MAX_AMBA_BURST_RX, 25, 1) FIELD(DMACFG, FORCE_DISCARD_ON_ERR, 24, 1) FIELD(DMACFG, RX_BUF_SIZE, 16, 8) FIELD(DMACFG, CRC_ERROR_REPORT, 13, 1) FIELD(DMACFG, INF_LAST_DBUF_SIZE_EN, 12, 1) FIELD(DMACFG, TX_PBUF_CSUM_OFFLOAD, 11, 1) FIELD(DMACFG, TX_PBUF_SIZE, 10, 1) FIELD(DMACFG, RX_PBUF_SIZE, 8, 2) FIELD(DMACFG, ENDIAN_SWAP_PACKET, 7, 1) FIELD(DMACFG, ENDIAN_SWAP_MGNT, 6, 1) FIELD(DMACFG, HDR_DATA_SPLIT_EN, 5, 1) FIELD(DMACFG, AMBA_BURST_LEN , 0, 5) #define GEM_DMACFG_RBUFSZ_MUL 64 /* DMA RX Buffer Size multiplier */ REG32(TXSTATUS, 0x14) /* TX Status reg */ FIELD(TXSTATUS, TX_USED_BIT_READ_MIDFRAME, 12, 1) FIELD(TXSTATUS, TX_FRAME_TOO_LARGE, 11, 1) FIELD(TXSTATUS, TX_DMA_LOCKUP, 10, 1) FIELD(TXSTATUS, TX_MAC_LOCKUP, 9, 1) FIELD(TXSTATUS, RESP_NOT_OK, 8, 1) FIELD(TXSTATUS, LATE_COLLISION, 7, 1) FIELD(TXSTATUS, TRANSMIT_UNDER_RUN, 6, 1) FIELD(TXSTATUS, TRANSMIT_COMPLETE, 5, 1) FIELD(TXSTATUS, AMBA_ERROR, 4, 1) FIELD(TXSTATUS, TRANSMIT_GO, 3, 1) FIELD(TXSTATUS, RETRY_LIMIT, 2, 1) FIELD(TXSTATUS, COLLISION, 1, 1) FIELD(TXSTATUS, USED_BIT_READ, 0, 1) REG32(RXQBASE, 0x18) /* RX Q Base address reg */ REG32(TXQBASE, 0x1c) /* TX Q Base address reg */ REG32(RXSTATUS, 0x20) /* RX Status reg */ FIELD(RXSTATUS, RX_DMA_LOCKUP, 5, 1) FIELD(RXSTATUS, RX_MAC_LOCKUP, 4, 1) FIELD(RXSTATUS, RESP_NOT_OK, 3, 1) FIELD(RXSTATUS, RECEIVE_OVERRUN, 2, 1) FIELD(RXSTATUS, FRAME_RECEIVED, 1, 1) FIELD(RXSTATUS, BUF_NOT_AVAILABLE, 0, 1) REG32(ISR, 0x24) /* Interrupt Status reg */ FIELD(ISR, TX_LOCKUP, 31, 1) FIELD(ISR, RX_LOCKUP, 30, 1) FIELD(ISR, TSU_TIMER, 29, 1) FIELD(ISR, WOL, 28, 1) FIELD(ISR, RECV_LPI, 27, 1) FIELD(ISR, TSU_SEC_INCR, 26, 1) FIELD(ISR, PTP_PDELAY_RESP_XMIT, 25, 1) FIELD(ISR, PTP_PDELAY_REQ_XMIT, 24, 1) FIELD(ISR, PTP_PDELAY_RESP_RECV, 23, 1) FIELD(ISR, PTP_PDELAY_REQ_RECV, 22, 1) FIELD(ISR, PTP_SYNC_XMIT, 21, 1) FIELD(ISR, PTP_DELAY_REQ_XMIT, 20, 1) FIELD(ISR, PTP_SYNC_RECV, 19, 1) FIELD(ISR, PTP_DELAY_REQ_RECV, 18, 1) FIELD(ISR, PCS_LP_PAGE_RECV, 17, 1) FIELD(ISR, PCS_AN_COMPLETE, 16, 1) FIELD(ISR, EXT_IRQ, 15, 1) FIELD(ISR, PAUSE_FRAME_XMIT, 14, 1) FIELD(ISR, PAUSE_TIME_ELAPSED, 13, 1) FIELD(ISR, PAUSE_FRAME_RECV, 12, 1) FIELD(ISR, RESP_NOT_OK, 11, 1) FIELD(ISR, RECV_OVERRUN, 10, 1) FIELD(ISR, LINK_CHANGE, 9, 1) FIELD(ISR, USXGMII_INT, 8, 1) FIELD(ISR, XMIT_COMPLETE, 7, 1) FIELD(ISR, AMBA_ERROR, 6, 1) FIELD(ISR, RETRY_EXCEEDED, 5, 1) FIELD(ISR, XMIT_UNDER_RUN, 4, 1) FIELD(ISR, TX_USED, 3, 1) FIELD(ISR, RX_USED, 2, 1) FIELD(ISR, RECV_COMPLETE, 1, 1) FIELD(ISR, MGNT_FRAME_SENT, 0, 1) REG32(IER, 0x28) /* Interrupt Enable reg */ REG32(IDR, 0x2c) /* Interrupt Disable reg */ REG32(IMR, 0x30) /* Interrupt Mask reg */ REG32(PHYMNTNC, 0x34) /* Phy Maintenance reg */ FIELD(PHYMNTNC, DATA, 0, 16) FIELD(PHYMNTNC, REG_ADDR, 18, 5) FIELD(PHYMNTNC, PHY_ADDR, 23, 5) FIELD(PHYMNTNC, OP, 28, 2) FIELD(PHYMNTNC, ST, 30, 2) #define MDIO_OP_READ 0x2 #define MDIO_OP_WRITE 0x1 REG32(RXPAUSE, 0x38) /* RX Pause Time reg */ REG32(TXPAUSE, 0x3c) /* TX Pause Time reg */ REG32(TXPARTIALSF, 0x40) /* TX Partial Store and Forward */ REG32(RXPARTIALSF, 0x44) /* RX Partial Store and Forward */ REG32(JUMBO_MAX_LEN, 0x48) /* Max Jumbo Frame Size */ REG32(HASHLO, 0x80) /* Hash Low address reg */ REG32(HASHHI, 0x84) /* Hash High address reg */ REG32(SPADDR1LO, 0x88) /* Specific addr 1 low reg */ REG32(SPADDR1HI, 0x8c) /* Specific addr 1 high reg */ REG32(SPADDR2LO, 0x90) /* Specific addr 2 low reg */ REG32(SPADDR2HI, 0x94) /* Specific addr 2 high reg */ REG32(SPADDR3LO, 0x98) /* Specific addr 3 low reg */ REG32(SPADDR3HI, 0x9c) /* Specific addr 3 high reg */ REG32(SPADDR4LO, 0xa0) /* Specific addr 4 low reg */ REG32(SPADDR4HI, 0xa4) /* Specific addr 4 high reg */ REG32(TIDMATCH1, 0xa8) /* Type ID1 Match reg */ REG32(TIDMATCH2, 0xac) /* Type ID2 Match reg */ REG32(TIDMATCH3, 0xb0) /* Type ID3 Match reg */ REG32(TIDMATCH4, 0xb4) /* Type ID4 Match reg */ REG32(WOLAN, 0xb8) /* Wake on LAN reg */ REG32(IPGSTRETCH, 0xbc) /* IPG Stretch reg */ REG32(SVLAN, 0xc0) /* Stacked VLAN reg */ REG32(MODID, 0xfc) /* Module ID reg */ REG32(OCTTXLO, 0x100) /* Octets transmitted Low reg */ REG32(OCTTXHI, 0x104) /* Octets transmitted High reg */ REG32(TXCNT, 0x108) /* Error-free Frames transmitted */ REG32(TXBCNT, 0x10c) /* Error-free Broadcast Frames */ REG32(TXMCNT, 0x110) /* Error-free Multicast Frame */ REG32(TXPAUSECNT, 0x114) /* Pause Frames Transmitted */ REG32(TX64CNT, 0x118) /* Error-free 64 TX */ REG32(TX65CNT, 0x11c) /* Error-free 65-127 TX */ REG32(TX128CNT, 0x120) /* Error-free 128-255 TX */ REG32(TX256CNT, 0x124) /* Error-free 256-511 */ REG32(TX512CNT, 0x128) /* Error-free 512-1023 TX */ REG32(TX1024CNT, 0x12c) /* Error-free 1024-1518 TX */ REG32(TX1519CNT, 0x130) /* Error-free larger than 1519 TX */ REG32(TXURUNCNT, 0x134) /* TX under run error counter */ REG32(SINGLECOLLCNT, 0x138) /* Single Collision Frames */ REG32(MULTCOLLCNT, 0x13c) /* Multiple Collision Frames */ REG32(EXCESSCOLLCNT, 0x140) /* Excessive Collision Frames */ REG32(LATECOLLCNT, 0x144) /* Late Collision Frames */ REG32(DEFERTXCNT, 0x148) /* Deferred Transmission Frames */ REG32(CSENSECNT, 0x14c) /* Carrier Sense Error Counter */ REG32(OCTRXLO, 0x150) /* Octets Received register Low */ REG32(OCTRXHI, 0x154) /* Octets Received register High */ REG32(RXCNT, 0x158) /* Error-free Frames Received */ REG32(RXBROADCNT, 0x15c) /* Error-free Broadcast Frames RX */ REG32(RXMULTICNT, 0x160) /* Error-free Multicast Frames RX */ REG32(RXPAUSECNT, 0x164) /* Pause Frames Received Counter */ REG32(RX64CNT, 0x168) /* Error-free 64 byte Frames RX */ REG32(RX65CNT, 0x16c) /* Error-free 65-127B Frames RX */ REG32(RX128CNT, 0x170) /* Error-free 128-255B Frames RX */ REG32(RX256CNT, 0x174) /* Error-free 256-512B Frames RX */ REG32(RX512CNT, 0x178) /* Error-free 512-1023B Frames RX */ REG32(RX1024CNT, 0x17c) /* Error-free 1024-1518B Frames RX */ REG32(RX1519CNT, 0x180) /* Error-free 1519-max Frames RX */ REG32(RXUNDERCNT, 0x184) /* Undersize Frames Received */ REG32(RXOVERCNT, 0x188) /* Oversize Frames Received */ REG32(RXJABCNT, 0x18c) /* Jabbers Received Counter */ REG32(RXFCSCNT, 0x190) /* Frame Check seq. Error Counter */ REG32(RXLENERRCNT, 0x194) /* Length Field Error Counter */ REG32(RXSYMERRCNT, 0x198) /* Symbol Error Counter */ REG32(RXALIGNERRCNT, 0x19c) /* Alignment Error Counter */ REG32(RXRSCERRCNT, 0x1a0) /* Receive Resource Error Counter */ REG32(RXORUNCNT, 0x1a4) /* Receive Overrun Counter */ REG32(RXIPCSERRCNT, 0x1a8) /* IP header Checksum Err Counter */ REG32(RXTCPCCNT, 0x1ac) /* TCP Checksum Error Counter */ REG32(RXUDPCCNT, 0x1b0) /* UDP Checksum Error Counter */ REG32(1588S, 0x1d0) /* 1588 Timer Seconds */ REG32(1588NS, 0x1d4) /* 1588 Timer Nanoseconds */ REG32(1588ADJ, 0x1d8) /* 1588 Timer Adjust */ REG32(1588INC, 0x1dc) /* 1588 Timer Increment */ REG32(PTPETXS, 0x1e0) /* PTP Event Frame Transmitted (s) */ REG32(PTPETXNS, 0x1e4) /* PTP Event Frame Transmitted (ns) */ REG32(PTPERXS, 0x1e8) /* PTP Event Frame Received (s) */ REG32(PTPERXNS, 0x1ec) /* PTP Event Frame Received (ns) */ REG32(PTPPTXS, 0x1e0) /* PTP Peer Frame Transmitted (s) */ REG32(PTPPTXNS, 0x1e4) /* PTP Peer Frame Transmitted (ns) */ REG32(PTPPRXS, 0x1e8) /* PTP Peer Frame Received (s) */ REG32(PTPPRXNS, 0x1ec) /* PTP Peer Frame Received (ns) */ /* Design Configuration Registers */ REG32(DESCONF, 0x280) REG32(DESCONF2, 0x284) REG32(DESCONF3, 0x288) REG32(DESCONF4, 0x28c) REG32(DESCONF5, 0x290) REG32(DESCONF6, 0x294) FIELD(DESCONF6, DMA_ADDR_64B, 23, 1) REG32(DESCONF7, 0x298) REG32(INT_Q1_STATUS, 0x400) REG32(INT_Q1_MASK, 0x640) REG32(TRANSMIT_Q1_PTR, 0x440) REG32(TRANSMIT_Q7_PTR, 0x458) REG32(RECEIVE_Q1_PTR, 0x480) REG32(RECEIVE_Q7_PTR, 0x498) REG32(TBQPH, 0x4c8) REG32(RBQPH, 0x4d4) REG32(INT_Q1_ENABLE, 0x600) REG32(INT_Q7_ENABLE, 0x618) REG32(INT_Q1_DISABLE, 0x620) REG32(INT_Q7_DISABLE, 0x638) REG32(SCREENING_TYPE1_REG0, 0x500) FIELD(SCREENING_TYPE1_REG0, QUEUE_NUM, 0, 4) FIELD(SCREENING_TYPE1_REG0, DSTC_MATCH, 4, 8) FIELD(SCREENING_TYPE1_REG0, UDP_PORT_MATCH, 12, 16) FIELD(SCREENING_TYPE1_REG0, DSTC_ENABLE, 28, 1) FIELD(SCREENING_TYPE1_REG0, UDP_PORT_MATCH_EN, 29, 1) FIELD(SCREENING_TYPE1_REG0, DROP_ON_MATCH, 30, 1) REG32(SCREENING_TYPE2_REG0, 0x540) FIELD(SCREENING_TYPE2_REG0, QUEUE_NUM, 0, 4) FIELD(SCREENING_TYPE2_REG0, VLAN_PRIORITY, 4, 3) FIELD(SCREENING_TYPE2_REG0, VLAN_ENABLE, 8, 1) FIELD(SCREENING_TYPE2_REG0, ETHERTYPE_REG_INDEX, 9, 3) FIELD(SCREENING_TYPE2_REG0, ETHERTYPE_ENABLE, 12, 1) FIELD(SCREENING_TYPE2_REG0, COMPARE_A, 13, 5) FIELD(SCREENING_TYPE2_REG0, COMPARE_A_ENABLE, 18, 1) FIELD(SCREENING_TYPE2_REG0, COMPARE_B, 19, 5) FIELD(SCREENING_TYPE2_REG0, COMPARE_B_ENABLE, 24, 1) FIELD(SCREENING_TYPE2_REG0, COMPARE_C, 25, 5) FIELD(SCREENING_TYPE2_REG0, COMPARE_C_ENABLE, 30, 1) FIELD(SCREENING_TYPE2_REG0, DROP_ON_MATCH, 31, 1) REG32(SCREENING_TYPE2_ETHERTYPE_REG0, 0x6e0) REG32(TYPE2_COMPARE_0_WORD_0, 0x700) FIELD(TYPE2_COMPARE_0_WORD_0, MASK_VALUE, 0, 16) FIELD(TYPE2_COMPARE_0_WORD_0, COMPARE_VALUE, 16, 16) REG32(TYPE2_COMPARE_0_WORD_1, 0x704) FIELD(TYPE2_COMPARE_0_WORD_1, OFFSET_VALUE, 0, 7) FIELD(TYPE2_COMPARE_0_WORD_1, COMPARE_OFFSET, 7, 2) FIELD(TYPE2_COMPARE_0_WORD_1, DISABLE_MASK, 9, 1) FIELD(TYPE2_COMPARE_0_WORD_1, COMPARE_VLAN_ID, 10, 1) /*****************************************/ /* Marvell PHY definitions */ #define BOARD_PHY_ADDRESS 0 /* PHY address we will emulate a device at */ #define PHY_REG_CONTROL 0 #define PHY_REG_STATUS 1 #define PHY_REG_PHYID1 2 #define PHY_REG_PHYID2 3 #define PHY_REG_ANEGADV 4 #define PHY_REG_LINKPABIL 5 #define PHY_REG_ANEGEXP 6 #define PHY_REG_NEXTP 7 #define PHY_REG_LINKPNEXTP 8 #define PHY_REG_100BTCTRL 9 #define PHY_REG_1000BTSTAT 10 #define PHY_REG_EXTSTAT 15 #define PHY_REG_PHYSPCFC_CTL 16 #define PHY_REG_PHYSPCFC_ST 17 #define PHY_REG_INT_EN 18 #define PHY_REG_INT_ST 19 #define PHY_REG_EXT_PHYSPCFC_CTL 20 #define PHY_REG_RXERR 21 #define PHY_REG_EACD 22 #define PHY_REG_LED 24 #define PHY_REG_LED_OVRD 25 #define PHY_REG_EXT_PHYSPCFC_CTL2 26 #define PHY_REG_EXT_PHYSPCFC_ST 27 #define PHY_REG_CABLE_DIAG 28 #define PHY_REG_CONTROL_RST 0x8000 #define PHY_REG_CONTROL_LOOP 0x4000 #define PHY_REG_CONTROL_ANEG 0x1000 #define PHY_REG_CONTROL_ANRESTART 0x0200 #define PHY_REG_STATUS_LINK 0x0004 #define PHY_REG_STATUS_ANEGCMPL 0x0020 #define PHY_REG_INT_ST_ANEGCMPL 0x0800 #define PHY_REG_INT_ST_LINKC 0x0400 #define PHY_REG_INT_ST_ENERGY 0x0010 /***********************************************************************/ #define GEM_RX_REJECT (-1) #define GEM_RX_PROMISCUOUS_ACCEPT (-2) #define GEM_RX_BROADCAST_ACCEPT (-3) #define GEM_RX_MULTICAST_HASH_ACCEPT (-4) #define GEM_RX_UNICAST_HASH_ACCEPT (-5) #define GEM_RX_SAR_ACCEPT 0 /***********************************************************************/ #define DESC_1_USED 0x80000000 #define DESC_1_LENGTH 0x00001FFF #define DESC_1_TX_WRAP 0x40000000 #define DESC_1_TX_LAST 0x00008000 #define DESC_0_RX_WRAP 0x00000002 #define DESC_0_RX_OWNERSHIP 0x00000001 #define R_DESC_1_RX_SAR_SHIFT 25 #define R_DESC_1_RX_SAR_LENGTH 2 #define R_DESC_1_RX_SAR_MATCH (1 << 27) #define R_DESC_1_RX_UNICAST_HASH (1 << 29) #define R_DESC_1_RX_MULTICAST_HASH (1 << 30) #define R_DESC_1_RX_BROADCAST (1 << 31) #define DESC_1_RX_SOF 0x00004000 #define DESC_1_RX_EOF 0x00008000 #define GEM_MODID_VALUE 0x00020118 static inline uint64_t tx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc) { uint64_t ret = desc[0]; if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) { ret |= (uint64_t)desc[2] << 32; } return ret; } static inline unsigned tx_desc_get_used(uint32_t *desc) { return (desc[1] & DESC_1_USED) ? 1 : 0; } static inline void tx_desc_set_used(uint32_t *desc) { desc[1] |= DESC_1_USED; } static inline unsigned tx_desc_get_wrap(uint32_t *desc) { return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0; } static inline unsigned tx_desc_get_last(uint32_t *desc) { return (desc[1] & DESC_1_TX_LAST) ? 1 : 0; } static inline unsigned tx_desc_get_length(uint32_t *desc) { return desc[1] & DESC_1_LENGTH; } static inline void print_gem_tx_desc(uint32_t *desc, uint8_t queue) { DB_PRINT("TXDESC (queue %" PRId8 "):\n", queue); DB_PRINT("bufaddr: 0x%08x\n", *desc); DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc)); DB_PRINT("wrap: %d\n", tx_desc_get_wrap(desc)); DB_PRINT("last: %d\n", tx_desc_get_last(desc)); DB_PRINT("length: %d\n", tx_desc_get_length(desc)); } static inline uint64_t rx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc) { uint64_t ret = desc[0] & ~0x3UL; if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) { ret |= (uint64_t)desc[2] << 32; } return ret; } static inline int gem_get_desc_len(CadenceGEMState *s, bool rx_n_tx) { int ret = 2; if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) { ret += 2; } if (s->regs[R_DMACFG] & (rx_n_tx ? R_DMACFG_RX_BD_EXT_MODE_EN_MASK : R_DMACFG_TX_BD_EXT_MODE_EN_MASK)) { ret += 2; } assert(ret <= DESC_MAX_NUM_WORDS); return ret; } static inline unsigned rx_desc_get_wrap(uint32_t *desc) { return desc[0] & DESC_0_RX_WRAP ? 1 : 0; } static inline unsigned rx_desc_get_ownership(uint32_t *desc) { return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0; } static inline void rx_desc_set_ownership(uint32_t *desc) { desc[0] |= DESC_0_RX_OWNERSHIP; } static inline void rx_desc_set_sof(uint32_t *desc) { desc[1] |= DESC_1_RX_SOF; } static inline void rx_desc_clear_control(uint32_t *desc) { desc[1] = 0; } static inline void rx_desc_set_eof(uint32_t *desc) { desc[1] |= DESC_1_RX_EOF; } static inline void rx_desc_set_length(uint32_t *desc, unsigned len) { desc[1] &= ~DESC_1_LENGTH; desc[1] |= len; } static inline void rx_desc_set_broadcast(uint32_t *desc) { desc[1] |= R_DESC_1_RX_BROADCAST; } static inline void rx_desc_set_unicast_hash(uint32_t *desc) { desc[1] |= R_DESC_1_RX_UNICAST_HASH; } static inline void rx_desc_set_multicast_hash(uint32_t *desc) { desc[1] |= R_DESC_1_RX_MULTICAST_HASH; } static inline void rx_desc_set_sar(uint32_t *desc, int sar_idx) { desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH, sar_idx); desc[1] |= R_DESC_1_RX_SAR_MATCH; } /* The broadcast MAC address: 0xFFFFFFFFFFFF */ static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; static uint32_t gem_get_max_buf_len(CadenceGEMState *s, bool tx) { uint32_t size; if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, JUMBO_FRAMES)) { size = s->regs[R_JUMBO_MAX_LEN]; if (size > s->jumbo_max_len) { size = s->jumbo_max_len; qemu_log_mask(LOG_GUEST_ERROR, "GEM_JUMBO_MAX_LEN reg cannot be" " greater than 0x%" PRIx32 "\n", s->jumbo_max_len); } } else if (tx) { size = 1518; } else { size = FIELD_EX32(s->regs[R_NWCFG], NWCFG, RECV_1536_BYTE_FRAMES) ? 1538 : 1518; } return size; } static void gem_set_isr(CadenceGEMState *s, int q, uint32_t flag) { if (q == 0) { s->regs[R_ISR] |= flag & ~(s->regs[R_IMR]); } else { s->regs[R_INT_Q1_STATUS + q - 1] |= flag & ~(s->regs[R_INT_Q1_MASK + q - 1]); } } /* * gem_init_register_masks: * One time initialization. * Set masks to identify which register bits have magical clear properties */ static void gem_init_register_masks(CadenceGEMState *s) { unsigned int i; /* Mask of register bits which are read only */ memset(&s->regs_ro[0], 0, sizeof(s->regs_ro)); s->regs_ro[R_NWCTRL] = 0xFFF80000; s->regs_ro[R_NWSTATUS] = 0xFFFFFFFF; s->regs_ro[R_DMACFG] = 0x8E00F000; s->regs_ro[R_TXSTATUS] = 0xFFFFFE08; s->regs_ro[R_RXQBASE] = 0x00000003; s->regs_ro[R_TXQBASE] = 0x00000003; s->regs_ro[R_RXSTATUS] = 0xFFFFFFF0; s->regs_ro[R_ISR] = 0xFFFFFFFF; s->regs_ro[R_IMR] = 0xFFFFFFFF; s->regs_ro[R_MODID] = 0xFFFFFFFF; for (i = 0; i < s->num_priority_queues; i++) { s->regs_ro[R_INT_Q1_STATUS + i] = 0xFFFFFFFF; s->regs_ro[R_INT_Q1_ENABLE + i] = 0xFFFFF319; s->regs_ro[R_INT_Q1_DISABLE + i] = 0xFFFFF319; s->regs_ro[R_INT_Q1_MASK + i] = 0xFFFFFFFF; } /* Mask of register bits which are clear on read */ memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc)); s->regs_rtc[R_ISR] = 0xFFFFFFFF; for (i = 0; i < s->num_priority_queues; i++) { s->regs_rtc[R_INT_Q1_STATUS + i] = 0x00000CE6; } /* Mask of register bits which are write 1 to clear */ memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c)); s->regs_w1c[R_TXSTATUS] = 0x000001F7; s->regs_w1c[R_RXSTATUS] = 0x0000000F; /* Mask of register bits which are write only */ memset(&s->regs_wo[0], 0, sizeof(s->regs_wo)); s->regs_wo[R_NWCTRL] = 0x00073E60; s->regs_wo[R_IER] = 0x07FFFFFF; s->regs_wo[R_IDR] = 0x07FFFFFF; for (i = 0; i < s->num_priority_queues; i++) { s->regs_wo[R_INT_Q1_ENABLE + i] = 0x00000CE6; s->regs_wo[R_INT_Q1_DISABLE + i] = 0x00000CE6; } } /* * phy_update_link: * Make the emulated PHY link state match the QEMU "interface" state. */ static void phy_update_link(CadenceGEMState *s) { DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down); /* Autonegotiation status mirrors link status. */ if (qemu_get_queue(s->nic)->link_down) { s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL | PHY_REG_STATUS_LINK); s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC; } else { s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL | PHY_REG_STATUS_LINK); s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC | PHY_REG_INT_ST_ANEGCMPL | PHY_REG_INT_ST_ENERGY); } } static bool gem_can_receive(NetClientState *nc) { CadenceGEMState *s; int i; s = qemu_get_nic_opaque(nc); /* Do nothing if receive is not enabled. */ if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_RECEIVE)) { if (s->can_rx_state != 1) { s->can_rx_state = 1; DB_PRINT("can't receive - no enable\n"); } return false; } for (i = 0; i < s->num_priority_queues; i++) { if (rx_desc_get_ownership(s->rx_desc[i]) != 1) { break; } }; if (i == s->num_priority_queues) { if (s->can_rx_state != 2) { s->can_rx_state = 2; DB_PRINT("can't receive - all the buffer descriptors are busy\n"); } return false; } if (s->can_rx_state != 0) { s->can_rx_state = 0; DB_PRINT("can receive\n"); } return true; } /* * gem_update_int_status: * Raise or lower interrupt based on current status. */ static void gem_update_int_status(CadenceGEMState *s) { int i; qemu_set_irq(s->irq[0], !!s->regs[R_ISR]); for (i = 1; i < s->num_priority_queues; ++i) { qemu_set_irq(s->irq[i], !!s->regs[R_INT_Q1_STATUS + i - 1]); } } /* * gem_receive_updatestats: * Increment receive statistics. */ static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet, unsigned bytes) { uint64_t octets; /* Total octets (bytes) received */ octets = ((uint64_t)(s->regs[R_OCTRXLO]) << 32) | s->regs[R_OCTRXHI]; octets += bytes; s->regs[R_OCTRXLO] = octets >> 32; s->regs[R_OCTRXHI] = octets; /* Error-free Frames received */ s->regs[R_RXCNT]++; /* Error-free Broadcast Frames counter */ if (!memcmp(packet, broadcast_addr, 6)) { s->regs[R_RXBROADCNT]++; } /* Error-free Multicast Frames counter */ if (packet[0] == 0x01) { s->regs[R_RXMULTICNT]++; } if (bytes <= 64) { s->regs[R_RX64CNT]++; } else if (bytes <= 127) { s->regs[R_RX65CNT]++; } else if (bytes <= 255) { s->regs[R_RX128CNT]++; } else if (bytes <= 511) { s->regs[R_RX256CNT]++; } else if (bytes <= 1023) { s->regs[R_RX512CNT]++; } else if (bytes <= 1518) { s->regs[R_RX1024CNT]++; } else { s->regs[R_RX1519CNT]++; } } /* * Get the MAC Address bit from the specified position */ static unsigned get_bit(const uint8_t *mac, unsigned bit) { unsigned byte; byte = mac[bit / 8]; byte >>= (bit & 0x7); byte &= 1; return byte; } /* * Calculate a GEM MAC Address hash index */ static unsigned calc_mac_hash(const uint8_t *mac) { int index_bit, mac_bit; unsigned hash_index; hash_index = 0; mac_bit = 5; for (index_bit = 5; index_bit >= 0; index_bit--) { hash_index |= (get_bit(mac, mac_bit) ^ get_bit(mac, mac_bit + 6) ^ get_bit(mac, mac_bit + 12) ^ get_bit(mac, mac_bit + 18) ^ get_bit(mac, mac_bit + 24) ^ get_bit(mac, mac_bit + 30) ^ get_bit(mac, mac_bit + 36) ^ get_bit(mac, mac_bit + 42)) << index_bit; mac_bit--; } return hash_index; } /* * gem_mac_address_filter: * Accept or reject this destination address? * Returns: * GEM_RX_REJECT: reject * >= 0: Specific address accept (which matched SAR is returned) * others for various other modes of accept: * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT, * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT */ static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet) { uint8_t *gem_spaddr; int i, is_mc; /* Promiscuous mode? */ if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, PROMISC)) { return GEM_RX_PROMISCUOUS_ACCEPT; } if (!memcmp(packet, broadcast_addr, 6)) { /* Reject broadcast packets? */ if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, NO_BROADCAST)) { return GEM_RX_REJECT; } return GEM_RX_BROADCAST_ACCEPT; } /* Accept packets -w- hash match? */ is_mc = is_multicast_ether_addr(packet); if ((is_mc && (FIELD_EX32(s->regs[R_NWCFG], NWCFG, MULTICAST_HASH_EN))) || (!is_mc && FIELD_EX32(s->regs[R_NWCFG], NWCFG, UNICAST_HASH_EN))) { uint64_t buckets; unsigned hash_index; hash_index = calc_mac_hash(packet); buckets = ((uint64_t)s->regs[R_HASHHI] << 32) | s->regs[R_HASHLO]; if ((buckets >> hash_index) & 1) { return is_mc ? GEM_RX_MULTICAST_HASH_ACCEPT : GEM_RX_UNICAST_HASH_ACCEPT; } } /* Check all 4 specific addresses */ gem_spaddr = (uint8_t *)&(s->regs[R_SPADDR1LO]); for (i = 3; i >= 0; i--) { if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) { return GEM_RX_SAR_ACCEPT + i; } } /* No address match; reject the packet */ return GEM_RX_REJECT; } /* Figure out which queue the received data should be sent to */ static int get_queue_from_screen(CadenceGEMState *s, uint8_t *rxbuf_ptr, unsigned rxbufsize) { uint32_t reg; bool matched, mismatched; int i, j; for (i = 0; i < s->num_type1_screeners; i++) { reg = s->regs[R_SCREENING_TYPE1_REG0 + i]; matched = false; mismatched = false; /* Screening is based on UDP Port */ if (FIELD_EX32(reg, SCREENING_TYPE1_REG0, UDP_PORT_MATCH_EN)) { uint16_t udp_port = rxbuf_ptr[14 + 22] << 8 | rxbuf_ptr[14 + 23]; if (udp_port == FIELD_EX32(reg, SCREENING_TYPE1_REG0, UDP_PORT_MATCH)) { matched = true; } else { mismatched = true; } } /* Screening is based on DS/TC */ if (FIELD_EX32(reg, SCREENING_TYPE1_REG0, DSTC_ENABLE)) { uint8_t dscp = rxbuf_ptr[14 + 1]; if (dscp == FIELD_EX32(reg, SCREENING_TYPE1_REG0, DSTC_MATCH)) { matched = true; } else { mismatched = true; } } if (matched && !mismatched) { return FIELD_EX32(reg, SCREENING_TYPE1_REG0, QUEUE_NUM); } } for (i = 0; i < s->num_type2_screeners; i++) { reg = s->regs[R_SCREENING_TYPE2_REG0 + i]; matched = false; mismatched = false; if (FIELD_EX32(reg, SCREENING_TYPE2_REG0, ETHERTYPE_ENABLE)) { uint16_t type = rxbuf_ptr[12] << 8 | rxbuf_ptr[13]; int et_idx = FIELD_EX32(reg, SCREENING_TYPE2_REG0, ETHERTYPE_REG_INDEX); if (et_idx > s->num_type2_screeners) { qemu_log_mask(LOG_GUEST_ERROR, "Out of range ethertype " "register index: %d\n", et_idx); } if (type == s->regs[R_SCREENING_TYPE2_ETHERTYPE_REG0 + et_idx]) { matched = true; } else { mismatched = true; } } /* Compare A, B, C */ for (j = 0; j < 3; j++) { uint32_t cr0, cr1, mask, compare; uint16_t rx_cmp; int offset; int cr_idx = extract32(reg, R_SCREENING_TYPE2_REG0_COMPARE_A_SHIFT + j * 6, R_SCREENING_TYPE2_REG0_COMPARE_A_LENGTH); if (!extract32(reg, R_SCREENING_TYPE2_REG0_COMPARE_A_ENABLE_SHIFT + j * 6, R_SCREENING_TYPE2_REG0_COMPARE_A_ENABLE_LENGTH)) { continue; } if (cr_idx > s->num_type2_screeners) { qemu_log_mask(LOG_GUEST_ERROR, "Out of range compare " "register index: %d\n", cr_idx); } cr0 = s->regs[R_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2]; cr1 = s->regs[R_TYPE2_COMPARE_0_WORD_1 + cr_idx * 2]; offset = FIELD_EX32(cr1, TYPE2_COMPARE_0_WORD_1, OFFSET_VALUE); switch (FIELD_EX32(cr1, TYPE2_COMPARE_0_WORD_1, COMPARE_OFFSET)) { case 3: /* Skip UDP header */ qemu_log_mask(LOG_UNIMP, "TCP compare offsets" "unimplemented - assuming UDP\n"); offset += 8; /* Fallthrough */ case 2: /* skip the IP header */ offset += 20; /* Fallthrough */ case 1: /* Count from after the ethertype */ offset += 14; break; case 0: /* Offset from start of frame */ break; } rx_cmp = rxbuf_ptr[offset] << 8 | rxbuf_ptr[offset]; mask = FIELD_EX32(cr0, TYPE2_COMPARE_0_WORD_0, MASK_VALUE); compare = FIELD_EX32(cr0, TYPE2_COMPARE_0_WORD_0, COMPARE_VALUE); if ((rx_cmp & mask) == (compare & mask)) { matched = true; } else { mismatched = true; } } if (matched && !mismatched) { return FIELD_EX32(reg, SCREENING_TYPE2_REG0, QUEUE_NUM); } } /* We made it here, assume it's queue 0 */ return 0; } static uint32_t gem_get_queue_base_addr(CadenceGEMState *s, bool tx, int q) { uint32_t base_addr = 0; switch (q) { case 0: base_addr = s->regs[tx ? R_TXQBASE : R_RXQBASE]; break; case 1 ... (MAX_PRIORITY_QUEUES - 1): base_addr = s->regs[(tx ? R_TRANSMIT_Q1_PTR : R_RECEIVE_Q1_PTR) + q - 1]; break; default: g_assert_not_reached(); }; return base_addr; } static inline uint32_t gem_get_tx_queue_base_addr(CadenceGEMState *s, int q) { return gem_get_queue_base_addr(s, true, q); } static inline uint32_t gem_get_rx_queue_base_addr(CadenceGEMState *s, int q) { return gem_get_queue_base_addr(s, false, q); } static hwaddr gem_get_desc_addr(CadenceGEMState *s, bool tx, int q) { hwaddr desc_addr = 0; if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) { desc_addr = s->regs[tx ? R_TBQPH : R_RBQPH]; } desc_addr <<= 32; desc_addr |= tx ? s->tx_desc_addr[q] : s->rx_desc_addr[q]; return desc_addr; } static hwaddr gem_get_tx_desc_addr(CadenceGEMState *s, int q) { return gem_get_desc_addr(s, true, q); } static hwaddr gem_get_rx_desc_addr(CadenceGEMState *s, int q) { return gem_get_desc_addr(s, false, q); } static void gem_get_rx_desc(CadenceGEMState *s, int q) { hwaddr desc_addr = gem_get_rx_desc_addr(s, q); DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", desc_addr); /* read current descriptor */ address_space_read(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED, s->rx_desc[q], sizeof(uint32_t) * gem_get_desc_len(s, true)); /* Descriptor owned by software ? */ if (rx_desc_get_ownership(s->rx_desc[q]) == 1) { DB_PRINT("descriptor 0x%" HWADDR_PRIx " owned by sw.\n", desc_addr); s->regs[R_RXSTATUS] |= R_RXSTATUS_BUF_NOT_AVAILABLE_MASK; gem_set_isr(s, q, R_ISR_RX_USED_MASK); /* Handle interrupt consequences */ gem_update_int_status(s); } } /* * gem_receive: * Fit a packet handed to us by QEMU into the receive descriptor ring. */ static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size) { CadenceGEMState *s = qemu_get_nic_opaque(nc); unsigned rxbufsize, bytes_to_copy; unsigned rxbuf_offset; uint8_t *rxbuf_ptr; bool first_desc = true; int maf; int q = 0; /* Is this destination MAC address "for us" ? */ maf = gem_mac_address_filter(s, buf); if (maf == GEM_RX_REJECT) { return size; /* no, drop silently b/c it's not an error */ } /* Discard packets with receive length error enabled ? */ if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, LEN_ERR_DISCARD)) { unsigned type_len; /* Fish the ethertype / length field out of the RX packet */ type_len = buf[12] << 8 | buf[13]; /* It is a length field, not an ethertype */ if (type_len < 0x600) { if (size < type_len) { /* discard */ return -1; } } } /* * Determine configured receive buffer offset (probably 0) */ rxbuf_offset = FIELD_EX32(s->regs[R_NWCFG], NWCFG, RECV_BUF_OFFSET); /* The configure size of each receive buffer. Determines how many * buffers needed to hold this packet. */ rxbufsize = FIELD_EX32(s->regs[R_DMACFG], DMACFG, RX_BUF_SIZE); rxbufsize *= GEM_DMACFG_RBUFSZ_MUL; bytes_to_copy = size; /* Hardware allows a zero value here but warns against it. To avoid QEMU * indefinite loops we enforce a minimum value here */ if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) { rxbufsize = GEM_DMACFG_RBUFSZ_MUL; } /* Pad to minimum length. Assume FCS field is stripped, logic * below will increment it to the real minimum of 64 when * not FCS stripping */ if (size < 60) { size = 60; } /* Strip of FCS field ? (usually yes) */ if (FIELD_EX32(s->regs[R_NWCFG], NWCFG, FCS_REMOVE)) { rxbuf_ptr = (void *)buf; } else { uint32_t crc_val; if (size > MAX_FRAME_SIZE - sizeof(crc_val)) { size = MAX_FRAME_SIZE - sizeof(crc_val); } bytes_to_copy = size; /* The application wants the FCS field, which QEMU does not provide. * We must try and calculate one. */ memcpy(s->rx_packet, buf, size); memset(s->rx_packet + size, 0, MAX_FRAME_SIZE - size); rxbuf_ptr = s->rx_packet; crc_val = cpu_to_le32(crc32(0, s->rx_packet, MAX(size, 60))); memcpy(s->rx_packet + size, &crc_val, sizeof(crc_val)); bytes_to_copy += 4; size += 4; } DB_PRINT("config bufsize: %u packet size: %zd\n", rxbufsize, size); /* Find which queue we are targeting */ q = get_queue_from_screen(s, rxbuf_ptr, rxbufsize); if (size > gem_get_max_buf_len(s, false)) { qemu_log_mask(LOG_GUEST_ERROR, "rx frame too long\n"); gem_set_isr(s, q, R_ISR_AMBA_ERROR_MASK); return -1; } while (bytes_to_copy) { hwaddr desc_addr; /* Do nothing if receive is not enabled. */ if (!gem_can_receive(nc)) { return -1; } DB_PRINT("copy %" PRIu32 " bytes to 0x%" PRIx64 "\n", MIN(bytes_to_copy, rxbufsize), rx_desc_get_buffer(s, s->rx_desc[q])); /* Copy packet data to emulated DMA buffer */ address_space_write(&s->dma_as, rx_desc_get_buffer(s, s->rx_desc[q]) + rxbuf_offset, MEMTXATTRS_UNSPECIFIED, rxbuf_ptr, MIN(bytes_to_copy, rxbufsize)); rxbuf_ptr += MIN(bytes_to_copy, rxbufsize); bytes_to_copy -= MIN(bytes_to_copy, rxbufsize); rx_desc_clear_control(s->rx_desc[q]); /* Update the descriptor. */ if (first_desc) { rx_desc_set_sof(s->rx_desc[q]); first_desc = false; } if (bytes_to_copy == 0) { rx_desc_set_eof(s->rx_desc[q]); rx_desc_set_length(s->rx_desc[q], size); } rx_desc_set_ownership(s->rx_desc[q]); switch (maf) { case GEM_RX_PROMISCUOUS_ACCEPT: break; case GEM_RX_BROADCAST_ACCEPT: rx_desc_set_broadcast(s->rx_desc[q]); break; case GEM_RX_UNICAST_HASH_ACCEPT: rx_desc_set_unicast_hash(s->rx_desc[q]); break; case GEM_RX_MULTICAST_HASH_ACCEPT: rx_desc_set_multicast_hash(s->rx_desc[q]); break; case GEM_RX_REJECT: abort(); default: /* SAR */ rx_desc_set_sar(s->rx_desc[q], maf); } /* Descriptor write-back. */ desc_addr = gem_get_rx_desc_addr(s, q); address_space_write(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED, s->rx_desc[q], sizeof(uint32_t) * gem_get_desc_len(s, true)); /* Next descriptor */ if (rx_desc_get_wrap(s->rx_desc[q])) { DB_PRINT("wrapping RX descriptor list\n"); s->rx_desc_addr[q] = gem_get_rx_queue_base_addr(s, q); } else { DB_PRINT("incrementing RX descriptor list\n"); s->rx_desc_addr[q] += 4 * gem_get_desc_len(s, true); } gem_get_rx_desc(s, q); } /* Count it */ gem_receive_updatestats(s, buf, size); s->regs[R_RXSTATUS] |= R_RXSTATUS_FRAME_RECEIVED_MASK; gem_set_isr(s, q, R_ISR_RECV_COMPLETE_MASK); /* Handle interrupt consequences */ gem_update_int_status(s); return size; } /* * gem_transmit_updatestats: * Increment transmit statistics. */ static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet, unsigned bytes) { uint64_t octets; /* Total octets (bytes) transmitted */ octets = ((uint64_t)(s->regs[R_OCTTXLO]) << 32) | s->regs[R_OCTTXHI]; octets += bytes; s->regs[R_OCTTXLO] = octets >> 32; s->regs[R_OCTTXHI] = octets; /* Error-free Frames transmitted */ s->regs[R_TXCNT]++; /* Error-free Broadcast Frames counter */ if (!memcmp(packet, broadcast_addr, 6)) { s->regs[R_TXBCNT]++; } /* Error-free Multicast Frames counter */ if (packet[0] == 0x01) { s->regs[R_TXMCNT]++; } if (bytes <= 64) { s->regs[R_TX64CNT]++; } else if (bytes <= 127) { s->regs[R_TX65CNT]++; } else if (bytes <= 255) { s->regs[R_TX128CNT]++; } else if (bytes <= 511) { s->regs[R_TX256CNT]++; } else if (bytes <= 1023) { s->regs[R_TX512CNT]++; } else if (bytes <= 1518) { s->regs[R_TX1024CNT]++; } else { s->regs[R_TX1519CNT]++; } } /* * gem_transmit: * Fish packets out of the descriptor ring and feed them to QEMU */ static void gem_transmit(CadenceGEMState *s) { uint32_t desc[DESC_MAX_NUM_WORDS]; hwaddr packet_desc_addr; uint8_t *p; unsigned total_bytes; int q = 0; /* Do nothing if transmit is not enabled. */ if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_TRANSMIT)) { return; } DB_PRINT("\n"); /* The packet we will hand off to QEMU. * Packets scattered across multiple descriptors are gathered to this * one contiguous buffer first. */ p = s->tx_packet; total_bytes = 0; for (q = s->num_priority_queues - 1; q >= 0; q--) { /* read current descriptor */ packet_desc_addr = gem_get_tx_desc_addr(s, q); DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr); address_space_read(&s->dma_as, packet_desc_addr, MEMTXATTRS_UNSPECIFIED, desc, sizeof(uint32_t) * gem_get_desc_len(s, false)); /* Handle all descriptors owned by hardware */ while (tx_desc_get_used(desc) == 0) { /* Do nothing if transmit is not enabled. */ if (!FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, ENABLE_TRANSMIT)) { return; } print_gem_tx_desc(desc, q); /* The real hardware would eat this (and possibly crash). * For QEMU let's lend a helping hand. */ if ((tx_desc_get_buffer(s, desc) == 0) || (tx_desc_get_length(desc) == 0)) { DB_PRINT("Invalid TX descriptor @ 0x%" HWADDR_PRIx "\n", packet_desc_addr); break; } if (tx_desc_get_length(desc) > gem_get_max_buf_len(s, true) - (p - s->tx_packet)) { qemu_log_mask(LOG_GUEST_ERROR, "TX descriptor @ 0x%" \ HWADDR_PRIx " too large: size 0x%x space 0x%zx\n", packet_desc_addr, tx_desc_get_length(desc), gem_get_max_buf_len(s, true) - (p - s->tx_packet)); gem_set_isr(s, q, R_ISR_AMBA_ERROR_MASK); break; } /* Gather this fragment of the packet from "dma memory" to our * contig buffer. */ address_space_read(&s->dma_as, tx_desc_get_buffer(s, desc), MEMTXATTRS_UNSPECIFIED, p, tx_desc_get_length(desc)); p += tx_desc_get_length(desc); total_bytes += tx_desc_get_length(desc); /* Last descriptor for this packet; hand the whole thing off */ if (tx_desc_get_last(desc)) { uint32_t desc_first[DESC_MAX_NUM_WORDS]; hwaddr desc_addr = gem_get_tx_desc_addr(s, q); /* Modify the 1st descriptor of this packet to be owned by * the processor. */ address_space_read(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED, desc_first, sizeof(desc_first)); tx_desc_set_used(desc_first); address_space_write(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED, desc_first, sizeof(desc_first)); /* Advance the hardware current descriptor past this packet */ if (tx_desc_get_wrap(desc)) { s->tx_desc_addr[q] = gem_get_tx_queue_base_addr(s, q); } else { s->tx_desc_addr[q] = packet_desc_addr + 4 * gem_get_desc_len(s, false); } DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr[q]); s->regs[R_TXSTATUS] |= R_TXSTATUS_TRANSMIT_COMPLETE_MASK; gem_set_isr(s, q, R_ISR_XMIT_COMPLETE_MASK); /* Handle interrupt consequences */ gem_update_int_status(s); /* Is checksum offload enabled? */ if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, TX_PBUF_CSUM_OFFLOAD)) { net_checksum_calculate(s->tx_packet, total_bytes, CSUM_ALL); } /* Update MAC statistics */ gem_transmit_updatestats(s, s->tx_packet, total_bytes); /* Send the packet somewhere */ if (s->phy_loop || FIELD_EX32(s->regs[R_NWCTRL], NWCTRL, LOOPBACK_LOCAL)) { qemu_receive_packet(qemu_get_queue(s->nic), s->tx_packet, total_bytes); } else { qemu_send_packet(qemu_get_queue(s->nic), s->tx_packet, total_bytes); } /* Prepare for next packet */ p = s->tx_packet; total_bytes = 0; } /* read next descriptor */ if (tx_desc_get_wrap(desc)) { if (FIELD_EX32(s->regs[R_DMACFG], DMACFG, DMA_ADDR_BUS_WIDTH)) { packet_desc_addr = s->regs[R_TBQPH]; packet_desc_addr <<= 32; } else { packet_desc_addr = 0; } packet_desc_addr |= gem_get_tx_queue_base_addr(s, q); } else { packet_desc_addr += 4 * gem_get_desc_len(s, false); } DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr); address_space_read(&s->dma_as, packet_desc_addr, MEMTXATTRS_UNSPECIFIED, desc, sizeof(uint32_t) * gem_get_desc_len(s, false)); } if (tx_desc_get_used(desc)) { s->regs[R_TXSTATUS] |= R_TXSTATUS_USED_BIT_READ_MASK; /* IRQ TXUSED is defined only for queue 0 */ if (q == 0) { gem_set_isr(s, 0, R_ISR_TX_USED_MASK); } gem_update_int_status(s); } } } static void gem_phy_reset(CadenceGEMState *s) { memset(&s->phy_regs[0], 0, sizeof(s->phy_regs)); s->phy_regs[PHY_REG_CONTROL] = 0x1140; s->phy_regs[PHY_REG_STATUS] = 0x7969; s->phy_regs[PHY_REG_PHYID1] = 0x0141; s->phy_regs[PHY_REG_PHYID2] = 0x0CC2; s->phy_regs[PHY_REG_ANEGADV] = 0x01E1; s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1; s->phy_regs[PHY_REG_ANEGEXP] = 0x000F; s->phy_regs[PHY_REG_NEXTP] = 0x2001; s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6; s->phy_regs[PHY_REG_100BTCTRL] = 0x0300; s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00; s->phy_regs[PHY_REG_EXTSTAT] = 0x3000; s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078; s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00; s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60; s->phy_regs[PHY_REG_LED] = 0x4100; s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A; s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B; phy_update_link(s); } static void gem_reset(DeviceState *d) { int i; CadenceGEMState *s = CADENCE_GEM(d); const uint8_t *a; uint32_t queues_mask = 0; DB_PRINT("\n"); /* Set post reset register values */ memset(&s->regs[0], 0, sizeof(s->regs)); s->regs[R_NWCFG] = 0x00080000; s->regs[R_NWSTATUS] = 0x00000006; s->regs[R_DMACFG] = 0x00020784; s->regs[R_IMR] = 0x07ffffff; s->regs[R_TXPAUSE] = 0x0000ffff; s->regs[R_TXPARTIALSF] = 0x000003ff; s->regs[R_RXPARTIALSF] = 0x000003ff; s->regs[R_MODID] = s->revision; s->regs[R_DESCONF] = 0x02D00111; s->regs[R_DESCONF2] = 0x2ab10000 | s->jumbo_max_len; s->regs[R_DESCONF5] = 0x002f2045; s->regs[R_DESCONF6] = R_DESCONF6_DMA_ADDR_64B_MASK; s->regs[R_INT_Q1_MASK] = 0x00000CE6; s->regs[R_JUMBO_MAX_LEN] = s->jumbo_max_len; if (s->num_priority_queues > 1) { queues_mask = MAKE_64BIT_MASK(1, s->num_priority_queues - 1); s->regs[R_DESCONF6] |= queues_mask; } /* Set MAC address */ a = &s->conf.macaddr.a[0]; s->regs[R_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24); s->regs[R_SPADDR1HI] = a[4] | (a[5] << 8); for (i = 0; i < 4; i++) { s->sar_active[i] = false; } gem_phy_reset(s); gem_update_int_status(s); } static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num) { DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]); return s->phy_regs[reg_num]; } static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val) { DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val); switch (reg_num) { case PHY_REG_CONTROL: if (val & PHY_REG_CONTROL_RST) { /* Phy reset */ gem_phy_reset(s); val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP); s->phy_loop = 0; } if (val & PHY_REG_CONTROL_ANEG) { /* Complete autonegotiation immediately */ val &= ~(PHY_REG_CONTROL_ANEG | PHY_REG_CONTROL_ANRESTART); s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL; } if (val & PHY_REG_CONTROL_LOOP) { DB_PRINT("PHY placed in loopback\n"); s->phy_loop = 1; } else { s->phy_loop = 0; } break; } s->phy_regs[reg_num] = val; } static void gem_handle_phy_access(CadenceGEMState *s) { uint32_t val = s->regs[R_PHYMNTNC]; uint32_t phy_addr, reg_num; phy_addr = FIELD_EX32(val, PHYMNTNC, PHY_ADDR); if (phy_addr != s->phy_addr) { /* no phy at this address */ if (FIELD_EX32(val, PHYMNTNC, OP) == MDIO_OP_READ) { s->regs[R_PHYMNTNC] = FIELD_DP32(val, PHYMNTNC, DATA, 0xffff); } return; } reg_num = FIELD_EX32(val, PHYMNTNC, REG_ADDR); switch (FIELD_EX32(val, PHYMNTNC, OP)) { case MDIO_OP_READ: s->regs[R_PHYMNTNC] = FIELD_DP32(val, PHYMNTNC, DATA, gem_phy_read(s, reg_num)); break; case MDIO_OP_WRITE: gem_phy_write(s, reg_num, val); break; default: break; /* only clause 22 operations are supported */ } } /* * gem_read32: * Read a GEM register. */ static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size) { CadenceGEMState *s; uint32_t retval; s = opaque; offset >>= 2; retval = s->regs[offset]; DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval); switch (offset) { case R_ISR: DB_PRINT("lowering irqs on ISR read\n"); /* The interrupts get updated at the end of the function. */ break; } /* Squash read to clear bits */ s->regs[offset] &= ~(s->regs_rtc[offset]); /* Do not provide write only bits */ retval &= ~(s->regs_wo[offset]); DB_PRINT("0x%08x\n", retval); gem_update_int_status(s); return retval; } /* * gem_write32: * Write a GEM register. */ static void gem_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { CadenceGEMState *s = (CadenceGEMState *)opaque; uint32_t readonly; int i; DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val); offset >>= 2; /* Squash bits which are read only in write value */ val &= ~(s->regs_ro[offset]); /* Preserve (only) bits which are read only and wtc in register */ readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]); /* Copy register write to backing store */ s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly; /* do w1c */ s->regs[offset] &= ~(s->regs_w1c[offset] & val); /* Handle register write side effects */ switch (offset) { case R_NWCTRL: if (FIELD_EX32(val, NWCTRL, ENABLE_RECEIVE)) { for (i = 0; i < s->num_priority_queues; ++i) { gem_get_rx_desc(s, i); } } if (FIELD_EX32(val, NWCTRL, TRANSMIT_START)) { gem_transmit(s); } if (!(FIELD_EX32(val, NWCTRL, ENABLE_TRANSMIT))) { /* Reset to start of Q when transmit disabled. */ for (i = 0; i < s->num_priority_queues; i++) { s->tx_desc_addr[i] = gem_get_tx_queue_base_addr(s, i); } } if (gem_can_receive(qemu_get_queue(s->nic))) { qemu_flush_queued_packets(qemu_get_queue(s->nic)); } break; case R_TXSTATUS: gem_update_int_status(s); break; case R_RXQBASE: s->rx_desc_addr[0] = val; break; case R_RECEIVE_Q1_PTR ... R_RECEIVE_Q7_PTR: s->rx_desc_addr[offset - R_RECEIVE_Q1_PTR + 1] = val; break; case R_TXQBASE: s->tx_desc_addr[0] = val; break; case R_TRANSMIT_Q1_PTR ... R_TRANSMIT_Q7_PTR: s->tx_desc_addr[offset - R_TRANSMIT_Q1_PTR + 1] = val; break; case R_RXSTATUS: gem_update_int_status(s); break; case R_IER: s->regs[R_IMR] &= ~val; gem_update_int_status(s); break; case R_JUMBO_MAX_LEN: s->regs[R_JUMBO_MAX_LEN] = val & MAX_JUMBO_FRAME_SIZE_MASK; break; case R_INT_Q1_ENABLE ... R_INT_Q7_ENABLE: s->regs[R_INT_Q1_MASK + offset - R_INT_Q1_ENABLE] &= ~val; gem_update_int_status(s); break; case R_IDR: s->regs[R_IMR] |= val; gem_update_int_status(s); break; case R_INT_Q1_DISABLE ... R_INT_Q7_DISABLE: s->regs[R_INT_Q1_MASK + offset - R_INT_Q1_DISABLE] |= val; gem_update_int_status(s); break; case R_SPADDR1LO: case R_SPADDR2LO: case R_SPADDR3LO: case R_SPADDR4LO: s->sar_active[(offset - R_SPADDR1LO) / 2] = false; break; case R_SPADDR1HI: case R_SPADDR2HI: case R_SPADDR3HI: case R_SPADDR4HI: s->sar_active[(offset - R_SPADDR1HI) / 2] = true; break; case R_PHYMNTNC: gem_handle_phy_access(s); break; } DB_PRINT("newval: 0x%08x\n", s->regs[offset]); } static const MemoryRegionOps gem_ops = { .read = gem_read, .write = gem_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static void gem_set_link(NetClientState *nc) { CadenceGEMState *s = qemu_get_nic_opaque(nc); DB_PRINT("\n"); phy_update_link(s); gem_update_int_status(s); } static NetClientInfo net_gem_info = { .type = NET_CLIENT_DRIVER_NIC, .size = sizeof(NICState), .can_receive = gem_can_receive, .receive = gem_receive, .link_status_changed = gem_set_link, }; static void gem_realize(DeviceState *dev, Error **errp) { CadenceGEMState *s = CADENCE_GEM(dev); int i; address_space_init(&s->dma_as, s->dma_mr ? s->dma_mr : get_system_memory(), "dma"); if (s->num_priority_queues == 0 || s->num_priority_queues > MAX_PRIORITY_QUEUES) { error_setg(errp, "Invalid num-priority-queues value: %" PRIx8, s->num_priority_queues); return; } else if (s->num_type1_screeners > MAX_TYPE1_SCREENERS) { error_setg(errp, "Invalid num-type1-screeners value: %" PRIx8, s->num_type1_screeners); return; } else if (s->num_type2_screeners > MAX_TYPE2_SCREENERS) { error_setg(errp, "Invalid num-type2-screeners value: %" PRIx8, s->num_type2_screeners); return; } for (i = 0; i < s->num_priority_queues; ++i) { sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]); } qemu_macaddr_default_if_unset(&s->conf.macaddr); s->nic = qemu_new_nic(&net_gem_info, &s->conf, object_get_typename(OBJECT(dev)), dev->id, &dev->mem_reentrancy_guard, s); if (s->jumbo_max_len > MAX_FRAME_SIZE) { error_setg(errp, "jumbo-max-len is greater than %d", MAX_FRAME_SIZE); return; } } static void gem_init(Object *obj) { CadenceGEMState *s = CADENCE_GEM(obj); DeviceState *dev = DEVICE(obj); DB_PRINT("\n"); gem_init_register_masks(s); memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s, "enet", sizeof(s->regs)); sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem); } static const VMStateDescription vmstate_cadence_gem = { .name = "cadence_gem", .version_id = 4, .minimum_version_id = 4, .fields = (const VMStateField[]) { VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG), VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32), VMSTATE_UINT8(phy_loop, CadenceGEMState), VMSTATE_UINT32_ARRAY(rx_desc_addr, CadenceGEMState, MAX_PRIORITY_QUEUES), VMSTATE_UINT32_ARRAY(tx_desc_addr, CadenceGEMState, MAX_PRIORITY_QUEUES), VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4), VMSTATE_END_OF_LIST(), } }; static Property gem_properties[] = { DEFINE_NIC_PROPERTIES(CadenceGEMState, conf), DEFINE_PROP_UINT32("revision", CadenceGEMState, revision, GEM_MODID_VALUE), DEFINE_PROP_UINT8("phy-addr", CadenceGEMState, phy_addr, BOARD_PHY_ADDRESS), DEFINE_PROP_UINT8("num-priority-queues", CadenceGEMState, num_priority_queues, 1), DEFINE_PROP_UINT8("num-type1-screeners", CadenceGEMState, num_type1_screeners, 4), DEFINE_PROP_UINT8("num-type2-screeners", CadenceGEMState, num_type2_screeners, 4), DEFINE_PROP_UINT16("jumbo-max-len", CadenceGEMState, jumbo_max_len, 10240), DEFINE_PROP_LINK("dma", CadenceGEMState, dma_mr, TYPE_MEMORY_REGION, MemoryRegion *), DEFINE_PROP_END_OF_LIST(), }; static void gem_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = gem_realize; device_class_set_props(dc, gem_properties); dc->vmsd = &vmstate_cadence_gem; device_class_set_legacy_reset(dc, gem_reset); } static const TypeInfo gem_info = { .name = TYPE_CADENCE_GEM, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(CadenceGEMState), .instance_init = gem_init, .class_init = gem_class_init, }; static void gem_register_types(void) { type_register_static(&gem_info); } type_init(gem_register_types)