/* * QEMU Cadence GEM emulation * * Copyright (c) 2011 Xilinx, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include <zlib.h> /* For crc32 */ #include "hw/irq.h" #include "hw/net/cadence_gem.h" #include "hw/qdev-properties.h" #include "migration/vmstate.h" #include "qapi/error.h" #include "qemu/log.h" #include "qemu/module.h" #include "sysemu/dma.h" #include "net/checksum.h" #include "net/eth.h" #define CADENCE_GEM_ERR_DEBUG 0 #define DB_PRINT(...) do {\ if (CADENCE_GEM_ERR_DEBUG) { \ qemu_log(": %s: ", __func__); \ qemu_log(__VA_ARGS__); \ } \ } while (0) #define GEM_NWCTRL (0x00000000 / 4) /* Network Control reg */ #define GEM_NWCFG (0x00000004 / 4) /* Network Config reg */ #define GEM_NWSTATUS (0x00000008 / 4) /* Network Status reg */ #define GEM_USERIO (0x0000000C / 4) /* User IO reg */ #define GEM_DMACFG (0x00000010 / 4) /* DMA Control reg */ #define GEM_TXSTATUS (0x00000014 / 4) /* TX Status reg */ #define GEM_RXQBASE (0x00000018 / 4) /* RX Q Base address reg */ #define GEM_TXQBASE (0x0000001C / 4) /* TX Q Base address reg */ #define GEM_RXSTATUS (0x00000020 / 4) /* RX Status reg */ #define GEM_ISR (0x00000024 / 4) /* Interrupt Status reg */ #define GEM_IER (0x00000028 / 4) /* Interrupt Enable reg */ #define GEM_IDR (0x0000002C / 4) /* Interrupt Disable reg */ #define GEM_IMR (0x00000030 / 4) /* Interrupt Mask reg */ #define GEM_PHYMNTNC (0x00000034 / 4) /* Phy Maintenance reg */ #define GEM_RXPAUSE (0x00000038 / 4) /* RX Pause Time reg */ #define GEM_TXPAUSE (0x0000003C / 4) /* TX Pause Time reg */ #define GEM_TXPARTIALSF (0x00000040 / 4) /* TX Partial Store and Forward */ #define GEM_RXPARTIALSF (0x00000044 / 4) /* RX Partial Store and Forward */ #define GEM_JUMBO_MAX_LEN (0x00000048 / 4) /* Max Jumbo Frame Size */ #define GEM_HASHLO (0x00000080 / 4) /* Hash Low address reg */ #define GEM_HASHHI (0x00000084 / 4) /* Hash High address reg */ #define GEM_SPADDR1LO (0x00000088 / 4) /* Specific addr 1 low reg */ #define GEM_SPADDR1HI (0x0000008C / 4) /* Specific addr 1 high reg */ #define GEM_SPADDR2LO (0x00000090 / 4) /* Specific addr 2 low reg */ #define GEM_SPADDR2HI (0x00000094 / 4) /* Specific addr 2 high reg */ #define GEM_SPADDR3LO (0x00000098 / 4) /* Specific addr 3 low reg */ #define GEM_SPADDR3HI (0x0000009C / 4) /* Specific addr 3 high reg */ #define GEM_SPADDR4LO (0x000000A0 / 4) /* Specific addr 4 low reg */ #define GEM_SPADDR4HI (0x000000A4 / 4) /* Specific addr 4 high reg */ #define GEM_TIDMATCH1 (0x000000A8 / 4) /* Type ID1 Match reg */ #define GEM_TIDMATCH2 (0x000000AC / 4) /* Type ID2 Match reg */ #define GEM_TIDMATCH3 (0x000000B0 / 4) /* Type ID3 Match reg */ #define GEM_TIDMATCH4 (0x000000B4 / 4) /* Type ID4 Match reg */ #define GEM_WOLAN (0x000000B8 / 4) /* Wake on LAN reg */ #define GEM_IPGSTRETCH (0x000000BC / 4) /* IPG Stretch reg */ #define GEM_SVLAN (0x000000C0 / 4) /* Stacked VLAN reg */ #define GEM_MODID (0x000000FC / 4) /* Module ID reg */ #define GEM_OCTTXLO (0x00000100 / 4) /* Octects transmitted Low reg */ #define GEM_OCTTXHI (0x00000104 / 4) /* Octects transmitted High reg */ #define GEM_TXCNT (0x00000108 / 4) /* Error-free Frames transmitted */ #define GEM_TXBCNT (0x0000010C / 4) /* Error-free Broadcast Frames */ #define GEM_TXMCNT (0x00000110 / 4) /* Error-free Multicast Frame */ #define GEM_TXPAUSECNT (0x00000114 / 4) /* Pause Frames Transmitted */ #define GEM_TX64CNT (0x00000118 / 4) /* Error-free 64 TX */ #define GEM_TX65CNT (0x0000011C / 4) /* Error-free 65-127 TX */ #define GEM_TX128CNT (0x00000120 / 4) /* Error-free 128-255 TX */ #define GEM_TX256CNT (0x00000124 / 4) /* Error-free 256-511 */ #define GEM_TX512CNT (0x00000128 / 4) /* Error-free 512-1023 TX */ #define GEM_TX1024CNT (0x0000012C / 4) /* Error-free 1024-1518 TX */ #define GEM_TX1519CNT (0x00000130 / 4) /* Error-free larger than 1519 TX */ #define GEM_TXURUNCNT (0x00000134 / 4) /* TX under run error counter */ #define GEM_SINGLECOLLCNT (0x00000138 / 4) /* Single Collision Frames */ #define GEM_MULTCOLLCNT (0x0000013C / 4) /* Multiple Collision Frames */ #define GEM_EXCESSCOLLCNT (0x00000140 / 4) /* Excessive Collision Frames */ #define GEM_LATECOLLCNT (0x00000144 / 4) /* Late Collision Frames */ #define GEM_DEFERTXCNT (0x00000148 / 4) /* Deferred Transmission Frames */ #define GEM_CSENSECNT (0x0000014C / 4) /* Carrier Sense Error Counter */ #define GEM_OCTRXLO (0x00000150 / 4) /* Octects Received register Low */ #define GEM_OCTRXHI (0x00000154 / 4) /* Octects Received register High */ #define GEM_RXCNT (0x00000158 / 4) /* Error-free Frames Received */ #define GEM_RXBROADCNT (0x0000015C / 4) /* Error-free Broadcast Frames RX */ #define GEM_RXMULTICNT (0x00000160 / 4) /* Error-free Multicast Frames RX */ #define GEM_RXPAUSECNT (0x00000164 / 4) /* Pause Frames Received Counter */ #define GEM_RX64CNT (0x00000168 / 4) /* Error-free 64 byte Frames RX */ #define GEM_RX65CNT (0x0000016C / 4) /* Error-free 65-127B Frames RX */ #define GEM_RX128CNT (0x00000170 / 4) /* Error-free 128-255B Frames RX */ #define GEM_RX256CNT (0x00000174 / 4) /* Error-free 256-512B Frames RX */ #define GEM_RX512CNT (0x00000178 / 4) /* Error-free 512-1023B Frames RX */ #define GEM_RX1024CNT (0x0000017C / 4) /* Error-free 1024-1518B Frames RX */ #define GEM_RX1519CNT (0x00000180 / 4) /* Error-free 1519-max Frames RX */ #define GEM_RXUNDERCNT (0x00000184 / 4) /* Undersize Frames Received */ #define GEM_RXOVERCNT (0x00000188 / 4) /* Oversize Frames Received */ #define GEM_RXJABCNT (0x0000018C / 4) /* Jabbers Received Counter */ #define GEM_RXFCSCNT (0x00000190 / 4) /* Frame Check seq. Error Counter */ #define GEM_RXLENERRCNT (0x00000194 / 4) /* Length Field Error Counter */ #define GEM_RXSYMERRCNT (0x00000198 / 4) /* Symbol Error Counter */ #define GEM_RXALIGNERRCNT (0x0000019C / 4) /* Alignment Error Counter */ #define GEM_RXRSCERRCNT (0x000001A0 / 4) /* Receive Resource Error Counter */ #define GEM_RXORUNCNT (0x000001A4 / 4) /* Receive Overrun Counter */ #define GEM_RXIPCSERRCNT (0x000001A8 / 4) /* IP header Checksum Err Counter */ #define GEM_RXTCPCCNT (0x000001AC / 4) /* TCP Checksum Error Counter */ #define GEM_RXUDPCCNT (0x000001B0 / 4) /* UDP Checksum Error Counter */ #define GEM_1588S (0x000001D0 / 4) /* 1588 Timer Seconds */ #define GEM_1588NS (0x000001D4 / 4) /* 1588 Timer Nanoseconds */ #define GEM_1588ADJ (0x000001D8 / 4) /* 1588 Timer Adjust */ #define GEM_1588INC (0x000001DC / 4) /* 1588 Timer Increment */ #define GEM_PTPETXS (0x000001E0 / 4) /* PTP Event Frame Transmitted (s) */ #define GEM_PTPETXNS (0x000001E4 / 4) /* * PTP Event Frame Transmitted (ns) */ #define GEM_PTPERXS (0x000001E8 / 4) /* PTP Event Frame Received (s) */ #define GEM_PTPERXNS (0x000001EC / 4) /* PTP Event Frame Received (ns) */ #define GEM_PTPPTXS (0x000001E0 / 4) /* PTP Peer Frame Transmitted (s) */ #define GEM_PTPPTXNS (0x000001E4 / 4) /* PTP Peer Frame Transmitted (ns) */ #define GEM_PTPPRXS (0x000001E8 / 4) /* PTP Peer Frame Received (s) */ #define GEM_PTPPRXNS (0x000001EC / 4) /* PTP Peer Frame Received (ns) */ /* Design Configuration Registers */ #define GEM_DESCONF (0x00000280 / 4) #define GEM_DESCONF2 (0x00000284 / 4) #define GEM_DESCONF3 (0x00000288 / 4) #define GEM_DESCONF4 (0x0000028C / 4) #define GEM_DESCONF5 (0x00000290 / 4) #define GEM_DESCONF6 (0x00000294 / 4) #define GEM_DESCONF6_64B_MASK (1U << 23) #define GEM_DESCONF7 (0x00000298 / 4) #define GEM_INT_Q1_STATUS (0x00000400 / 4) #define GEM_INT_Q1_MASK (0x00000640 / 4) #define GEM_TRANSMIT_Q1_PTR (0x00000440 / 4) #define GEM_TRANSMIT_Q7_PTR (GEM_TRANSMIT_Q1_PTR + 6) #define GEM_RECEIVE_Q1_PTR (0x00000480 / 4) #define GEM_RECEIVE_Q7_PTR (GEM_RECEIVE_Q1_PTR + 6) #define GEM_TBQPH (0x000004C8 / 4) #define GEM_RBQPH (0x000004D4 / 4) #define GEM_INT_Q1_ENABLE (0x00000600 / 4) #define GEM_INT_Q7_ENABLE (GEM_INT_Q1_ENABLE + 6) #define GEM_INT_Q1_DISABLE (0x00000620 / 4) #define GEM_INT_Q7_DISABLE (GEM_INT_Q1_DISABLE + 6) #define GEM_INT_Q1_MASK (0x00000640 / 4) #define GEM_INT_Q7_MASK (GEM_INT_Q1_MASK + 6) #define GEM_SCREENING_TYPE1_REGISTER_0 (0x00000500 / 4) #define GEM_ST1R_UDP_PORT_MATCH_ENABLE (1 << 29) #define GEM_ST1R_DSTC_ENABLE (1 << 28) #define GEM_ST1R_UDP_PORT_MATCH_SHIFT (12) #define GEM_ST1R_UDP_PORT_MATCH_WIDTH (27 - GEM_ST1R_UDP_PORT_MATCH_SHIFT + 1) #define GEM_ST1R_DSTC_MATCH_SHIFT (4) #define GEM_ST1R_DSTC_MATCH_WIDTH (11 - GEM_ST1R_DSTC_MATCH_SHIFT + 1) #define GEM_ST1R_QUEUE_SHIFT (0) #define GEM_ST1R_QUEUE_WIDTH (3 - GEM_ST1R_QUEUE_SHIFT + 1) #define GEM_SCREENING_TYPE2_REGISTER_0 (0x00000540 / 4) #define GEM_ST2R_COMPARE_A_ENABLE (1 << 18) #define GEM_ST2R_COMPARE_A_SHIFT (13) #define GEM_ST2R_COMPARE_WIDTH (17 - GEM_ST2R_COMPARE_A_SHIFT + 1) #define GEM_ST2R_ETHERTYPE_ENABLE (1 << 12) #define GEM_ST2R_ETHERTYPE_INDEX_SHIFT (9) #define GEM_ST2R_ETHERTYPE_INDEX_WIDTH (11 - GEM_ST2R_ETHERTYPE_INDEX_SHIFT \ + 1) #define GEM_ST2R_QUEUE_SHIFT (0) #define GEM_ST2R_QUEUE_WIDTH (3 - GEM_ST2R_QUEUE_SHIFT + 1) #define GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 (0x000006e0 / 4) #define GEM_TYPE2_COMPARE_0_WORD_0 (0x00000700 / 4) #define GEM_T2CW1_COMPARE_OFFSET_SHIFT (7) #define GEM_T2CW1_COMPARE_OFFSET_WIDTH (8 - GEM_T2CW1_COMPARE_OFFSET_SHIFT + 1) #define GEM_T2CW1_OFFSET_VALUE_SHIFT (0) #define GEM_T2CW1_OFFSET_VALUE_WIDTH (6 - GEM_T2CW1_OFFSET_VALUE_SHIFT + 1) /*****************************************/ #define GEM_NWCTRL_TXSTART 0x00000200 /* Transmit Enable */ #define GEM_NWCTRL_TXENA 0x00000008 /* Transmit Enable */ #define GEM_NWCTRL_RXENA 0x00000004 /* Receive Enable */ #define GEM_NWCTRL_LOCALLOOP 0x00000002 /* Local Loopback */ #define GEM_NWCFG_STRIP_FCS 0x00020000 /* Strip FCS field */ #define GEM_NWCFG_LERR_DISC 0x00010000 /* Discard RX frames with len err */ #define GEM_NWCFG_BUFF_OFST_M 0x0000C000 /* Receive buffer offset mask */ #define GEM_NWCFG_BUFF_OFST_S 14 /* Receive buffer offset shift */ #define GEM_NWCFG_RCV_1538 0x00000100 /* Receive 1538 bytes frame */ #define GEM_NWCFG_UCAST_HASH 0x00000080 /* accept unicast if hash match */ #define GEM_NWCFG_MCAST_HASH 0x00000040 /* accept multicast if hash match */ #define GEM_NWCFG_BCAST_REJ 0x00000020 /* Reject broadcast packets */ #define GEM_NWCFG_PROMISC 0x00000010 /* Accept all packets */ #define GEM_NWCFG_JUMBO_FRAME 0x00000008 /* Jumbo Frames enable */ #define GEM_DMACFG_ADDR_64B (1U << 30) #define GEM_DMACFG_TX_BD_EXT (1U << 29) #define GEM_DMACFG_RX_BD_EXT (1U << 28) #define GEM_DMACFG_RBUFSZ_M 0x00FF0000 /* DMA RX Buffer Size mask */ #define GEM_DMACFG_RBUFSZ_S 16 /* DMA RX Buffer Size shift */ #define GEM_DMACFG_RBUFSZ_MUL 64 /* DMA RX Buffer Size multiplier */ #define GEM_DMACFG_TXCSUM_OFFL 0x00000800 /* Transmit checksum offload */ #define GEM_TXSTATUS_TXCMPL 0x00000020 /* Transmit Complete */ #define GEM_TXSTATUS_USED 0x00000001 /* sw owned descriptor encountered */ #define GEM_RXSTATUS_FRMRCVD 0x00000002 /* Frame received */ #define GEM_RXSTATUS_NOBUF 0x00000001 /* Buffer unavailable */ /* GEM_ISR GEM_IER GEM_IDR GEM_IMR */ #define GEM_INT_TXCMPL 0x00000080 /* Transmit Complete */ #define GEM_INT_AMBA_ERR 0x00000040 #define GEM_INT_TXUSED 0x00000008 #define GEM_INT_RXUSED 0x00000004 #define GEM_INT_RXCMPL 0x00000002 #define GEM_PHYMNTNC_OP_R 0x20000000 /* read operation */ #define GEM_PHYMNTNC_OP_W 0x10000000 /* write operation */ #define GEM_PHYMNTNC_ADDR 0x0F800000 /* Address bits */ #define GEM_PHYMNTNC_ADDR_SHFT 23 #define GEM_PHYMNTNC_REG 0x007C0000 /* register bits */ #define GEM_PHYMNTNC_REG_SHIFT 18 /* Marvell PHY definitions */ #define BOARD_PHY_ADDRESS 23 /* PHY address we will emulate a device at */ #define PHY_REG_CONTROL 0 #define PHY_REG_STATUS 1 #define PHY_REG_PHYID1 2 #define PHY_REG_PHYID2 3 #define PHY_REG_ANEGADV 4 #define PHY_REG_LINKPABIL 5 #define PHY_REG_ANEGEXP 6 #define PHY_REG_NEXTP 7 #define PHY_REG_LINKPNEXTP 8 #define PHY_REG_100BTCTRL 9 #define PHY_REG_1000BTSTAT 10 #define PHY_REG_EXTSTAT 15 #define PHY_REG_PHYSPCFC_CTL 16 #define PHY_REG_PHYSPCFC_ST 17 #define PHY_REG_INT_EN 18 #define PHY_REG_INT_ST 19 #define PHY_REG_EXT_PHYSPCFC_CTL 20 #define PHY_REG_RXERR 21 #define PHY_REG_EACD 22 #define PHY_REG_LED 24 #define PHY_REG_LED_OVRD 25 #define PHY_REG_EXT_PHYSPCFC_CTL2 26 #define PHY_REG_EXT_PHYSPCFC_ST 27 #define PHY_REG_CABLE_DIAG 28 #define PHY_REG_CONTROL_RST 0x8000 #define PHY_REG_CONTROL_LOOP 0x4000 #define PHY_REG_CONTROL_ANEG 0x1000 #define PHY_REG_CONTROL_ANRESTART 0x0200 #define PHY_REG_STATUS_LINK 0x0004 #define PHY_REG_STATUS_ANEGCMPL 0x0020 #define PHY_REG_INT_ST_ANEGCMPL 0x0800 #define PHY_REG_INT_ST_LINKC 0x0400 #define PHY_REG_INT_ST_ENERGY 0x0010 /***********************************************************************/ #define GEM_RX_REJECT (-1) #define GEM_RX_PROMISCUOUS_ACCEPT (-2) #define GEM_RX_BROADCAST_ACCEPT (-3) #define GEM_RX_MULTICAST_HASH_ACCEPT (-4) #define GEM_RX_UNICAST_HASH_ACCEPT (-5) #define GEM_RX_SAR_ACCEPT 0 /***********************************************************************/ #define DESC_1_USED 0x80000000 #define DESC_1_LENGTH 0x00001FFF #define DESC_1_TX_WRAP 0x40000000 #define DESC_1_TX_LAST 0x00008000 #define DESC_0_RX_WRAP 0x00000002 #define DESC_0_RX_OWNERSHIP 0x00000001 #define R_DESC_1_RX_SAR_SHIFT 25 #define R_DESC_1_RX_SAR_LENGTH 2 #define R_DESC_1_RX_SAR_MATCH (1 << 27) #define R_DESC_1_RX_UNICAST_HASH (1 << 29) #define R_DESC_1_RX_MULTICAST_HASH (1 << 30) #define R_DESC_1_RX_BROADCAST (1 << 31) #define DESC_1_RX_SOF 0x00004000 #define DESC_1_RX_EOF 0x00008000 #define GEM_MODID_VALUE 0x00020118 static inline uint64_t tx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc) { uint64_t ret = desc[0]; if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) { ret |= (uint64_t)desc[2] << 32; } return ret; } static inline unsigned tx_desc_get_used(uint32_t *desc) { return (desc[1] & DESC_1_USED) ? 1 : 0; } static inline void tx_desc_set_used(uint32_t *desc) { desc[1] |= DESC_1_USED; } static inline unsigned tx_desc_get_wrap(uint32_t *desc) { return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0; } static inline unsigned tx_desc_get_last(uint32_t *desc) { return (desc[1] & DESC_1_TX_LAST) ? 1 : 0; } static inline unsigned tx_desc_get_length(uint32_t *desc) { return desc[1] & DESC_1_LENGTH; } static inline void print_gem_tx_desc(uint32_t *desc, uint8_t queue) { DB_PRINT("TXDESC (queue %" PRId8 "):\n", queue); DB_PRINT("bufaddr: 0x%08x\n", *desc); DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc)); DB_PRINT("wrap: %d\n", tx_desc_get_wrap(desc)); DB_PRINT("last: %d\n", tx_desc_get_last(desc)); DB_PRINT("length: %d\n", tx_desc_get_length(desc)); } static inline uint64_t rx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc) { uint64_t ret = desc[0] & ~0x3UL; if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) { ret |= (uint64_t)desc[2] << 32; } return ret; } static inline int gem_get_desc_len(CadenceGEMState *s, bool rx_n_tx) { int ret = 2; if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) { ret += 2; } if (s->regs[GEM_DMACFG] & (rx_n_tx ? GEM_DMACFG_RX_BD_EXT : GEM_DMACFG_TX_BD_EXT)) { ret += 2; } assert(ret <= DESC_MAX_NUM_WORDS); return ret; } static inline unsigned rx_desc_get_wrap(uint32_t *desc) { return desc[0] & DESC_0_RX_WRAP ? 1 : 0; } static inline unsigned rx_desc_get_ownership(uint32_t *desc) { return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0; } static inline void rx_desc_set_ownership(uint32_t *desc) { desc[0] |= DESC_0_RX_OWNERSHIP; } static inline void rx_desc_set_sof(uint32_t *desc) { desc[1] |= DESC_1_RX_SOF; } static inline void rx_desc_clear_control(uint32_t *desc) { desc[1] = 0; } static inline void rx_desc_set_eof(uint32_t *desc) { desc[1] |= DESC_1_RX_EOF; } static inline void rx_desc_set_length(uint32_t *desc, unsigned len) { desc[1] &= ~DESC_1_LENGTH; desc[1] |= len; } static inline void rx_desc_set_broadcast(uint32_t *desc) { desc[1] |= R_DESC_1_RX_BROADCAST; } static inline void rx_desc_set_unicast_hash(uint32_t *desc) { desc[1] |= R_DESC_1_RX_UNICAST_HASH; } static inline void rx_desc_set_multicast_hash(uint32_t *desc) { desc[1] |= R_DESC_1_RX_MULTICAST_HASH; } static inline void rx_desc_set_sar(uint32_t *desc, int sar_idx) { desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH, sar_idx); desc[1] |= R_DESC_1_RX_SAR_MATCH; } /* The broadcast MAC address: 0xFFFFFFFFFFFF */ static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; static uint32_t gem_get_max_buf_len(CadenceGEMState *s, bool tx) { uint32_t size; if (s->regs[GEM_NWCFG] & GEM_NWCFG_JUMBO_FRAME) { size = s->regs[GEM_JUMBO_MAX_LEN]; if (size > s->jumbo_max_len) { size = s->jumbo_max_len; qemu_log_mask(LOG_GUEST_ERROR, "GEM_JUMBO_MAX_LEN reg cannot be" " greater than 0x%" PRIx32 "\n", s->jumbo_max_len); } } else if (tx) { size = 1518; } else { size = s->regs[GEM_NWCFG] & GEM_NWCFG_RCV_1538 ? 1538 : 1518; } return size; } static void gem_set_isr(CadenceGEMState *s, int q, uint32_t flag) { if (q == 0) { s->regs[GEM_ISR] |= flag & ~(s->regs[GEM_IMR]); } else { s->regs[GEM_INT_Q1_STATUS + q - 1] |= flag & ~(s->regs[GEM_INT_Q1_MASK + q - 1]); } } /* * gem_init_register_masks: * One time initialization. * Set masks to identify which register bits have magical clear properties */ static void gem_init_register_masks(CadenceGEMState *s) { unsigned int i; /* Mask of register bits which are read only */ memset(&s->regs_ro[0], 0, sizeof(s->regs_ro)); s->regs_ro[GEM_NWCTRL] = 0xFFF80000; s->regs_ro[GEM_NWSTATUS] = 0xFFFFFFFF; s->regs_ro[GEM_DMACFG] = 0x8E00F000; s->regs_ro[GEM_TXSTATUS] = 0xFFFFFE08; s->regs_ro[GEM_RXQBASE] = 0x00000003; s->regs_ro[GEM_TXQBASE] = 0x00000003; s->regs_ro[GEM_RXSTATUS] = 0xFFFFFFF0; s->regs_ro[GEM_ISR] = 0xFFFFFFFF; s->regs_ro[GEM_IMR] = 0xFFFFFFFF; s->regs_ro[GEM_MODID] = 0xFFFFFFFF; for (i = 0; i < s->num_priority_queues; i++) { s->regs_ro[GEM_INT_Q1_STATUS + i] = 0xFFFFFFFF; s->regs_ro[GEM_INT_Q1_ENABLE + i] = 0xFFFFF319; s->regs_ro[GEM_INT_Q1_DISABLE + i] = 0xFFFFF319; s->regs_ro[GEM_INT_Q1_MASK + i] = 0xFFFFFFFF; } /* Mask of register bits which are clear on read */ memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc)); s->regs_rtc[GEM_ISR] = 0xFFFFFFFF; for (i = 0; i < s->num_priority_queues; i++) { s->regs_rtc[GEM_INT_Q1_STATUS + i] = 0x00000CE6; } /* Mask of register bits which are write 1 to clear */ memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c)); s->regs_w1c[GEM_TXSTATUS] = 0x000001F7; s->regs_w1c[GEM_RXSTATUS] = 0x0000000F; /* Mask of register bits which are write only */ memset(&s->regs_wo[0], 0, sizeof(s->regs_wo)); s->regs_wo[GEM_NWCTRL] = 0x00073E60; s->regs_wo[GEM_IER] = 0x07FFFFFF; s->regs_wo[GEM_IDR] = 0x07FFFFFF; for (i = 0; i < s->num_priority_queues; i++) { s->regs_wo[GEM_INT_Q1_ENABLE + i] = 0x00000CE6; s->regs_wo[GEM_INT_Q1_DISABLE + i] = 0x00000CE6; } } /* * phy_update_link: * Make the emulated PHY link state match the QEMU "interface" state. */ static void phy_update_link(CadenceGEMState *s) { DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down); /* Autonegotiation status mirrors link status. */ if (qemu_get_queue(s->nic)->link_down) { s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL | PHY_REG_STATUS_LINK); s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC; } else { s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL | PHY_REG_STATUS_LINK); s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC | PHY_REG_INT_ST_ANEGCMPL | PHY_REG_INT_ST_ENERGY); } } static bool gem_can_receive(NetClientState *nc) { CadenceGEMState *s; int i; s = qemu_get_nic_opaque(nc); /* Do nothing if receive is not enabled. */ if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_RXENA)) { if (s->can_rx_state != 1) { s->can_rx_state = 1; DB_PRINT("can't receive - no enable\n"); } return false; } for (i = 0; i < s->num_priority_queues; i++) { if (rx_desc_get_ownership(s->rx_desc[i]) != 1) { break; } }; if (i == s->num_priority_queues) { if (s->can_rx_state != 2) { s->can_rx_state = 2; DB_PRINT("can't receive - all the buffer descriptors are busy\n"); } return false; } if (s->can_rx_state != 0) { s->can_rx_state = 0; DB_PRINT("can receive\n"); } return true; } /* * gem_update_int_status: * Raise or lower interrupt based on current status. */ static void gem_update_int_status(CadenceGEMState *s) { int i; qemu_set_irq(s->irq[0], !!s->regs[GEM_ISR]); for (i = 1; i < s->num_priority_queues; ++i) { qemu_set_irq(s->irq[i], !!s->regs[GEM_INT_Q1_STATUS + i - 1]); } } /* * gem_receive_updatestats: * Increment receive statistics. */ static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet, unsigned bytes) { uint64_t octets; /* Total octets (bytes) received */ octets = ((uint64_t)(s->regs[GEM_OCTRXLO]) << 32) | s->regs[GEM_OCTRXHI]; octets += bytes; s->regs[GEM_OCTRXLO] = octets >> 32; s->regs[GEM_OCTRXHI] = octets; /* Error-free Frames received */ s->regs[GEM_RXCNT]++; /* Error-free Broadcast Frames counter */ if (!memcmp(packet, broadcast_addr, 6)) { s->regs[GEM_RXBROADCNT]++; } /* Error-free Multicast Frames counter */ if (packet[0] == 0x01) { s->regs[GEM_RXMULTICNT]++; } if (bytes <= 64) { s->regs[GEM_RX64CNT]++; } else if (bytes <= 127) { s->regs[GEM_RX65CNT]++; } else if (bytes <= 255) { s->regs[GEM_RX128CNT]++; } else if (bytes <= 511) { s->regs[GEM_RX256CNT]++; } else if (bytes <= 1023) { s->regs[GEM_RX512CNT]++; } else if (bytes <= 1518) { s->regs[GEM_RX1024CNT]++; } else { s->regs[GEM_RX1519CNT]++; } } /* * Get the MAC Address bit from the specified position */ static unsigned get_bit(const uint8_t *mac, unsigned bit) { unsigned byte; byte = mac[bit / 8]; byte >>= (bit & 0x7); byte &= 1; return byte; } /* * Calculate a GEM MAC Address hash index */ static unsigned calc_mac_hash(const uint8_t *mac) { int index_bit, mac_bit; unsigned hash_index; hash_index = 0; mac_bit = 5; for (index_bit = 5; index_bit >= 0; index_bit--) { hash_index |= (get_bit(mac, mac_bit) ^ get_bit(mac, mac_bit + 6) ^ get_bit(mac, mac_bit + 12) ^ get_bit(mac, mac_bit + 18) ^ get_bit(mac, mac_bit + 24) ^ get_bit(mac, mac_bit + 30) ^ get_bit(mac, mac_bit + 36) ^ get_bit(mac, mac_bit + 42)) << index_bit; mac_bit--; } return hash_index; } /* * gem_mac_address_filter: * Accept or reject this destination address? * Returns: * GEM_RX_REJECT: reject * >= 0: Specific address accept (which matched SAR is returned) * others for various other modes of accept: * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT, * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT */ static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet) { uint8_t *gem_spaddr; int i, is_mc; /* Promiscuous mode? */ if (s->regs[GEM_NWCFG] & GEM_NWCFG_PROMISC) { return GEM_RX_PROMISCUOUS_ACCEPT; } if (!memcmp(packet, broadcast_addr, 6)) { /* Reject broadcast packets? */ if (s->regs[GEM_NWCFG] & GEM_NWCFG_BCAST_REJ) { return GEM_RX_REJECT; } return GEM_RX_BROADCAST_ACCEPT; } /* Accept packets -w- hash match? */ is_mc = is_multicast_ether_addr(packet); if ((is_mc && (s->regs[GEM_NWCFG] & GEM_NWCFG_MCAST_HASH)) || (!is_mc && (s->regs[GEM_NWCFG] & GEM_NWCFG_UCAST_HASH))) { uint64_t buckets; unsigned hash_index; hash_index = calc_mac_hash(packet); buckets = ((uint64_t)s->regs[GEM_HASHHI] << 32) | s->regs[GEM_HASHLO]; if ((buckets >> hash_index) & 1) { return is_mc ? GEM_RX_MULTICAST_HASH_ACCEPT : GEM_RX_UNICAST_HASH_ACCEPT; } } /* Check all 4 specific addresses */ gem_spaddr = (uint8_t *)&(s->regs[GEM_SPADDR1LO]); for (i = 3; i >= 0; i--) { if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) { return GEM_RX_SAR_ACCEPT + i; } } /* No address match; reject the packet */ return GEM_RX_REJECT; } /* Figure out which queue the received data should be sent to */ static int get_queue_from_screen(CadenceGEMState *s, uint8_t *rxbuf_ptr, unsigned rxbufsize) { uint32_t reg; bool matched, mismatched; int i, j; for (i = 0; i < s->num_type1_screeners; i++) { reg = s->regs[GEM_SCREENING_TYPE1_REGISTER_0 + i]; matched = false; mismatched = false; /* Screening is based on UDP Port */ if (reg & GEM_ST1R_UDP_PORT_MATCH_ENABLE) { uint16_t udp_port = rxbuf_ptr[14 + 22] << 8 | rxbuf_ptr[14 + 23]; if (udp_port == extract32(reg, GEM_ST1R_UDP_PORT_MATCH_SHIFT, GEM_ST1R_UDP_PORT_MATCH_WIDTH)) { matched = true; } else { mismatched = true; } } /* Screening is based on DS/TC */ if (reg & GEM_ST1R_DSTC_ENABLE) { uint8_t dscp = rxbuf_ptr[14 + 1]; if (dscp == extract32(reg, GEM_ST1R_DSTC_MATCH_SHIFT, GEM_ST1R_DSTC_MATCH_WIDTH)) { matched = true; } else { mismatched = true; } } if (matched && !mismatched) { return extract32(reg, GEM_ST1R_QUEUE_SHIFT, GEM_ST1R_QUEUE_WIDTH); } } for (i = 0; i < s->num_type2_screeners; i++) { reg = s->regs[GEM_SCREENING_TYPE2_REGISTER_0 + i]; matched = false; mismatched = false; if (reg & GEM_ST2R_ETHERTYPE_ENABLE) { uint16_t type = rxbuf_ptr[12] << 8 | rxbuf_ptr[13]; int et_idx = extract32(reg, GEM_ST2R_ETHERTYPE_INDEX_SHIFT, GEM_ST2R_ETHERTYPE_INDEX_WIDTH); if (et_idx > s->num_type2_screeners) { qemu_log_mask(LOG_GUEST_ERROR, "Out of range ethertype " "register index: %d\n", et_idx); } if (type == s->regs[GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 + et_idx]) { matched = true; } else { mismatched = true; } } /* Compare A, B, C */ for (j = 0; j < 3; j++) { uint32_t cr0, cr1, mask; uint16_t rx_cmp; int offset; int cr_idx = extract32(reg, GEM_ST2R_COMPARE_A_SHIFT + j * 6, GEM_ST2R_COMPARE_WIDTH); if (!(reg & (GEM_ST2R_COMPARE_A_ENABLE << (j * 6)))) { continue; } if (cr_idx > s->num_type2_screeners) { qemu_log_mask(LOG_GUEST_ERROR, "Out of range compare " "register index: %d\n", cr_idx); } cr0 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2]; cr1 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2 + 1]; offset = extract32(cr1, GEM_T2CW1_OFFSET_VALUE_SHIFT, GEM_T2CW1_OFFSET_VALUE_WIDTH); switch (extract32(cr1, GEM_T2CW1_COMPARE_OFFSET_SHIFT, GEM_T2CW1_COMPARE_OFFSET_WIDTH)) { case 3: /* Skip UDP header */ qemu_log_mask(LOG_UNIMP, "TCP compare offsets" "unimplemented - assuming UDP\n"); offset += 8; /* Fallthrough */ case 2: /* skip the IP header */ offset += 20; /* Fallthrough */ case 1: /* Count from after the ethertype */ offset += 14; break; case 0: /* Offset from start of frame */ break; } rx_cmp = rxbuf_ptr[offset] << 8 | rxbuf_ptr[offset]; mask = extract32(cr0, 0, 16); if ((rx_cmp & mask) == (extract32(cr0, 16, 16) & mask)) { matched = true; } else { mismatched = true; } } if (matched && !mismatched) { return extract32(reg, GEM_ST2R_QUEUE_SHIFT, GEM_ST2R_QUEUE_WIDTH); } } /* We made it here, assume it's queue 0 */ return 0; } static uint32_t gem_get_queue_base_addr(CadenceGEMState *s, bool tx, int q) { uint32_t base_addr = 0; switch (q) { case 0: base_addr = s->regs[tx ? GEM_TXQBASE : GEM_RXQBASE]; break; case 1 ... (MAX_PRIORITY_QUEUES - 1): base_addr = s->regs[(tx ? GEM_TRANSMIT_Q1_PTR : GEM_RECEIVE_Q1_PTR) + q - 1]; break; default: g_assert_not_reached(); }; return base_addr; } static inline uint32_t gem_get_tx_queue_base_addr(CadenceGEMState *s, int q) { return gem_get_queue_base_addr(s, true, q); } static inline uint32_t gem_get_rx_queue_base_addr(CadenceGEMState *s, int q) { return gem_get_queue_base_addr(s, false, q); } static hwaddr gem_get_desc_addr(CadenceGEMState *s, bool tx, int q) { hwaddr desc_addr = 0; if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) { desc_addr = s->regs[tx ? GEM_TBQPH : GEM_RBQPH]; } desc_addr <<= 32; desc_addr |= tx ? s->tx_desc_addr[q] : s->rx_desc_addr[q]; return desc_addr; } static hwaddr gem_get_tx_desc_addr(CadenceGEMState *s, int q) { return gem_get_desc_addr(s, true, q); } static hwaddr gem_get_rx_desc_addr(CadenceGEMState *s, int q) { return gem_get_desc_addr(s, false, q); } static void gem_get_rx_desc(CadenceGEMState *s, int q) { hwaddr desc_addr = gem_get_rx_desc_addr(s, q); DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", desc_addr); /* read current descriptor */ address_space_read(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED, s->rx_desc[q], sizeof(uint32_t) * gem_get_desc_len(s, true)); /* Descriptor owned by software ? */ if (rx_desc_get_ownership(s->rx_desc[q]) == 1) { DB_PRINT("descriptor 0x%" HWADDR_PRIx " owned by sw.\n", desc_addr); s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_NOBUF; gem_set_isr(s, q, GEM_INT_RXUSED); /* Handle interrupt consequences */ gem_update_int_status(s); } } /* * gem_receive: * Fit a packet handed to us by QEMU into the receive descriptor ring. */ static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size) { CadenceGEMState *s = qemu_get_nic_opaque(nc); unsigned rxbufsize, bytes_to_copy; unsigned rxbuf_offset; uint8_t *rxbuf_ptr; bool first_desc = true; int maf; int q = 0; /* Is this destination MAC address "for us" ? */ maf = gem_mac_address_filter(s, buf); if (maf == GEM_RX_REJECT) { return size; /* no, drop siliently b/c it's not an error */ } /* Discard packets with receive length error enabled ? */ if (s->regs[GEM_NWCFG] & GEM_NWCFG_LERR_DISC) { unsigned type_len; /* Fish the ethertype / length field out of the RX packet */ type_len = buf[12] << 8 | buf[13]; /* It is a length field, not an ethertype */ if (type_len < 0x600) { if (size < type_len) { /* discard */ return -1; } } } /* * Determine configured receive buffer offset (probably 0) */ rxbuf_offset = (s->regs[GEM_NWCFG] & GEM_NWCFG_BUFF_OFST_M) >> GEM_NWCFG_BUFF_OFST_S; /* The configure size of each receive buffer. Determines how many * buffers needed to hold this packet. */ rxbufsize = ((s->regs[GEM_DMACFG] & GEM_DMACFG_RBUFSZ_M) >> GEM_DMACFG_RBUFSZ_S) * GEM_DMACFG_RBUFSZ_MUL; bytes_to_copy = size; /* Hardware allows a zero value here but warns against it. To avoid QEMU * indefinite loops we enforce a minimum value here */ if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) { rxbufsize = GEM_DMACFG_RBUFSZ_MUL; } /* Pad to minimum length. Assume FCS field is stripped, logic * below will increment it to the real minimum of 64 when * not FCS stripping */ if (size < 60) { size = 60; } /* Strip of FCS field ? (usually yes) */ if (s->regs[GEM_NWCFG] & GEM_NWCFG_STRIP_FCS) { rxbuf_ptr = (void *)buf; } else { unsigned crc_val; if (size > MAX_FRAME_SIZE - sizeof(crc_val)) { size = MAX_FRAME_SIZE - sizeof(crc_val); } bytes_to_copy = size; /* The application wants the FCS field, which QEMU does not provide. * We must try and calculate one. */ memcpy(s->rx_packet, buf, size); memset(s->rx_packet + size, 0, MAX_FRAME_SIZE - size); rxbuf_ptr = s->rx_packet; crc_val = cpu_to_le32(crc32(0, s->rx_packet, MAX(size, 60))); memcpy(s->rx_packet + size, &crc_val, sizeof(crc_val)); bytes_to_copy += 4; size += 4; } DB_PRINT("config bufsize: %u packet size: %zd\n", rxbufsize, size); /* Find which queue we are targeting */ q = get_queue_from_screen(s, rxbuf_ptr, rxbufsize); if (size > gem_get_max_buf_len(s, false)) { qemu_log_mask(LOG_GUEST_ERROR, "rx frame too long\n"); gem_set_isr(s, q, GEM_INT_AMBA_ERR); return -1; } while (bytes_to_copy) { hwaddr desc_addr; /* Do nothing if receive is not enabled. */ if (!gem_can_receive(nc)) { return -1; } DB_PRINT("copy %" PRIu32 " bytes to 0x%" PRIx64 "\n", MIN(bytes_to_copy, rxbufsize), rx_desc_get_buffer(s, s->rx_desc[q])); /* Copy packet data to emulated DMA buffer */ address_space_write(&s->dma_as, rx_desc_get_buffer(s, s->rx_desc[q]) + rxbuf_offset, MEMTXATTRS_UNSPECIFIED, rxbuf_ptr, MIN(bytes_to_copy, rxbufsize)); rxbuf_ptr += MIN(bytes_to_copy, rxbufsize); bytes_to_copy -= MIN(bytes_to_copy, rxbufsize); rx_desc_clear_control(s->rx_desc[q]); /* Update the descriptor. */ if (first_desc) { rx_desc_set_sof(s->rx_desc[q]); first_desc = false; } if (bytes_to_copy == 0) { rx_desc_set_eof(s->rx_desc[q]); rx_desc_set_length(s->rx_desc[q], size); } rx_desc_set_ownership(s->rx_desc[q]); switch (maf) { case GEM_RX_PROMISCUOUS_ACCEPT: break; case GEM_RX_BROADCAST_ACCEPT: rx_desc_set_broadcast(s->rx_desc[q]); break; case GEM_RX_UNICAST_HASH_ACCEPT: rx_desc_set_unicast_hash(s->rx_desc[q]); break; case GEM_RX_MULTICAST_HASH_ACCEPT: rx_desc_set_multicast_hash(s->rx_desc[q]); break; case GEM_RX_REJECT: abort(); default: /* SAR */ rx_desc_set_sar(s->rx_desc[q], maf); } /* Descriptor write-back. */ desc_addr = gem_get_rx_desc_addr(s, q); address_space_write(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED, s->rx_desc[q], sizeof(uint32_t) * gem_get_desc_len(s, true)); /* Next descriptor */ if (rx_desc_get_wrap(s->rx_desc[q])) { DB_PRINT("wrapping RX descriptor list\n"); s->rx_desc_addr[q] = gem_get_rx_queue_base_addr(s, q); } else { DB_PRINT("incrementing RX descriptor list\n"); s->rx_desc_addr[q] += 4 * gem_get_desc_len(s, true); } gem_get_rx_desc(s, q); } /* Count it */ gem_receive_updatestats(s, buf, size); s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD; gem_set_isr(s, q, GEM_INT_RXCMPL); /* Handle interrupt consequences */ gem_update_int_status(s); return size; } /* * gem_transmit_updatestats: * Increment transmit statistics. */ static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet, unsigned bytes) { uint64_t octets; /* Total octets (bytes) transmitted */ octets = ((uint64_t)(s->regs[GEM_OCTTXLO]) << 32) | s->regs[GEM_OCTTXHI]; octets += bytes; s->regs[GEM_OCTTXLO] = octets >> 32; s->regs[GEM_OCTTXHI] = octets; /* Error-free Frames transmitted */ s->regs[GEM_TXCNT]++; /* Error-free Broadcast Frames counter */ if (!memcmp(packet, broadcast_addr, 6)) { s->regs[GEM_TXBCNT]++; } /* Error-free Multicast Frames counter */ if (packet[0] == 0x01) { s->regs[GEM_TXMCNT]++; } if (bytes <= 64) { s->regs[GEM_TX64CNT]++; } else if (bytes <= 127) { s->regs[GEM_TX65CNT]++; } else if (bytes <= 255) { s->regs[GEM_TX128CNT]++; } else if (bytes <= 511) { s->regs[GEM_TX256CNT]++; } else if (bytes <= 1023) { s->regs[GEM_TX512CNT]++; } else if (bytes <= 1518) { s->regs[GEM_TX1024CNT]++; } else { s->regs[GEM_TX1519CNT]++; } } /* * gem_transmit: * Fish packets out of the descriptor ring and feed them to QEMU */ static void gem_transmit(CadenceGEMState *s) { uint32_t desc[DESC_MAX_NUM_WORDS]; hwaddr packet_desc_addr; uint8_t *p; unsigned total_bytes; int q = 0; /* Do nothing if transmit is not enabled. */ if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) { return; } DB_PRINT("\n"); /* The packet we will hand off to QEMU. * Packets scattered across multiple descriptors are gathered to this * one contiguous buffer first. */ p = s->tx_packet; total_bytes = 0; for (q = s->num_priority_queues - 1; q >= 0; q--) { /* read current descriptor */ packet_desc_addr = gem_get_tx_desc_addr(s, q); DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr); address_space_read(&s->dma_as, packet_desc_addr, MEMTXATTRS_UNSPECIFIED, desc, sizeof(uint32_t) * gem_get_desc_len(s, false)); /* Handle all descriptors owned by hardware */ while (tx_desc_get_used(desc) == 0) { /* Do nothing if transmit is not enabled. */ if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) { return; } print_gem_tx_desc(desc, q); /* The real hardware would eat this (and possibly crash). * For QEMU let's lend a helping hand. */ if ((tx_desc_get_buffer(s, desc) == 0) || (tx_desc_get_length(desc) == 0)) { DB_PRINT("Invalid TX descriptor @ 0x%" HWADDR_PRIx "\n", packet_desc_addr); break; } if (tx_desc_get_length(desc) > gem_get_max_buf_len(s, true) - (p - s->tx_packet)) { qemu_log_mask(LOG_GUEST_ERROR, "TX descriptor @ 0x%" \ HWADDR_PRIx " too large: size 0x%x space 0x%zx\n", packet_desc_addr, tx_desc_get_length(desc), gem_get_max_buf_len(s, true) - (p - s->tx_packet)); gem_set_isr(s, q, GEM_INT_AMBA_ERR); break; } /* Gather this fragment of the packet from "dma memory" to our * contig buffer. */ address_space_read(&s->dma_as, tx_desc_get_buffer(s, desc), MEMTXATTRS_UNSPECIFIED, p, tx_desc_get_length(desc)); p += tx_desc_get_length(desc); total_bytes += tx_desc_get_length(desc); /* Last descriptor for this packet; hand the whole thing off */ if (tx_desc_get_last(desc)) { uint32_t desc_first[DESC_MAX_NUM_WORDS]; hwaddr desc_addr = gem_get_tx_desc_addr(s, q); /* Modify the 1st descriptor of this packet to be owned by * the processor. */ address_space_read(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED, desc_first, sizeof(desc_first)); tx_desc_set_used(desc_first); address_space_write(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED, desc_first, sizeof(desc_first)); /* Advance the hardware current descriptor past this packet */ if (tx_desc_get_wrap(desc)) { s->tx_desc_addr[q] = gem_get_tx_queue_base_addr(s, q); } else { s->tx_desc_addr[q] = packet_desc_addr + 4 * gem_get_desc_len(s, false); } DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr[q]); s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_TXCMPL; gem_set_isr(s, q, GEM_INT_TXCMPL); /* Handle interrupt consequences */ gem_update_int_status(s); /* Is checksum offload enabled? */ if (s->regs[GEM_DMACFG] & GEM_DMACFG_TXCSUM_OFFL) { net_checksum_calculate(s->tx_packet, total_bytes); } /* Update MAC statistics */ gem_transmit_updatestats(s, s->tx_packet, total_bytes); /* Send the packet somewhere */ if (s->phy_loop || (s->regs[GEM_NWCTRL] & GEM_NWCTRL_LOCALLOOP)) { gem_receive(qemu_get_queue(s->nic), s->tx_packet, total_bytes); } else { qemu_send_packet(qemu_get_queue(s->nic), s->tx_packet, total_bytes); } /* Prepare for next packet */ p = s->tx_packet; total_bytes = 0; } /* read next descriptor */ if (tx_desc_get_wrap(desc)) { if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) { packet_desc_addr = s->regs[GEM_TBQPH]; packet_desc_addr <<= 32; } else { packet_desc_addr = 0; } packet_desc_addr |= gem_get_tx_queue_base_addr(s, q); } else { packet_desc_addr += 4 * gem_get_desc_len(s, false); } DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr); address_space_read(&s->dma_as, packet_desc_addr, MEMTXATTRS_UNSPECIFIED, desc, sizeof(uint32_t) * gem_get_desc_len(s, false)); } if (tx_desc_get_used(desc)) { s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_USED; /* IRQ TXUSED is defined only for queue 0 */ if (q == 0) { gem_set_isr(s, 0, GEM_INT_TXUSED); } gem_update_int_status(s); } } } static void gem_phy_reset(CadenceGEMState *s) { memset(&s->phy_regs[0], 0, sizeof(s->phy_regs)); s->phy_regs[PHY_REG_CONTROL] = 0x1140; s->phy_regs[PHY_REG_STATUS] = 0x7969; s->phy_regs[PHY_REG_PHYID1] = 0x0141; s->phy_regs[PHY_REG_PHYID2] = 0x0CC2; s->phy_regs[PHY_REG_ANEGADV] = 0x01E1; s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1; s->phy_regs[PHY_REG_ANEGEXP] = 0x000F; s->phy_regs[PHY_REG_NEXTP] = 0x2001; s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6; s->phy_regs[PHY_REG_100BTCTRL] = 0x0300; s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00; s->phy_regs[PHY_REG_EXTSTAT] = 0x3000; s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078; s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00; s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60; s->phy_regs[PHY_REG_LED] = 0x4100; s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A; s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B; phy_update_link(s); } static void gem_reset(DeviceState *d) { int i; CadenceGEMState *s = CADENCE_GEM(d); const uint8_t *a; uint32_t queues_mask = 0; DB_PRINT("\n"); /* Set post reset register values */ memset(&s->regs[0], 0, sizeof(s->regs)); s->regs[GEM_NWCFG] = 0x00080000; s->regs[GEM_NWSTATUS] = 0x00000006; s->regs[GEM_DMACFG] = 0x00020784; s->regs[GEM_IMR] = 0x07ffffff; s->regs[GEM_TXPAUSE] = 0x0000ffff; s->regs[GEM_TXPARTIALSF] = 0x000003ff; s->regs[GEM_RXPARTIALSF] = 0x000003ff; s->regs[GEM_MODID] = s->revision; s->regs[GEM_DESCONF] = 0x02D00111; s->regs[GEM_DESCONF2] = 0x2ab10000 | s->jumbo_max_len; s->regs[GEM_DESCONF5] = 0x002f2045; s->regs[GEM_DESCONF6] = GEM_DESCONF6_64B_MASK; s->regs[GEM_INT_Q1_MASK] = 0x00000CE6; s->regs[GEM_JUMBO_MAX_LEN] = s->jumbo_max_len; if (s->num_priority_queues > 1) { queues_mask = MAKE_64BIT_MASK(1, s->num_priority_queues - 1); s->regs[GEM_DESCONF6] |= queues_mask; } /* Set MAC address */ a = &s->conf.macaddr.a[0]; s->regs[GEM_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24); s->regs[GEM_SPADDR1HI] = a[4] | (a[5] << 8); for (i = 0; i < 4; i++) { s->sar_active[i] = false; } gem_phy_reset(s); gem_update_int_status(s); } static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num) { DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]); return s->phy_regs[reg_num]; } static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val) { DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val); switch (reg_num) { case PHY_REG_CONTROL: if (val & PHY_REG_CONTROL_RST) { /* Phy reset */ gem_phy_reset(s); val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP); s->phy_loop = 0; } if (val & PHY_REG_CONTROL_ANEG) { /* Complete autonegotiation immediately */ val &= ~(PHY_REG_CONTROL_ANEG | PHY_REG_CONTROL_ANRESTART); s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL; } if (val & PHY_REG_CONTROL_LOOP) { DB_PRINT("PHY placed in loopback\n"); s->phy_loop = 1; } else { s->phy_loop = 0; } break; } s->phy_regs[reg_num] = val; } /* * gem_read32: * Read a GEM register. */ static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size) { CadenceGEMState *s; uint32_t retval; s = (CadenceGEMState *)opaque; offset >>= 2; retval = s->regs[offset]; DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval); switch (offset) { case GEM_ISR: DB_PRINT("lowering irqs on ISR read\n"); /* The interrupts get updated at the end of the function. */ break; case GEM_PHYMNTNC: if (retval & GEM_PHYMNTNC_OP_R) { uint32_t phy_addr, reg_num; phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT; if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) { reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT; retval &= 0xFFFF0000; retval |= gem_phy_read(s, reg_num); } else { retval |= 0xFFFF; /* No device at this address */ } } break; } /* Squash read to clear bits */ s->regs[offset] &= ~(s->regs_rtc[offset]); /* Do not provide write only bits */ retval &= ~(s->regs_wo[offset]); DB_PRINT("0x%08x\n", retval); gem_update_int_status(s); return retval; } /* * gem_write32: * Write a GEM register. */ static void gem_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { CadenceGEMState *s = (CadenceGEMState *)opaque; uint32_t readonly; int i; DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val); offset >>= 2; /* Squash bits which are read only in write value */ val &= ~(s->regs_ro[offset]); /* Preserve (only) bits which are read only and wtc in register */ readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]); /* Copy register write to backing store */ s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly; /* do w1c */ s->regs[offset] &= ~(s->regs_w1c[offset] & val); /* Handle register write side effects */ switch (offset) { case GEM_NWCTRL: if (val & GEM_NWCTRL_RXENA) { for (i = 0; i < s->num_priority_queues; ++i) { gem_get_rx_desc(s, i); } } if (val & GEM_NWCTRL_TXSTART) { gem_transmit(s); } if (!(val & GEM_NWCTRL_TXENA)) { /* Reset to start of Q when transmit disabled. */ for (i = 0; i < s->num_priority_queues; i++) { s->tx_desc_addr[i] = gem_get_tx_queue_base_addr(s, i); } } if (gem_can_receive(qemu_get_queue(s->nic))) { qemu_flush_queued_packets(qemu_get_queue(s->nic)); } break; case GEM_TXSTATUS: gem_update_int_status(s); break; case GEM_RXQBASE: s->rx_desc_addr[0] = val; break; case GEM_RECEIVE_Q1_PTR ... GEM_RECEIVE_Q7_PTR: s->rx_desc_addr[offset - GEM_RECEIVE_Q1_PTR + 1] = val; break; case GEM_TXQBASE: s->tx_desc_addr[0] = val; break; case GEM_TRANSMIT_Q1_PTR ... GEM_TRANSMIT_Q7_PTR: s->tx_desc_addr[offset - GEM_TRANSMIT_Q1_PTR + 1] = val; break; case GEM_RXSTATUS: gem_update_int_status(s); break; case GEM_IER: s->regs[GEM_IMR] &= ~val; gem_update_int_status(s); break; case GEM_JUMBO_MAX_LEN: s->regs[GEM_JUMBO_MAX_LEN] = val & MAX_JUMBO_FRAME_SIZE_MASK; break; case GEM_INT_Q1_ENABLE ... GEM_INT_Q7_ENABLE: s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_ENABLE] &= ~val; gem_update_int_status(s); break; case GEM_IDR: s->regs[GEM_IMR] |= val; gem_update_int_status(s); break; case GEM_INT_Q1_DISABLE ... GEM_INT_Q7_DISABLE: s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_DISABLE] |= val; gem_update_int_status(s); break; case GEM_SPADDR1LO: case GEM_SPADDR2LO: case GEM_SPADDR3LO: case GEM_SPADDR4LO: s->sar_active[(offset - GEM_SPADDR1LO) / 2] = false; break; case GEM_SPADDR1HI: case GEM_SPADDR2HI: case GEM_SPADDR3HI: case GEM_SPADDR4HI: s->sar_active[(offset - GEM_SPADDR1HI) / 2] = true; break; case GEM_PHYMNTNC: if (val & GEM_PHYMNTNC_OP_W) { uint32_t phy_addr, reg_num; phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT; if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) { reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT; gem_phy_write(s, reg_num, val); } } break; } DB_PRINT("newval: 0x%08x\n", s->regs[offset]); } static const MemoryRegionOps gem_ops = { .read = gem_read, .write = gem_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static void gem_set_link(NetClientState *nc) { CadenceGEMState *s = qemu_get_nic_opaque(nc); DB_PRINT("\n"); phy_update_link(s); gem_update_int_status(s); } static NetClientInfo net_gem_info = { .type = NET_CLIENT_DRIVER_NIC, .size = sizeof(NICState), .can_receive = gem_can_receive, .receive = gem_receive, .link_status_changed = gem_set_link, }; static void gem_realize(DeviceState *dev, Error **errp) { CadenceGEMState *s = CADENCE_GEM(dev); int i; address_space_init(&s->dma_as, s->dma_mr ? s->dma_mr : get_system_memory(), "dma"); if (s->num_priority_queues == 0 || s->num_priority_queues > MAX_PRIORITY_QUEUES) { error_setg(errp, "Invalid num-priority-queues value: %" PRIx8, s->num_priority_queues); return; } else if (s->num_type1_screeners > MAX_TYPE1_SCREENERS) { error_setg(errp, "Invalid num-type1-screeners value: %" PRIx8, s->num_type1_screeners); return; } else if (s->num_type2_screeners > MAX_TYPE2_SCREENERS) { error_setg(errp, "Invalid num-type2-screeners value: %" PRIx8, s->num_type2_screeners); return; } for (i = 0; i < s->num_priority_queues; ++i) { sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]); } qemu_macaddr_default_if_unset(&s->conf.macaddr); s->nic = qemu_new_nic(&net_gem_info, &s->conf, object_get_typename(OBJECT(dev)), dev->id, s); if (s->jumbo_max_len > MAX_FRAME_SIZE) { error_setg(errp, "jumbo-max-len is greater than %d", MAX_FRAME_SIZE); return; } } static void gem_init(Object *obj) { CadenceGEMState *s = CADENCE_GEM(obj); DeviceState *dev = DEVICE(obj); DB_PRINT("\n"); gem_init_register_masks(s); memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s, "enet", sizeof(s->regs)); sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem); object_property_add_link(obj, "dma", TYPE_MEMORY_REGION, (Object **)&s->dma_mr, qdev_prop_allow_set_link_before_realize, OBJ_PROP_LINK_STRONG); } static const VMStateDescription vmstate_cadence_gem = { .name = "cadence_gem", .version_id = 4, .minimum_version_id = 4, .fields = (VMStateField[]) { VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG), VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32), VMSTATE_UINT8(phy_loop, CadenceGEMState), VMSTATE_UINT32_ARRAY(rx_desc_addr, CadenceGEMState, MAX_PRIORITY_QUEUES), VMSTATE_UINT32_ARRAY(tx_desc_addr, CadenceGEMState, MAX_PRIORITY_QUEUES), VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4), VMSTATE_END_OF_LIST(), } }; static Property gem_properties[] = { DEFINE_NIC_PROPERTIES(CadenceGEMState, conf), DEFINE_PROP_UINT32("revision", CadenceGEMState, revision, GEM_MODID_VALUE), DEFINE_PROP_UINT8("num-priority-queues", CadenceGEMState, num_priority_queues, 1), DEFINE_PROP_UINT8("num-type1-screeners", CadenceGEMState, num_type1_screeners, 4), DEFINE_PROP_UINT8("num-type2-screeners", CadenceGEMState, num_type2_screeners, 4), DEFINE_PROP_UINT16("jumbo-max-len", CadenceGEMState, jumbo_max_len, 10240), DEFINE_PROP_END_OF_LIST(), }; static void gem_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = gem_realize; device_class_set_props(dc, gem_properties); dc->vmsd = &vmstate_cadence_gem; dc->reset = gem_reset; } static const TypeInfo gem_info = { .name = TYPE_CADENCE_GEM, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(CadenceGEMState), .instance_init = gem_init, .class_init = gem_class_init, }; static void gem_register_types(void) { type_register_static(&gem_info); } type_init(gem_register_types)