/* * Emulation of Allwinner EMAC Fast Ethernet controller and * Realtek RTL8201CP PHY * * Copyright (C) 2014 Beniamino Galvani <b.galvani@gmail.com> * * This model is based on reverse-engineering of Linux kernel driver. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include "qemu/osdep.h" #include "hw/sysbus.h" #include "net/net.h" #include "qemu/fifo8.h" #include "hw/irq.h" #include "hw/net/allwinner_emac.h" #include "qemu/log.h" #include "qemu/module.h" #include <zlib.h> static uint8_t padding[60]; static void mii_set_link(RTL8201CPState *mii, bool link_ok) { if (link_ok) { mii->bmsr |= MII_BMSR_LINK_ST | MII_BMSR_AN_COMP; mii->anlpar |= MII_ANAR_TXFD | MII_ANAR_10FD | MII_ANAR_10 | MII_ANAR_CSMACD; } else { mii->bmsr &= ~(MII_BMSR_LINK_ST | MII_BMSR_AN_COMP); mii->anlpar = MII_ANAR_TX; } } static void mii_reset(RTL8201CPState *mii, bool link_ok) { mii->bmcr = MII_BMCR_FD | MII_BMCR_AUTOEN | MII_BMCR_SPEED; mii->bmsr = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD | MII_BMSR_10T_HD | MII_BMSR_MFPS | MII_BMSR_AUTONEG; mii->anar = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD | MII_ANAR_10 | MII_ANAR_CSMACD; mii->anlpar = MII_ANAR_TX; mii_set_link(mii, link_ok); } static uint16_t RTL8201CP_mdio_read(AwEmacState *s, uint8_t addr, uint8_t reg) { RTL8201CPState *mii = &s->mii; uint16_t ret = 0xffff; if (addr == s->phy_addr) { switch (reg) { case MII_BMCR: return mii->bmcr; case MII_BMSR: return mii->bmsr; case MII_PHYID1: return RTL8201CP_PHYID1; case MII_PHYID2: return RTL8201CP_PHYID2; case MII_ANAR: return mii->anar; case MII_ANLPAR: return mii->anlpar; case MII_ANER: case MII_NSR: case MII_LBREMR: case MII_REC: case MII_SNRDR: case MII_TEST: qemu_log_mask(LOG_UNIMP, "allwinner_emac: read from unimpl. mii reg 0x%x\n", reg); return 0; default: qemu_log_mask(LOG_GUEST_ERROR, "allwinner_emac: read from invalid mii reg 0x%x\n", reg); return 0; } } return ret; } static void RTL8201CP_mdio_write(AwEmacState *s, uint8_t addr, uint8_t reg, uint16_t value) { RTL8201CPState *mii = &s->mii; NetClientState *nc; if (addr == s->phy_addr) { switch (reg) { case MII_BMCR: if (value & MII_BMCR_RESET) { nc = qemu_get_queue(s->nic); mii_reset(mii, !nc->link_down); } else { mii->bmcr = value; } break; case MII_ANAR: mii->anar = value; break; case MII_BMSR: case MII_PHYID1: case MII_PHYID2: case MII_ANLPAR: case MII_ANER: qemu_log_mask(LOG_GUEST_ERROR, "allwinner_emac: write to read-only mii reg 0x%x\n", reg); break; case MII_NSR: case MII_LBREMR: case MII_REC: case MII_SNRDR: case MII_TEST: qemu_log_mask(LOG_UNIMP, "allwinner_emac: write to unimpl. mii reg 0x%x\n", reg); break; default: qemu_log_mask(LOG_GUEST_ERROR, "allwinner_emac: write to invalid mii reg 0x%x\n", reg); } } } static void aw_emac_update_irq(AwEmacState *s) { qemu_set_irq(s->irq, (s->int_sta & s->int_ctl) != 0); } static void aw_emac_tx_reset(AwEmacState *s, int chan) { fifo8_reset(&s->tx_fifo[chan]); s->tx_length[chan] = 0; } static void aw_emac_rx_reset(AwEmacState *s) { fifo8_reset(&s->rx_fifo); s->rx_num_packets = 0; s->rx_packet_size = 0; s->rx_packet_pos = 0; } static void fifo8_push_word(Fifo8 *fifo, uint32_t val) { fifo8_push(fifo, val); fifo8_push(fifo, val >> 8); fifo8_push(fifo, val >> 16); fifo8_push(fifo, val >> 24); } static uint32_t fifo8_pop_word(Fifo8 *fifo) { uint32_t ret; ret = fifo8_pop(fifo); ret |= fifo8_pop(fifo) << 8; ret |= fifo8_pop(fifo) << 16; ret |= fifo8_pop(fifo) << 24; return ret; } static int aw_emac_can_receive(NetClientState *nc) { AwEmacState *s = qemu_get_nic_opaque(nc); /* * To avoid packet drops, allow reception only when there is space * for a full frame: 1522 + 8 (rx headers) + 2 (padding). */ return (s->ctl & EMAC_CTL_RX_EN) && (fifo8_num_free(&s->rx_fifo) >= 1532); } static ssize_t aw_emac_receive(NetClientState *nc, const uint8_t *buf, size_t size) { AwEmacState *s = qemu_get_nic_opaque(nc); Fifo8 *fifo = &s->rx_fifo; size_t padded_size, total_size; uint32_t crc; padded_size = size > 60 ? size : 60; total_size = QEMU_ALIGN_UP(RX_HDR_SIZE + padded_size + CRC_SIZE, 4); if (!(s->ctl & EMAC_CTL_RX_EN) || (fifo8_num_free(fifo) < total_size)) { return -1; } fifo8_push_word(fifo, EMAC_UNDOCUMENTED_MAGIC); fifo8_push_word(fifo, EMAC_RX_HEADER(padded_size + CRC_SIZE, EMAC_RX_IO_DATA_STATUS_OK)); fifo8_push_all(fifo, buf, size); crc = crc32(~0, buf, size); if (padded_size != size) { fifo8_push_all(fifo, padding, padded_size - size); crc = crc32(crc, padding, padded_size - size); } fifo8_push_word(fifo, crc); fifo8_push_all(fifo, padding, QEMU_ALIGN_UP(padded_size, 4) - padded_size); s->rx_num_packets++; s->int_sta |= EMAC_INT_RX; aw_emac_update_irq(s); return size; } static void aw_emac_reset(DeviceState *dev) { AwEmacState *s = AW_EMAC(dev); NetClientState *nc = qemu_get_queue(s->nic); s->ctl = 0; s->tx_mode = 0; s->int_ctl = 0; s->int_sta = 0; s->tx_channel = 0; s->phy_target = 0; aw_emac_tx_reset(s, 0); aw_emac_tx_reset(s, 1); aw_emac_rx_reset(s); mii_reset(&s->mii, !nc->link_down); } static uint64_t aw_emac_read(void *opaque, hwaddr offset, unsigned size) { AwEmacState *s = opaque; Fifo8 *fifo = &s->rx_fifo; NetClientState *nc; uint64_t ret; switch (offset) { case EMAC_CTL_REG: return s->ctl; case EMAC_TX_MODE_REG: return s->tx_mode; case EMAC_TX_INS_REG: return s->tx_channel; case EMAC_RX_CTL_REG: return s->rx_ctl; case EMAC_RX_IO_DATA_REG: if (!s->rx_num_packets) { qemu_log_mask(LOG_GUEST_ERROR, "Read IO data register when no packet available"); return 0; } ret = fifo8_pop_word(fifo); switch (s->rx_packet_pos) { case 0: /* Word is magic header */ s->rx_packet_pos += 4; break; case 4: /* Word is rx info header */ s->rx_packet_pos += 4; s->rx_packet_size = QEMU_ALIGN_UP(extract32(ret, 0, 16), 4); break; default: /* Word is packet data */ s->rx_packet_pos += 4; s->rx_packet_size -= 4; if (!s->rx_packet_size) { s->rx_packet_pos = 0; s->rx_num_packets--; nc = qemu_get_queue(s->nic); if (aw_emac_can_receive(nc)) { qemu_flush_queued_packets(nc); } } } return ret; case EMAC_RX_FBC_REG: return s->rx_num_packets; case EMAC_INT_CTL_REG: return s->int_ctl; case EMAC_INT_STA_REG: return s->int_sta; case EMAC_MAC_MRDD_REG: return RTL8201CP_mdio_read(s, extract32(s->phy_target, PHY_ADDR_SHIFT, 8), extract32(s->phy_target, PHY_REG_SHIFT, 8)); default: qemu_log_mask(LOG_UNIMP, "allwinner_emac: read access to unknown register 0x" TARGET_FMT_plx "\n", offset); ret = 0; } return ret; } static void aw_emac_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { AwEmacState *s = opaque; Fifo8 *fifo; NetClientState *nc = qemu_get_queue(s->nic); int chan; switch (offset) { case EMAC_CTL_REG: if (value & EMAC_CTL_RESET) { aw_emac_reset(DEVICE(s)); value &= ~EMAC_CTL_RESET; } s->ctl = value; if (aw_emac_can_receive(nc)) { qemu_flush_queued_packets(nc); } break; case EMAC_TX_MODE_REG: s->tx_mode = value; break; case EMAC_TX_CTL0_REG: case EMAC_TX_CTL1_REG: chan = (offset == EMAC_TX_CTL0_REG ? 0 : 1); if ((value & 1) && (s->ctl & EMAC_CTL_TX_EN)) { uint32_t len, ret; const uint8_t *data; fifo = &s->tx_fifo[chan]; len = s->tx_length[chan]; if (len > fifo8_num_used(fifo)) { len = fifo8_num_used(fifo); qemu_log_mask(LOG_GUEST_ERROR, "allwinner_emac: TX length > fifo data length\n"); } if (len > 0) { data = fifo8_pop_buf(fifo, len, &ret); qemu_send_packet(nc, data, ret); aw_emac_tx_reset(s, chan); /* Raise TX interrupt */ s->int_sta |= EMAC_INT_TX_CHAN(chan); aw_emac_update_irq(s); } } break; case EMAC_TX_INS_REG: s->tx_channel = value < NUM_TX_FIFOS ? value : 0; break; case EMAC_TX_PL0_REG: case EMAC_TX_PL1_REG: chan = (offset == EMAC_TX_PL0_REG ? 0 : 1); if (value > TX_FIFO_SIZE) { qemu_log_mask(LOG_GUEST_ERROR, "allwinner_emac: invalid TX frame length %d\n", (int)value); value = TX_FIFO_SIZE; } s->tx_length[chan] = value; break; case EMAC_TX_IO_DATA_REG: fifo = &s->tx_fifo[s->tx_channel]; if (fifo8_num_free(fifo) < 4) { qemu_log_mask(LOG_GUEST_ERROR, "allwinner_emac: TX data overruns fifo\n"); break; } fifo8_push_word(fifo, value); break; case EMAC_RX_CTL_REG: s->rx_ctl = value; break; case EMAC_RX_FBC_REG: if (value == 0) { aw_emac_rx_reset(s); } break; case EMAC_INT_CTL_REG: s->int_ctl = value; aw_emac_update_irq(s); break; case EMAC_INT_STA_REG: s->int_sta &= ~value; aw_emac_update_irq(s); break; case EMAC_MAC_MADR_REG: s->phy_target = value; break; case EMAC_MAC_MWTD_REG: RTL8201CP_mdio_write(s, extract32(s->phy_target, PHY_ADDR_SHIFT, 8), extract32(s->phy_target, PHY_REG_SHIFT, 8), value); break; default: qemu_log_mask(LOG_UNIMP, "allwinner_emac: write access to unknown register 0x" TARGET_FMT_plx "\n", offset); } } static void aw_emac_set_link(NetClientState *nc) { AwEmacState *s = qemu_get_nic_opaque(nc); mii_set_link(&s->mii, !nc->link_down); } static const MemoryRegionOps aw_emac_mem_ops = { .read = aw_emac_read, .write = aw_emac_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, }; static NetClientInfo net_aw_emac_info = { .type = NET_CLIENT_DRIVER_NIC, .size = sizeof(NICState), .can_receive = aw_emac_can_receive, .receive = aw_emac_receive, .link_status_changed = aw_emac_set_link, }; static void aw_emac_init(Object *obj) { SysBusDevice *sbd = SYS_BUS_DEVICE(obj); AwEmacState *s = AW_EMAC(obj); memory_region_init_io(&s->iomem, OBJECT(s), &aw_emac_mem_ops, s, "aw_emac", 0x1000); sysbus_init_mmio(sbd, &s->iomem); sysbus_init_irq(sbd, &s->irq); } static void aw_emac_realize(DeviceState *dev, Error **errp) { AwEmacState *s = AW_EMAC(dev); qemu_macaddr_default_if_unset(&s->conf.macaddr); s->nic = qemu_new_nic(&net_aw_emac_info, &s->conf, object_get_typename(OBJECT(dev)), dev->id, s); qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); fifo8_create(&s->rx_fifo, RX_FIFO_SIZE); fifo8_create(&s->tx_fifo[0], TX_FIFO_SIZE); fifo8_create(&s->tx_fifo[1], TX_FIFO_SIZE); } static Property aw_emac_properties[] = { DEFINE_NIC_PROPERTIES(AwEmacState, conf), DEFINE_PROP_UINT8("phy-addr", AwEmacState, phy_addr, 0), DEFINE_PROP_END_OF_LIST(), }; static const VMStateDescription vmstate_mii = { .name = "rtl8201cp", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT16(bmcr, RTL8201CPState), VMSTATE_UINT16(bmsr, RTL8201CPState), VMSTATE_UINT16(anar, RTL8201CPState), VMSTATE_UINT16(anlpar, RTL8201CPState), VMSTATE_END_OF_LIST() } }; static int aw_emac_post_load(void *opaque, int version_id) { AwEmacState *s = opaque; aw_emac_set_link(qemu_get_queue(s->nic)); return 0; } static const VMStateDescription vmstate_aw_emac = { .name = "allwinner_emac", .version_id = 1, .minimum_version_id = 1, .post_load = aw_emac_post_load, .fields = (VMStateField[]) { VMSTATE_STRUCT(mii, AwEmacState, 1, vmstate_mii, RTL8201CPState), VMSTATE_UINT32(ctl, AwEmacState), VMSTATE_UINT32(tx_mode, AwEmacState), VMSTATE_UINT32(rx_ctl, AwEmacState), VMSTATE_UINT32(int_ctl, AwEmacState), VMSTATE_UINT32(int_sta, AwEmacState), VMSTATE_UINT32(phy_target, AwEmacState), VMSTATE_FIFO8(rx_fifo, AwEmacState), VMSTATE_UINT32(rx_num_packets, AwEmacState), VMSTATE_UINT32(rx_packet_size, AwEmacState), VMSTATE_UINT32(rx_packet_pos, AwEmacState), VMSTATE_STRUCT_ARRAY(tx_fifo, AwEmacState, NUM_TX_FIFOS, 1, vmstate_fifo8, Fifo8), VMSTATE_UINT32_ARRAY(tx_length, AwEmacState, NUM_TX_FIFOS), VMSTATE_UINT32(tx_channel, AwEmacState), VMSTATE_END_OF_LIST() } }; static void aw_emac_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = aw_emac_realize; dc->props = aw_emac_properties; dc->reset = aw_emac_reset; dc->vmsd = &vmstate_aw_emac; } static const TypeInfo aw_emac_info = { .name = TYPE_AW_EMAC, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(AwEmacState), .instance_init = aw_emac_init, .class_init = aw_emac_class_init, }; static void aw_emac_register_types(void) { type_register_static(&aw_emac_info); } type_init(aw_emac_register_types)