/* * PowerMac descriptor-based DMA emulation * * Copyright (c) 2005-2007 Fabrice Bellard * Copyright (c) 2007 Jocelyn Mayer * Copyright (c) 2009 Laurent Vivier * * some parts from linux-2.6.28, arch/powerpc/include/asm/dbdma.h * * Definitions for using the Apple Descriptor-Based DMA controller * in Power Macintosh computers. * * Copyright (C) 1996 Paul Mackerras. * * some parts from mol 0.9.71 * * Descriptor based DMA emulation * * Copyright (C) 1998-2004 Samuel Rydh (samuel@ibrium.se) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "hw/hw.h" #include "hw/isa/isa.h" #include "hw/ppc/mac_dbdma.h" #include "qemu/main-loop.h" #include "qemu/log.h" #include "sysemu/dma.h" /* debug DBDMA */ #define DEBUG_DBDMA 0 #define DEBUG_DBDMA_CHANMASK ((1ull << DBDMA_CHANNELS) - 1) #define DBDMA_DPRINTF(fmt, ...) do { \ if (DEBUG_DBDMA) { \ printf("DBDMA: " fmt , ## __VA_ARGS__); \ } \ } while (0); #define DBDMA_DPRINTFCH(ch, fmt, ...) do { \ if (DEBUG_DBDMA) { \ if ((1ul << (ch)->channel) & DEBUG_DBDMA_CHANMASK) { \ printf("DBDMA[%02x]: " fmt , (ch)->channel, ## __VA_ARGS__); \ } \ } \ } while (0); /* */ static DBDMAState *dbdma_from_ch(DBDMA_channel *ch) { return container_of(ch, DBDMAState, channels[ch->channel]); } #if DEBUG_DBDMA static void dump_dbdma_cmd(dbdma_cmd *cmd) { printf("dbdma_cmd %p\n", cmd); printf(" req_count 0x%04x\n", le16_to_cpu(cmd->req_count)); printf(" command 0x%04x\n", le16_to_cpu(cmd->command)); printf(" phy_addr 0x%08x\n", le32_to_cpu(cmd->phy_addr)); printf(" cmd_dep 0x%08x\n", le32_to_cpu(cmd->cmd_dep)); printf(" res_count 0x%04x\n", le16_to_cpu(cmd->res_count)); printf(" xfer_status 0x%04x\n", le16_to_cpu(cmd->xfer_status)); } #else static void dump_dbdma_cmd(dbdma_cmd *cmd) { } #endif static void dbdma_cmdptr_load(DBDMA_channel *ch) { DBDMA_DPRINTFCH(ch, "dbdma_cmdptr_load 0x%08x\n", ch->regs[DBDMA_CMDPTR_LO]); dma_memory_read(&address_space_memory, ch->regs[DBDMA_CMDPTR_LO], &ch->current, sizeof(dbdma_cmd)); } static void dbdma_cmdptr_save(DBDMA_channel *ch) { DBDMA_DPRINTFCH(ch, "-> update 0x%08x stat=0x%08x, res=0x%04x\n", ch->regs[DBDMA_CMDPTR_LO], le16_to_cpu(ch->current.xfer_status), le16_to_cpu(ch->current.res_count)); dma_memory_write(&address_space_memory, ch->regs[DBDMA_CMDPTR_LO], &ch->current, sizeof(dbdma_cmd)); } static void kill_channel(DBDMA_channel *ch) { DBDMA_DPRINTFCH(ch, "kill_channel\n"); ch->regs[DBDMA_STATUS] |= DEAD; ch->regs[DBDMA_STATUS] &= ~ACTIVE; qemu_irq_raise(ch->irq); } static void conditional_interrupt(DBDMA_channel *ch) { dbdma_cmd *current = &ch->current; uint16_t intr; uint16_t sel_mask, sel_value; uint32_t status; int cond; DBDMA_DPRINTFCH(ch, "%s\n", __func__); intr = le16_to_cpu(current->command) & INTR_MASK; switch(intr) { case INTR_NEVER: /* don't interrupt */ return; case INTR_ALWAYS: /* always interrupt */ qemu_irq_raise(ch->irq); DBDMA_DPRINTFCH(ch, "%s: raise\n", __func__); return; } status = ch->regs[DBDMA_STATUS] & DEVSTAT; sel_mask = (ch->regs[DBDMA_INTR_SEL] >> 16) & 0x0f; sel_value = ch->regs[DBDMA_INTR_SEL] & 0x0f; cond = (status & sel_mask) == (sel_value & sel_mask); switch(intr) { case INTR_IFSET: /* intr if condition bit is 1 */ if (cond) { qemu_irq_raise(ch->irq); DBDMA_DPRINTFCH(ch, "%s: raise\n", __func__); } return; case INTR_IFCLR: /* intr if condition bit is 0 */ if (!cond) { qemu_irq_raise(ch->irq); DBDMA_DPRINTFCH(ch, "%s: raise\n", __func__); } return; } } static int conditional_wait(DBDMA_channel *ch) { dbdma_cmd *current = &ch->current; uint16_t wait; uint16_t sel_mask, sel_value; uint32_t status; int cond; int res = 0; wait = le16_to_cpu(current->command) & WAIT_MASK; switch(wait) { case WAIT_NEVER: /* don't wait */ return 0; case WAIT_ALWAYS: /* always wait */ DBDMA_DPRINTFCH(ch, " [WAIT_ALWAYS]\n"); return 1; } status = ch->regs[DBDMA_STATUS] & DEVSTAT; sel_mask = (ch->regs[DBDMA_WAIT_SEL] >> 16) & 0x0f; sel_value = ch->regs[DBDMA_WAIT_SEL] & 0x0f; cond = (status & sel_mask) == (sel_value & sel_mask); switch(wait) { case WAIT_IFSET: /* wait if condition bit is 1 */ if (cond) { res = 1; } DBDMA_DPRINTFCH(ch, " [WAIT_IFSET=%d]\n", res); break; case WAIT_IFCLR: /* wait if condition bit is 0 */ if (!cond) { res = 1; } DBDMA_DPRINTFCH(ch, " [WAIT_IFCLR=%d]\n", res); break; } return res; } static void next(DBDMA_channel *ch) { uint32_t cp; ch->regs[DBDMA_STATUS] &= ~BT; cp = ch->regs[DBDMA_CMDPTR_LO]; ch->regs[DBDMA_CMDPTR_LO] = cp + sizeof(dbdma_cmd); dbdma_cmdptr_load(ch); } static void branch(DBDMA_channel *ch) { dbdma_cmd *current = &ch->current; ch->regs[DBDMA_CMDPTR_LO] = le32_to_cpu(current->cmd_dep); ch->regs[DBDMA_STATUS] |= BT; dbdma_cmdptr_load(ch); } static void conditional_branch(DBDMA_channel *ch) { dbdma_cmd *current = &ch->current; uint16_t br; uint16_t sel_mask, sel_value; uint32_t status; int cond; /* check if we must branch */ br = le16_to_cpu(current->command) & BR_MASK; switch(br) { case BR_NEVER: /* don't branch */ next(ch); return; case BR_ALWAYS: /* always branch */ DBDMA_DPRINTFCH(ch, " [BR_ALWAYS]\n"); branch(ch); return; } status = ch->regs[DBDMA_STATUS] & DEVSTAT; sel_mask = (ch->regs[DBDMA_BRANCH_SEL] >> 16) & 0x0f; sel_value = ch->regs[DBDMA_BRANCH_SEL] & 0x0f; cond = (status & sel_mask) == (sel_value & sel_mask); switch(br) { case BR_IFSET: /* branch if condition bit is 1 */ if (cond) { DBDMA_DPRINTFCH(ch, " [BR_IFSET = 1]\n"); branch(ch); } else { DBDMA_DPRINTFCH(ch, " [BR_IFSET = 0]\n"); next(ch); } return; case BR_IFCLR: /* branch if condition bit is 0 */ if (!cond) { DBDMA_DPRINTFCH(ch, " [BR_IFCLR = 1]\n"); branch(ch); } else { DBDMA_DPRINTFCH(ch, " [BR_IFCLR = 0]\n"); next(ch); } return; } } static void channel_run(DBDMA_channel *ch); static void dbdma_end(DBDMA_io *io) { DBDMA_channel *ch = io->channel; dbdma_cmd *current = &ch->current; DBDMA_DPRINTFCH(ch, "%s\n", __func__); if (conditional_wait(ch)) goto wait; current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]); current->res_count = cpu_to_le16(io->len); dbdma_cmdptr_save(ch); if (io->is_last) ch->regs[DBDMA_STATUS] &= ~FLUSH; conditional_interrupt(ch); conditional_branch(ch); wait: /* Indicate that we're ready for a new DMA round */ ch->io.processing = false; if ((ch->regs[DBDMA_STATUS] & RUN) && (ch->regs[DBDMA_STATUS] & ACTIVE)) channel_run(ch); } static void start_output(DBDMA_channel *ch, int key, uint32_t addr, uint16_t req_count, int is_last) { DBDMA_DPRINTFCH(ch, "start_output\n"); /* KEY_REGS, KEY_DEVICE and KEY_STREAM * are not implemented in the mac-io chip */ DBDMA_DPRINTFCH(ch, "addr 0x%x key 0x%x\n", addr, key); if (!addr || key > KEY_STREAM3) { kill_channel(ch); return; } ch->io.addr = addr; ch->io.len = req_count; ch->io.is_last = is_last; ch->io.dma_end = dbdma_end; ch->io.is_dma_out = 1; ch->io.processing = true; if (ch->rw) { ch->rw(&ch->io); } } static void start_input(DBDMA_channel *ch, int key, uint32_t addr, uint16_t req_count, int is_last) { DBDMA_DPRINTFCH(ch, "start_input\n"); /* KEY_REGS, KEY_DEVICE and KEY_STREAM * are not implemented in the mac-io chip */ DBDMA_DPRINTFCH(ch, "addr 0x%x key 0x%x\n", addr, key); if (!addr || key > KEY_STREAM3) { kill_channel(ch); return; } ch->io.addr = addr; ch->io.len = req_count; ch->io.is_last = is_last; ch->io.dma_end = dbdma_end; ch->io.is_dma_out = 0; ch->io.processing = true; if (ch->rw) { ch->rw(&ch->io); } } static void load_word(DBDMA_channel *ch, int key, uint32_t addr, uint16_t len) { dbdma_cmd *current = &ch->current; DBDMA_DPRINTFCH(ch, "load_word %d bytes, addr=%08x\n", len, addr); /* only implements KEY_SYSTEM */ if (key != KEY_SYSTEM) { printf("DBDMA: LOAD_WORD, unimplemented key %x\n", key); kill_channel(ch); return; } dma_memory_read(&address_space_memory, addr, ¤t->cmd_dep, len); if (conditional_wait(ch)) goto wait; current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]); dbdma_cmdptr_save(ch); ch->regs[DBDMA_STATUS] &= ~FLUSH; conditional_interrupt(ch); next(ch); wait: DBDMA_kick(dbdma_from_ch(ch)); } static void store_word(DBDMA_channel *ch, int key, uint32_t addr, uint16_t len) { dbdma_cmd *current = &ch->current; DBDMA_DPRINTFCH(ch, "store_word %d bytes, addr=%08x pa=%x\n", len, addr, le32_to_cpu(current->cmd_dep)); /* only implements KEY_SYSTEM */ if (key != KEY_SYSTEM) { printf("DBDMA: STORE_WORD, unimplemented key %x\n", key); kill_channel(ch); return; } dma_memory_write(&address_space_memory, addr, ¤t->cmd_dep, len); if (conditional_wait(ch)) goto wait; current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]); dbdma_cmdptr_save(ch); ch->regs[DBDMA_STATUS] &= ~FLUSH; conditional_interrupt(ch); next(ch); wait: DBDMA_kick(dbdma_from_ch(ch)); } static void nop(DBDMA_channel *ch) { dbdma_cmd *current = &ch->current; if (conditional_wait(ch)) goto wait; current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]); dbdma_cmdptr_save(ch); conditional_interrupt(ch); conditional_branch(ch); wait: DBDMA_kick(dbdma_from_ch(ch)); } static void stop(DBDMA_channel *ch) { ch->regs[DBDMA_STATUS] &= ~(ACTIVE); /* the stop command does not increment command pointer */ } static void channel_run(DBDMA_channel *ch) { dbdma_cmd *current = &ch->current; uint16_t cmd, key; uint16_t req_count; uint32_t phy_addr; DBDMA_DPRINTFCH(ch, "channel_run\n"); dump_dbdma_cmd(current); /* clear WAKE flag at command fetch */ ch->regs[DBDMA_STATUS] &= ~WAKE; cmd = le16_to_cpu(current->command) & COMMAND_MASK; switch (cmd) { case DBDMA_NOP: nop(ch); return; case DBDMA_STOP: stop(ch); return; } key = le16_to_cpu(current->command) & 0x0700; req_count = le16_to_cpu(current->req_count); phy_addr = le32_to_cpu(current->phy_addr); if (key == KEY_STREAM4) { printf("command %x, invalid key 4\n", cmd); kill_channel(ch); return; } switch (cmd) { case OUTPUT_MORE: DBDMA_DPRINTFCH(ch, "* OUTPUT_MORE *\n"); start_output(ch, key, phy_addr, req_count, 0); return; case OUTPUT_LAST: DBDMA_DPRINTFCH(ch, "* OUTPUT_LAST *\n"); start_output(ch, key, phy_addr, req_count, 1); return; case INPUT_MORE: DBDMA_DPRINTFCH(ch, "* INPUT_MORE *\n"); start_input(ch, key, phy_addr, req_count, 0); return; case INPUT_LAST: DBDMA_DPRINTFCH(ch, "* INPUT_LAST *\n"); start_input(ch, key, phy_addr, req_count, 1); return; } if (key < KEY_REGS) { printf("command %x, invalid key %x\n", cmd, key); key = KEY_SYSTEM; } /* for LOAD_WORD and STORE_WORD, req_count is on 3 bits * and BRANCH is invalid */ req_count = req_count & 0x0007; if (req_count & 0x4) { req_count = 4; phy_addr &= ~3; } else if (req_count & 0x2) { req_count = 2; phy_addr &= ~1; } else req_count = 1; switch (cmd) { case LOAD_WORD: DBDMA_DPRINTFCH(ch, "* LOAD_WORD *\n"); load_word(ch, key, phy_addr, req_count); return; case STORE_WORD: DBDMA_DPRINTFCH(ch, "* STORE_WORD *\n"); store_word(ch, key, phy_addr, req_count); return; } } static void DBDMA_run(DBDMAState *s) { int channel; for (channel = 0; channel < DBDMA_CHANNELS; channel++) { DBDMA_channel *ch = &s->channels[channel]; uint32_t status = ch->regs[DBDMA_STATUS]; if (!ch->io.processing && (status & RUN) && (status & ACTIVE)) { channel_run(ch); } } } static void DBDMA_run_bh(void *opaque) { DBDMAState *s = opaque; DBDMA_DPRINTF("-> DBDMA_run_bh\n"); DBDMA_run(s); DBDMA_DPRINTF("<- DBDMA_run_bh\n"); } void DBDMA_kick(DBDMAState *dbdma) { qemu_bh_schedule(dbdma->bh); } void DBDMA_register_channel(void *dbdma, int nchan, qemu_irq irq, DBDMA_rw rw, DBDMA_flush flush, void *opaque) { DBDMAState *s = dbdma; DBDMA_channel *ch = &s->channels[nchan]; DBDMA_DPRINTFCH(ch, "DBDMA_register_channel 0x%x\n", nchan); assert(rw); assert(flush); ch->irq = irq; ch->rw = rw; ch->flush = flush; ch->io.opaque = opaque; } static void dbdma_control_write(DBDMA_channel *ch) { uint16_t mask, value; uint32_t status; bool do_flush = false; mask = (ch->regs[DBDMA_CONTROL] >> 16) & 0xffff; value = ch->regs[DBDMA_CONTROL] & 0xffff; /* This is the status register which we'll update * appropriately and store back */ status = ch->regs[DBDMA_STATUS]; /* RUN and PAUSE are bits under SW control only * FLUSH and WAKE are set by SW and cleared by HW * DEAD, ACTIVE and BT are only under HW control * * We handle ACTIVE separately at the end of the * logic to ensure all cases are covered. */ /* Setting RUN will tentatively activate the channel */ if ((mask & RUN) && (value & RUN)) { status |= RUN; DBDMA_DPRINTFCH(ch, " Setting RUN !\n"); } /* Clearing RUN 1->0 will stop the channel */ if ((mask & RUN) && !(value & RUN)) { /* This has the side effect of clearing the DEAD bit */ status &= ~(DEAD | RUN); DBDMA_DPRINTFCH(ch, " Clearing RUN !\n"); } /* Setting WAKE wakes up an idle channel if it's running * * Note: The doc doesn't say so but assume that only works * on a channel whose RUN bit is set. * * We set WAKE in status, it's not terribly useful as it will * be cleared on the next command fetch but it seems to mimmic * the HW behaviour and is useful for the way we handle * ACTIVE further down. */ if ((mask & WAKE) && (value & WAKE) && (status & RUN)) { status |= WAKE; DBDMA_DPRINTFCH(ch, " Setting WAKE !\n"); } /* PAUSE being set will deactivate (or prevent activation) * of the channel. We just copy it over for now, ACTIVE will * be re-evaluated later. */ if (mask & PAUSE) { status = (status & ~PAUSE) | (value & PAUSE); DBDMA_DPRINTFCH(ch, " %sing PAUSE !\n", (value & PAUSE) ? "sett" : "clear"); } /* FLUSH is its own thing */ if ((mask & FLUSH) && (value & FLUSH)) { DBDMA_DPRINTFCH(ch, " Setting FLUSH !\n"); /* We set flush directly in the status register, we do *NOT* * set it in "status" so that it gets naturally cleared when * we update the status register further down. That way it * will be set only during the HW flush operation so it is * visible to any completions happening during that time. */ ch->regs[DBDMA_STATUS] |= FLUSH; do_flush = true; } /* If either RUN or PAUSE is clear, so should ACTIVE be, * otherwise, ACTIVE will be set if we modified RUN, PAUSE or * set WAKE. That means that PAUSE was just cleared, RUN was * just set or WAKE was just set. */ if ((status & PAUSE) || !(status & RUN)) { status &= ~ACTIVE; DBDMA_DPRINTFCH(ch, " -> ACTIVE down !\n"); /* We stopped processing, we want the underlying HW command * to complete *before* we clear the ACTIVE bit. Otherwise * we can get into a situation where the command status will * have RUN or ACTIVE not set which is going to confuse the * MacOS driver. */ do_flush = true; } else if (mask & (RUN | PAUSE)) { status |= ACTIVE; DBDMA_DPRINTFCH(ch, " -> ACTIVE up !\n"); } else if ((mask & WAKE) && (value & WAKE)) { status |= ACTIVE; DBDMA_DPRINTFCH(ch, " -> ACTIVE up !\n"); } DBDMA_DPRINTFCH(ch, " new status=0x%08x\n", status); /* If we need to flush the underlying HW, do it now, this happens * both on FLUSH commands and when stopping the channel for safety. */ if (do_flush && ch->flush) { ch->flush(&ch->io); } /* Finally update the status register image */ ch->regs[DBDMA_STATUS] = status; /* If active, make sure the BH gets to run */ if (status & ACTIVE) { DBDMA_kick(dbdma_from_ch(ch)); } } static void dbdma_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { int channel = addr >> DBDMA_CHANNEL_SHIFT; DBDMAState *s = opaque; DBDMA_channel *ch = &s->channels[channel]; int reg = (addr - (channel << DBDMA_CHANNEL_SHIFT)) >> 2; DBDMA_DPRINTFCH(ch, "writel 0x" TARGET_FMT_plx " <= 0x%08"PRIx64"\n", addr, value); DBDMA_DPRINTFCH(ch, "channel 0x%x reg 0x%x\n", (uint32_t)addr >> DBDMA_CHANNEL_SHIFT, reg); /* cmdptr cannot be modified if channel is ACTIVE */ if (reg == DBDMA_CMDPTR_LO && (ch->regs[DBDMA_STATUS] & ACTIVE)) { return; } ch->regs[reg] = value; switch(reg) { case DBDMA_CONTROL: dbdma_control_write(ch); break; case DBDMA_CMDPTR_LO: /* 16-byte aligned */ ch->regs[DBDMA_CMDPTR_LO] &= ~0xf; dbdma_cmdptr_load(ch); break; case DBDMA_STATUS: case DBDMA_INTR_SEL: case DBDMA_BRANCH_SEL: case DBDMA_WAIT_SEL: /* nothing to do */ break; case DBDMA_XFER_MODE: case DBDMA_CMDPTR_HI: case DBDMA_DATA2PTR_HI: case DBDMA_DATA2PTR_LO: case DBDMA_ADDRESS_HI: case DBDMA_BRANCH_ADDR_HI: case DBDMA_RES1: case DBDMA_RES2: case DBDMA_RES3: case DBDMA_RES4: /* unused */ break; } } static uint64_t dbdma_read(void *opaque, hwaddr addr, unsigned size) { uint32_t value; int channel = addr >> DBDMA_CHANNEL_SHIFT; DBDMAState *s = opaque; DBDMA_channel *ch = &s->channels[channel]; int reg = (addr - (channel << DBDMA_CHANNEL_SHIFT)) >> 2; value = ch->regs[reg]; switch(reg) { case DBDMA_CONTROL: value = ch->regs[DBDMA_STATUS]; break; case DBDMA_STATUS: case DBDMA_CMDPTR_LO: case DBDMA_INTR_SEL: case DBDMA_BRANCH_SEL: case DBDMA_WAIT_SEL: /* nothing to do */ break; case DBDMA_XFER_MODE: case DBDMA_CMDPTR_HI: case DBDMA_DATA2PTR_HI: case DBDMA_DATA2PTR_LO: case DBDMA_ADDRESS_HI: case DBDMA_BRANCH_ADDR_HI: /* unused */ value = 0; break; case DBDMA_RES1: case DBDMA_RES2: case DBDMA_RES3: case DBDMA_RES4: /* reserved */ break; } DBDMA_DPRINTFCH(ch, "readl 0x" TARGET_FMT_plx " => 0x%08x\n", addr, value); DBDMA_DPRINTFCH(ch, "channel 0x%x reg 0x%x\n", (uint32_t)addr >> DBDMA_CHANNEL_SHIFT, reg); return value; } static const MemoryRegionOps dbdma_ops = { .read = dbdma_read, .write = dbdma_write, .endianness = DEVICE_LITTLE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, }; static const VMStateDescription vmstate_dbdma_io = { .name = "dbdma_io", .version_id = 0, .minimum_version_id = 0, .fields = (VMStateField[]) { VMSTATE_UINT64(addr, struct DBDMA_io), VMSTATE_INT32(len, struct DBDMA_io), VMSTATE_INT32(is_last, struct DBDMA_io), VMSTATE_INT32(is_dma_out, struct DBDMA_io), VMSTATE_BOOL(processing, struct DBDMA_io), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_dbdma_cmd = { .name = "dbdma_cmd", .version_id = 0, .minimum_version_id = 0, .fields = (VMStateField[]) { VMSTATE_UINT16(req_count, dbdma_cmd), VMSTATE_UINT16(command, dbdma_cmd), VMSTATE_UINT32(phy_addr, dbdma_cmd), VMSTATE_UINT32(cmd_dep, dbdma_cmd), VMSTATE_UINT16(res_count, dbdma_cmd), VMSTATE_UINT16(xfer_status, dbdma_cmd), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_dbdma_channel = { .name = "dbdma_channel", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32_ARRAY(regs, struct DBDMA_channel, DBDMA_REGS), VMSTATE_STRUCT(io, struct DBDMA_channel, 0, vmstate_dbdma_io, DBDMA_io), VMSTATE_STRUCT(current, struct DBDMA_channel, 0, vmstate_dbdma_cmd, dbdma_cmd), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_dbdma = { .name = "dbdma", .version_id = 3, .minimum_version_id = 3, .fields = (VMStateField[]) { VMSTATE_STRUCT_ARRAY(channels, DBDMAState, DBDMA_CHANNELS, 1, vmstate_dbdma_channel, DBDMA_channel), VMSTATE_END_OF_LIST() } }; static void mac_dbdma_reset(DeviceState *d) { DBDMAState *s = MAC_DBDMA(d); int i; for (i = 0; i < DBDMA_CHANNELS; i++) { memset(s->channels[i].regs, 0, DBDMA_SIZE); } } static void dbdma_unassigned_rw(DBDMA_io *io) { DBDMA_channel *ch = io->channel; dbdma_cmd *current = &ch->current; uint16_t cmd; qemu_log_mask(LOG_GUEST_ERROR, "%s: use of unassigned channel %d\n", __func__, ch->channel); ch->io.processing = false; cmd = le16_to_cpu(current->command) & COMMAND_MASK; if (cmd == OUTPUT_MORE || cmd == OUTPUT_LAST || cmd == INPUT_MORE || cmd == INPUT_LAST) { current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]); current->res_count = cpu_to_le16(io->len); dbdma_cmdptr_save(ch); } } static void dbdma_unassigned_flush(DBDMA_io *io) { DBDMA_channel *ch = io->channel; qemu_log_mask(LOG_GUEST_ERROR, "%s: use of unassigned channel %d\n", __func__, ch->channel); } static void mac_dbdma_init(Object *obj) { SysBusDevice *sbd = SYS_BUS_DEVICE(obj); DBDMAState *s = MAC_DBDMA(obj); int i; for (i = 0; i < DBDMA_CHANNELS; i++) { DBDMA_channel *ch = &s->channels[i]; ch->rw = dbdma_unassigned_rw; ch->flush = dbdma_unassigned_flush; ch->channel = i; ch->io.channel = ch; } memory_region_init_io(&s->mem, obj, &dbdma_ops, s, "dbdma", 0x1000); sysbus_init_mmio(sbd, &s->mem); } static void mac_dbdma_realize(DeviceState *dev, Error **errp) { DBDMAState *s = MAC_DBDMA(dev); s->bh = qemu_bh_new(DBDMA_run_bh, s); } static void mac_dbdma_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); dc->realize = mac_dbdma_realize; dc->reset = mac_dbdma_reset; dc->vmsd = &vmstate_dbdma; } static const TypeInfo mac_dbdma_type_info = { .name = TYPE_MAC_DBDMA, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(DBDMAState), .instance_init = mac_dbdma_init, .class_init = mac_dbdma_class_init }; static void mac_dbdma_register_types(void) { type_register_static(&mac_dbdma_type_info); } type_init(mac_dbdma_register_types)