/* * Allwinner H3 SDRAM Controller emulation * * Copyright (C) 2019 Niek Linnenbank * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qemu/error-report.h" #include "hw/sysbus.h" #include "migration/vmstate.h" #include "qemu/log.h" #include "qemu/module.h" #include "exec/address-spaces.h" #include "hw/qdev-properties.h" #include "qapi/error.h" #include "hw/misc/allwinner-h3-dramc.h" #include "trace.h" #define REG_INDEX(offset) (offset / sizeof(uint32_t)) /* DRAMCOM register offsets */ enum { REG_DRAMCOM_CR = 0x0000, /* Control Register */ }; /* DRAMCTL register offsets */ enum { REG_DRAMCTL_PIR = 0x0000, /* PHY Initialization Register */ REG_DRAMCTL_PGSR = 0x0010, /* PHY General Status Register */ REG_DRAMCTL_STATR = 0x0018, /* Status Register */ }; /* DRAMCTL register flags */ enum { REG_DRAMCTL_PGSR_INITDONE = (1 << 0), }; enum { REG_DRAMCTL_STATR_ACTIVE = (1 << 0), }; static void allwinner_h3_dramc_map_rows(AwH3DramCtlState *s, uint8_t row_bits, uint8_t bank_bits, uint16_t page_size) { /* * This function simulates row addressing behavior when bootloader * software attempts to detect the amount of available SDRAM. In U-Boot * the controller is configured with the widest row addressing available. * Then a pattern is written to RAM at an offset on the row boundary size. * If the value read back equals the value read back from the * start of RAM, the bootloader knows the amount of row bits. * * This function inserts a mirrored memory region when the configured row * bits are not matching the actual emulated memory, to simulate the * same behavior on hardware as expected by the bootloader. */ uint8_t row_bits_actual = 0; /* Calculate the actual row bits using the ram_size property */ for (uint8_t i = 8; i < 12; i++) { if (1 << i == s->ram_size) { row_bits_actual = i + 3; break; } } if (s->ram_size == (1 << (row_bits - 3))) { /* When row bits is the expected value, remove the mirror */ memory_region_set_enabled(&s->row_mirror_alias, false); trace_allwinner_h3_dramc_rowmirror_disable(); } else if (row_bits_actual) { /* Row bits not matching ram_size, install the rows mirror */ hwaddr row_mirror = s->ram_addr + ((1 << (row_bits_actual + bank_bits)) * page_size); memory_region_set_enabled(&s->row_mirror_alias, true); memory_region_set_address(&s->row_mirror_alias, row_mirror); trace_allwinner_h3_dramc_rowmirror_enable(row_mirror); } } static uint64_t allwinner_h3_dramcom_read(void *opaque, hwaddr offset, unsigned size) { const AwH3DramCtlState *s = AW_H3_DRAMC(opaque); const uint32_t idx = REG_INDEX(offset); if (idx >= AW_H3_DRAMCOM_REGS_NUM) { qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n", __func__, (uint32_t)offset); return 0; } trace_allwinner_h3_dramcom_read(offset, s->dramcom[idx], size); return s->dramcom[idx]; } static void allwinner_h3_dramcom_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { AwH3DramCtlState *s = AW_H3_DRAMC(opaque); const uint32_t idx = REG_INDEX(offset); trace_allwinner_h3_dramcom_write(offset, val, size); if (idx >= AW_H3_DRAMCOM_REGS_NUM) { qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n", __func__, (uint32_t)offset); return; } switch (offset) { case REG_DRAMCOM_CR: /* Control Register */ allwinner_h3_dramc_map_rows(s, ((val >> 4) & 0xf) + 1, ((val >> 2) & 0x1) + 2, 1 << (((val >> 8) & 0xf) + 3)); break; default: break; }; s->dramcom[idx] = (uint32_t) val; } static uint64_t allwinner_h3_dramctl_read(void *opaque, hwaddr offset, unsigned size) { const AwH3DramCtlState *s = AW_H3_DRAMC(opaque); const uint32_t idx = REG_INDEX(offset); if (idx >= AW_H3_DRAMCTL_REGS_NUM) { qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n", __func__, (uint32_t)offset); return 0; } trace_allwinner_h3_dramctl_read(offset, s->dramctl[idx], size); return s->dramctl[idx]; } static void allwinner_h3_dramctl_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { AwH3DramCtlState *s = AW_H3_DRAMC(opaque); const uint32_t idx = REG_INDEX(offset); trace_allwinner_h3_dramctl_write(offset, val, size); if (idx >= AW_H3_DRAMCTL_REGS_NUM) { qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n", __func__, (uint32_t)offset); return; } switch (offset) { case REG_DRAMCTL_PIR: /* PHY Initialization Register */ s->dramctl[REG_INDEX(REG_DRAMCTL_PGSR)] |= REG_DRAMCTL_PGSR_INITDONE; s->dramctl[REG_INDEX(REG_DRAMCTL_STATR)] |= REG_DRAMCTL_STATR_ACTIVE; break; default: break; } s->dramctl[idx] = (uint32_t) val; } static uint64_t allwinner_h3_dramphy_read(void *opaque, hwaddr offset, unsigned size) { const AwH3DramCtlState *s = AW_H3_DRAMC(opaque); const uint32_t idx = REG_INDEX(offset); if (idx >= AW_H3_DRAMPHY_REGS_NUM) { qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n", __func__, (uint32_t)offset); return 0; } trace_allwinner_h3_dramphy_read(offset, s->dramphy[idx], size); return s->dramphy[idx]; } static void allwinner_h3_dramphy_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { AwH3DramCtlState *s = AW_H3_DRAMC(opaque); const uint32_t idx = REG_INDEX(offset); trace_allwinner_h3_dramphy_write(offset, val, size); if (idx >= AW_H3_DRAMPHY_REGS_NUM) { qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n", __func__, (uint32_t)offset); return; } s->dramphy[idx] = (uint32_t) val; } static const MemoryRegionOps allwinner_h3_dramcom_ops = { .read = allwinner_h3_dramcom_read, .write = allwinner_h3_dramcom_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, .impl.min_access_size = 4, }; static const MemoryRegionOps allwinner_h3_dramctl_ops = { .read = allwinner_h3_dramctl_read, .write = allwinner_h3_dramctl_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, .impl.min_access_size = 4, }; static const MemoryRegionOps allwinner_h3_dramphy_ops = { .read = allwinner_h3_dramphy_read, .write = allwinner_h3_dramphy_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, .impl.min_access_size = 4, }; static void allwinner_h3_dramc_reset(DeviceState *dev) { AwH3DramCtlState *s = AW_H3_DRAMC(dev); /* Set default values for registers */ memset(&s->dramcom, 0, sizeof(s->dramcom)); memset(&s->dramctl, 0, sizeof(s->dramctl)); memset(&s->dramphy, 0, sizeof(s->dramphy)); } static void allwinner_h3_dramc_realize(DeviceState *dev, Error **errp) { AwH3DramCtlState *s = AW_H3_DRAMC(dev); /* Only power of 2 RAM sizes from 256MiB up to 2048MiB are supported */ for (uint8_t i = 8; i < 13; i++) { if (1 << i == s->ram_size) { break; } else if (i == 12) { error_report("%s: ram-size %u MiB is not supported", __func__, s->ram_size); exit(1); } } /* Setup row mirror mappings */ memory_region_init_ram(&s->row_mirror, OBJECT(s), "allwinner-h3-dramc.row-mirror", 4 * KiB, &error_abort); memory_region_add_subregion_overlap(get_system_memory(), s->ram_addr, &s->row_mirror, 10); memory_region_init_alias(&s->row_mirror_alias, OBJECT(s), "allwinner-h3-dramc.row-mirror-alias", &s->row_mirror, 0, 4 * KiB); memory_region_add_subregion_overlap(get_system_memory(), s->ram_addr + 1 * MiB, &s->row_mirror_alias, 10); memory_region_set_enabled(&s->row_mirror_alias, false); } static void allwinner_h3_dramc_init(Object *obj) { SysBusDevice *sbd = SYS_BUS_DEVICE(obj); AwH3DramCtlState *s = AW_H3_DRAMC(obj); /* DRAMCOM registers */ memory_region_init_io(&s->dramcom_iomem, OBJECT(s), &allwinner_h3_dramcom_ops, s, TYPE_AW_H3_DRAMC, 4 * KiB); sysbus_init_mmio(sbd, &s->dramcom_iomem); /* DRAMCTL registers */ memory_region_init_io(&s->dramctl_iomem, OBJECT(s), &allwinner_h3_dramctl_ops, s, TYPE_AW_H3_DRAMC, 4 * KiB); sysbus_init_mmio(sbd, &s->dramctl_iomem); /* DRAMPHY registers */ memory_region_init_io(&s->dramphy_iomem, OBJECT(s), &allwinner_h3_dramphy_ops, s, TYPE_AW_H3_DRAMC, 4 * KiB); sysbus_init_mmio(sbd, &s->dramphy_iomem); } static Property allwinner_h3_dramc_properties[] = { DEFINE_PROP_UINT64("ram-addr", AwH3DramCtlState, ram_addr, 0x0), DEFINE_PROP_UINT32("ram-size", AwH3DramCtlState, ram_size, 256 * MiB), DEFINE_PROP_END_OF_LIST() }; static const VMStateDescription allwinner_h3_dramc_vmstate = { .name = "allwinner-h3-dramc", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32_ARRAY(dramcom, AwH3DramCtlState, AW_H3_DRAMCOM_REGS_NUM), VMSTATE_UINT32_ARRAY(dramctl, AwH3DramCtlState, AW_H3_DRAMCTL_REGS_NUM), VMSTATE_UINT32_ARRAY(dramphy, AwH3DramCtlState, AW_H3_DRAMPHY_REGS_NUM), VMSTATE_END_OF_LIST() } }; static void allwinner_h3_dramc_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->reset = allwinner_h3_dramc_reset; dc->vmsd = &allwinner_h3_dramc_vmstate; dc->realize = allwinner_h3_dramc_realize; device_class_set_props(dc, allwinner_h3_dramc_properties); } static const TypeInfo allwinner_h3_dramc_info = { .name = TYPE_AW_H3_DRAMC, .parent = TYPE_SYS_BUS_DEVICE, .instance_init = allwinner_h3_dramc_init, .instance_size = sizeof(AwH3DramCtlState), .class_init = allwinner_h3_dramc_class_init, }; static void allwinner_h3_dramc_register(void) { type_register_static(&allwinner_h3_dramc_info); } type_init(allwinner_h3_dramc_register)