/* * QEMU Malta board support * * Copyright (c) 2006 Aurelien Jarno * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qemu/bitops.h" #include "qemu/datadir.h" #include "qemu/guest-random.h" #include "hw/clock.h" #include "hw/southbridge/piix.h" #include "hw/isa/superio.h" #include "hw/char/serial.h" #include "net/net.h" #include "hw/boards.h" #include "hw/i2c/smbus_eeprom.h" #include "hw/block/flash.h" #include "hw/mips/mips.h" #include "hw/mips/bootloader.h" #include "hw/mips/cpudevs.h" #include "hw/pci/pci.h" #include "qemu/log.h" #include "hw/mips/bios.h" #include "hw/ide/pci.h" #include "hw/irq.h" #include "hw/loader.h" #include "elf.h" #include "qom/object.h" #include "hw/sysbus.h" /* SysBusDevice */ #include "qemu/host-utils.h" #include "sysemu/qtest.h" #include "sysemu/reset.h" #include "sysemu/runstate.h" #include "qapi/error.h" #include "qemu/error-report.h" #include "hw/misc/empty_slot.h" #include "sysemu/kvm.h" #include "semihosting/semihost.h" #include "hw/mips/cps.h" #include "hw/qdev-clock.h" #define ENVP_PADDR 0x2000 #define ENVP_VADDR cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR) #define ENVP_NB_ENTRIES 16 #define ENVP_ENTRY_SIZE 256 /* Hardware addresses */ #define FLASH_ADDRESS 0x1e000000ULL #define FPGA_ADDRESS 0x1f000000ULL #define RESET_ADDRESS 0x1fc00000ULL #define FLASH_SIZE 0x400000 typedef struct { MemoryRegion iomem; MemoryRegion iomem_lo; /* 0 - 0x900 */ MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */ uint32_t leds; uint32_t brk; uint32_t gpout; uint32_t i2cin; uint32_t i2coe; uint32_t i2cout; uint32_t i2csel; CharBackend display; char display_text[9]; SerialMM *uart; bool display_inited; } MaltaFPGAState; #define TYPE_MIPS_MALTA "mips-malta" OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA) struct MaltaState { SysBusDevice parent_obj; Clock *cpuclk; MIPSCPSState cps; }; static struct _loaderparams { int ram_size, ram_low_size; const char *kernel_filename; const char *kernel_cmdline; const char *initrd_filename; } loaderparams; /* Malta FPGA */ static void malta_fpga_update_display(void *opaque) { char leds_text[9]; int i; MaltaFPGAState *s = opaque; for (i = 7 ; i >= 0 ; i--) { if (s->leds & (1 << i)) { leds_text[i] = '#'; } else { leds_text[i] = ' '; } } leds_text[8] = '\0'; qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text); qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text); } /* * EEPROM 24C01 / 24C02 emulation. * * Emulation for serial EEPROMs: * 24C01 - 1024 bit (128 x 8) * 24C02 - 2048 bit (256 x 8) * * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02. */ #if defined(DEBUG) # define logout(fmt, ...) \ fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__) #else # define logout(fmt, ...) ((void)0) #endif struct _eeprom24c0x_t { uint8_t tick; uint8_t address; uint8_t command; uint8_t ack; uint8_t scl; uint8_t sda; uint8_t data; /* uint16_t size; */ uint8_t contents[256]; }; typedef struct _eeprom24c0x_t eeprom24c0x_t; static eeprom24c0x_t spd_eeprom = { .contents = { /* 00000000: */ 0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00, /* 00000008: */ 0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01, /* 00000010: */ 0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00, /* 00000018: */ 0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF, /* 00000020: */ 0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00, /* 00000028: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 00000030: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 00000038: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0, /* 00000040: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 00000048: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 00000050: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 00000058: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 00000060: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 00000068: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 00000070: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 00000078: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4, }, }; static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size) { enum { SDR = 0x4, DDR2 = 0x8 } type; uint8_t *spd = spd_eeprom.contents; uint8_t nbanks = 0; uint16_t density = 0; int i; /* work in terms of MB */ ram_size /= MiB; while ((ram_size >= 4) && (nbanks <= 2)) { int sz_log2 = MIN(31 - clz32(ram_size), 14); nbanks++; density |= 1 << (sz_log2 - 2); ram_size -= 1 << sz_log2; } /* split to 2 banks if possible */ if ((nbanks == 1) && (density > 1)) { nbanks++; density >>= 1; } if (density & 0xff00) { density = (density & 0xe0) | ((density >> 8) & 0x1f); type = DDR2; } else if (!(density & 0x1f)) { type = DDR2; } else { type = SDR; } if (ram_size) { warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB" " of SDRAM", ram_size); } /* fill in SPD memory information */ spd[2] = type; spd[5] = nbanks; spd[31] = density; /* checksum */ spd[63] = 0; for (i = 0; i < 63; i++) { spd[63] += spd[i]; } /* copy for SMBUS */ memcpy(eeprom, spd, sizeof(spd_eeprom.contents)); } static void generate_eeprom_serial(uint8_t *eeprom) { int i, pos = 0; uint8_t mac[6] = { 0x00 }; uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 }; /* version */ eeprom[pos++] = 0x01; /* count */ eeprom[pos++] = 0x02; /* MAC address */ eeprom[pos++] = 0x01; /* MAC */ eeprom[pos++] = 0x06; /* length */ memcpy(&eeprom[pos], mac, sizeof(mac)); pos += sizeof(mac); /* serial number */ eeprom[pos++] = 0x02; /* serial */ eeprom[pos++] = 0x05; /* length */ memcpy(&eeprom[pos], sn, sizeof(sn)); pos += sizeof(sn); /* checksum */ eeprom[pos] = 0; for (i = 0; i < pos; i++) { eeprom[pos] += eeprom[i]; } } static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom) { logout("%u: scl = %u, sda = %u, data = 0x%02x\n", eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data); return eeprom->sda; } static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda) { if (eeprom->scl && scl && (eeprom->sda != sda)) { logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n", eeprom->tick, eeprom->scl, scl, eeprom->sda, sda, sda ? "stop" : "start"); if (!sda) { eeprom->tick = 1; eeprom->command = 0; } } else if (eeprom->tick == 0 && !eeprom->ack) { /* Waiting for start. */ logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n", eeprom->tick, eeprom->scl, scl, eeprom->sda, sda); } else if (!eeprom->scl && scl) { logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n", eeprom->tick, eeprom->scl, scl, eeprom->sda, sda); if (eeprom->ack) { logout("\ti2c ack bit = 0\n"); sda = 0; eeprom->ack = 0; } else if (eeprom->sda == sda) { uint8_t bit = (sda != 0); logout("\ti2c bit = %d\n", bit); if (eeprom->tick < 9) { eeprom->command <<= 1; eeprom->command += bit; eeprom->tick++; if (eeprom->tick == 9) { logout("\tcommand 0x%04x, %s\n", eeprom->command, bit ? "read" : "write"); eeprom->ack = 1; } } else if (eeprom->tick < 17) { if (eeprom->command & 1) { sda = ((eeprom->data & 0x80) != 0); } eeprom->address <<= 1; eeprom->address += bit; eeprom->tick++; eeprom->data <<= 1; if (eeprom->tick == 17) { eeprom->data = eeprom->contents[eeprom->address]; logout("\taddress 0x%04x, data 0x%02x\n", eeprom->address, eeprom->data); eeprom->ack = 1; eeprom->tick = 0; } } else if (eeprom->tick >= 17) { sda = 0; } } else { logout("\tsda changed with raising scl\n"); } } else { logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl, scl, eeprom->sda, sda); } eeprom->scl = scl; eeprom->sda = sda; } static uint64_t malta_fpga_read(void *opaque, hwaddr addr, unsigned size) { MaltaFPGAState *s = opaque; uint32_t val = 0; uint32_t saddr; saddr = (addr & 0xfffff); switch (saddr) { /* SWITCH Register */ case 0x00200: val = 0x00000000; break; /* STATUS Register */ case 0x00208: #if TARGET_BIG_ENDIAN val = 0x00000012; #else val = 0x00000010; #endif break; /* JMPRS Register */ case 0x00210: val = 0x00; break; /* LEDBAR Register */ case 0x00408: val = s->leds; break; /* BRKRES Register */ case 0x00508: val = s->brk; break; /* UART Registers are handled directly by the serial device */ /* GPOUT Register */ case 0x00a00: val = s->gpout; break; /* XXX: implement a real I2C controller */ /* GPINP Register */ case 0x00a08: /* IN = OUT until a real I2C control is implemented */ if (s->i2csel) { val = s->i2cout; } else { val = 0x00; } break; /* I2CINP Register */ case 0x00b00: val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom)); break; /* I2COE Register */ case 0x00b08: val = s->i2coe; break; /* I2COUT Register */ case 0x00b10: val = s->i2cout; break; /* I2CSEL Register */ case 0x00b18: val = s->i2csel; break; default: qemu_log_mask(LOG_GUEST_ERROR, "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n", addr); break; } return val; } static void malta_fpga_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { MaltaFPGAState *s = opaque; uint32_t saddr; saddr = (addr & 0xfffff); switch (saddr) { /* SWITCH Register */ case 0x00200: break; /* JMPRS Register */ case 0x00210: break; /* LEDBAR Register */ case 0x00408: s->leds = val & 0xff; malta_fpga_update_display(s); break; /* ASCIIWORD Register */ case 0x00410: snprintf(s->display_text, 9, "%08X", (uint32_t)val); malta_fpga_update_display(s); break; /* ASCIIPOS0 to ASCIIPOS7 Registers */ case 0x00418: case 0x00420: case 0x00428: case 0x00430: case 0x00438: case 0x00440: case 0x00448: case 0x00450: s->display_text[(saddr - 0x00418) >> 3] = (char) val; malta_fpga_update_display(s); break; /* SOFTRES Register */ case 0x00500: if (val == 0x42) { qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); } break; /* BRKRES Register */ case 0x00508: s->brk = val & 0xff; break; /* UART Registers are handled directly by the serial device */ /* GPOUT Register */ case 0x00a00: s->gpout = val & 0xff; break; /* I2COE Register */ case 0x00b08: s->i2coe = val & 0x03; break; /* I2COUT Register */ case 0x00b10: eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01); s->i2cout = val; break; /* I2CSEL Register */ case 0x00b18: s->i2csel = val & 0x01; break; default: qemu_log_mask(LOG_GUEST_ERROR, "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n", addr); break; } } static const MemoryRegionOps malta_fpga_ops = { .read = malta_fpga_read, .write = malta_fpga_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static void malta_fpga_reset(void *opaque) { MaltaFPGAState *s = opaque; s->leds = 0x00; s->brk = 0x0a; s->gpout = 0x00; s->i2cin = 0x3; s->i2coe = 0x0; s->i2cout = 0x3; s->i2csel = 0x1; s->display_text[8] = '\0'; snprintf(s->display_text, 9, " "); } static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event) { MaltaFPGAState *s = opaque; if (event == CHR_EVENT_OPENED && !s->display_inited) { qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n"); qemu_chr_fe_printf(&s->display, "+--------+\r\n"); qemu_chr_fe_printf(&s->display, "+ +\r\n"); qemu_chr_fe_printf(&s->display, "+--------+\r\n"); qemu_chr_fe_printf(&s->display, "\n"); qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n"); qemu_chr_fe_printf(&s->display, "+--------+\r\n"); qemu_chr_fe_printf(&s->display, "+ +\r\n"); qemu_chr_fe_printf(&s->display, "+--------+\r\n"); s->display_inited = true; } } static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space, hwaddr base, qemu_irq uart_irq, Chardev *uart_chr) { MaltaFPGAState *s; Chardev *chr; s = g_new0(MaltaFPGAState, 1); memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s, "malta-fpga", 0x100000); memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga", &s->iomem, 0, 0x900); memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga", &s->iomem, 0xa00, 0x100000 - 0xa00); memory_region_add_subregion(address_space, base, &s->iomem_lo); memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi); chr = qemu_chr_new("fpga", "vc:320x200", NULL); qemu_chr_fe_init(&s->display, chr, NULL); qemu_chr_fe_set_handlers(&s->display, NULL, NULL, malta_fgpa_display_event, NULL, s, NULL, true); s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq, 230400, uart_chr, DEVICE_NATIVE_ENDIAN); malta_fpga_reset(s); qemu_register_reset(malta_fpga_reset, s); return s; } /* Network support */ static void network_init(PCIBus *pci_bus) { int i; for (i = 0; i < nb_nics; i++) { NICInfo *nd = &nd_table[i]; const char *default_devaddr = NULL; if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0)) /* The malta board has a PCNet card using PCI SLOT 11 */ default_devaddr = "0b"; pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr); } } static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr, uint64_t kernel_entry) { uint16_t *p; /* Small bootloader */ p = (uint16_t *)base; #define NM_HI1(VAL) (((VAL) >> 16) & 0x1f) #define NM_HI2(VAL) \ (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1)) #define NM_LO(VAL) ((VAL) & 0xfff) stw_p(p++, 0x2800); stw_p(p++, 0x001c); /* bc to_here */ stw_p(p++, 0x8000); stw_p(p++, 0xc000); /* nop */ stw_p(p++, 0x8000); stw_p(p++, 0xc000); /* nop */ stw_p(p++, 0x8000); stw_p(p++, 0xc000); /* nop */ stw_p(p++, 0x8000); stw_p(p++, 0xc000); /* nop */ stw_p(p++, 0x8000); stw_p(p++, 0xc000); /* nop */ stw_p(p++, 0x8000); stw_p(p++, 0xc000); /* nop */ stw_p(p++, 0x8000); stw_p(p++, 0xc000); /* nop */ /* to_here: */ if (semihosting_get_argc()) { /* Preserve a0 content as arguments have been passed */ stw_p(p++, 0x8000); stw_p(p++, 0xc000); /* nop */ } else { stw_p(p++, 0x0080); stw_p(p++, 0x0002); /* li a0,2 */ } stw_p(p++, 0xe3a0 | NM_HI1(ENVP_VADDR - 64)); stw_p(p++, NM_HI2(ENVP_VADDR - 64)); /* lui sp,%hi(ENVP_VADDR - 64) */ stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_VADDR - 64)); /* ori sp,sp,%lo(ENVP_VADDR - 64) */ stw_p(p++, 0xe0a0 | NM_HI1(ENVP_VADDR)); stw_p(p++, NM_HI2(ENVP_VADDR)); /* lui a1,%hi(ENVP_VADDR) */ stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_VADDR)); /* ori a1,a1,%lo(ENVP_VADDR) */ stw_p(p++, 0xe0c0 | NM_HI1(ENVP_VADDR + 8)); stw_p(p++, NM_HI2(ENVP_VADDR + 8)); /* lui a2,%hi(ENVP_VADDR + 8) */ stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_VADDR + 8)); /* ori a2,a2,%lo(ENVP_VADDR + 8) */ stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size)); stw_p(p++, NM_HI2(loaderparams.ram_low_size)); /* lui a3,%hi(loaderparams.ram_low_size) */ stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size)); /* ori a3,a3,%lo(loaderparams.ram_low_size) */ /* * Load BAR registers as done by YAMON: * * - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff * - set up PCI0 MEM0 at 0x10000000, size 0x8000000 * - set up PCI0 MEM1 at 0x18200000, size 0xbe00000 * */ stw_p(p++, 0xe040); stw_p(p++, 0x0681); /* lui t1, %hi(0xb4000000) */ #if TARGET_BIG_ENDIAN stw_p(p++, 0xe020); stw_p(p++, 0x0be1); /* lui t0, %hi(0xdf000000) */ /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c) */ stw_p(p++, 0x8422); stw_p(p++, 0x9068); /* sw t0, 0x68(t1) */ stw_p(p++, 0xe040); stw_p(p++, 0x077d); /* lui t1, %hi(0xbbe00000) */ stw_p(p++, 0xe020); stw_p(p++, 0x0801); /* lui t0, %hi(0xc0000000) */ /* 0x48 corresponds to GT_PCI0IOLD */ stw_p(p++, 0x8422); stw_p(p++, 0x9048); /* sw t0, 0x48(t1) */ stw_p(p++, 0xe020); stw_p(p++, 0x0800); /* lui t0, %hi(0x40000000) */ /* 0x50 corresponds to GT_PCI0IOHD */ stw_p(p++, 0x8422); stw_p(p++, 0x9050); /* sw t0, 0x50(t1) */ stw_p(p++, 0xe020); stw_p(p++, 0x0001); /* lui t0, %hi(0x80000000) */ /* 0x58 corresponds to GT_PCI0M0LD */ stw_p(p++, 0x8422); stw_p(p++, 0x9058); /* sw t0, 0x58(t1) */ stw_p(p++, 0xe020); stw_p(p++, 0x07e0); /* lui t0, %hi(0x3f000000) */ /* 0x60 corresponds to GT_PCI0M0HD */ stw_p(p++, 0x8422); stw_p(p++, 0x9060); /* sw t0, 0x60(t1) */ stw_p(p++, 0xe020); stw_p(p++, 0x0821); /* lui t0, %hi(0xc1000000) */ /* 0x80 corresponds to GT_PCI0M1LD */ stw_p(p++, 0x8422); stw_p(p++, 0x9080); /* sw t0, 0x80(t1) */ stw_p(p++, 0xe020); stw_p(p++, 0x0bc0); /* lui t0, %hi(0x5e000000) */ #else stw_p(p++, 0x0020); stw_p(p++, 0x00df); /* addiu[32] t0, $0, 0xdf */ /* 0x68 corresponds to GT_ISD */ stw_p(p++, 0x8422); stw_p(p++, 0x9068); /* sw t0, 0x68(t1) */ /* Use kseg2 remapped address 0x1be00000 */ stw_p(p++, 0xe040); stw_p(p++, 0x077d); /* lui t1, %hi(0xbbe00000) */ stw_p(p++, 0x0020); stw_p(p++, 0x00c0); /* addiu[32] t0, $0, 0xc0 */ /* 0x48 corresponds to GT_PCI0IOLD */ stw_p(p++, 0x8422); stw_p(p++, 0x9048); /* sw t0, 0x48(t1) */ stw_p(p++, 0x0020); stw_p(p++, 0x0040); /* addiu[32] t0, $0, 0x40 */ /* 0x50 corresponds to GT_PCI0IOHD */ stw_p(p++, 0x8422); stw_p(p++, 0x9050); /* sw t0, 0x50(t1) */ stw_p(p++, 0x0020); stw_p(p++, 0x0080); /* addiu[32] t0, $0, 0x80 */ /* 0x58 corresponds to GT_PCI0M0LD */ stw_p(p++, 0x8422); stw_p(p++, 0x9058); /* sw t0, 0x58(t1) */ stw_p(p++, 0x0020); stw_p(p++, 0x003f); /* addiu[32] t0, $0, 0x3f */ /* 0x60 corresponds to GT_PCI0M0HD */ stw_p(p++, 0x8422); stw_p(p++, 0x9060); /* sw t0, 0x60(t1) */ stw_p(p++, 0x0020); stw_p(p++, 0x00c1); /* addiu[32] t0, $0, 0xc1 */ /* 0x80 corresponds to GT_PCI0M1LD */ stw_p(p++, 0x8422); stw_p(p++, 0x9080); /* sw t0, 0x80(t1) */ stw_p(p++, 0x0020); stw_p(p++, 0x005e); /* addiu[32] t0, $0, 0x5e */ #endif /* 0x88 corresponds to GT_PCI0M1HD */ stw_p(p++, 0x8422); stw_p(p++, 0x9088); /* sw t0, 0x88(t1) */ stw_p(p++, 0xe320 | NM_HI1(kernel_entry)); stw_p(p++, NM_HI2(kernel_entry)); /* lui t9,%hi(kernel_entry) */ stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry)); /* ori t9,t9,%lo(kernel_entry) */ stw_p(p++, 0x4bf9); stw_p(p++, 0x0000); /* jalrc t8 */ } /* * ROM and pseudo bootloader * * The following code implements a very very simple bootloader. It first * loads the registers a0 to a3 to the values expected by the OS, and * then jump at the kernel address. * * The bootloader should pass the locations of the kernel arguments and * environment variables tables. Those tables contain the 32-bit address * of NULL terminated strings. The environment variables table should be * terminated by a NULL address. * * For a simpler implementation, the number of kernel arguments is fixed * to two (the name of the kernel and the command line), and the two * tables are actually the same one. * * The registers a0 to a3 should contain the following values: * a0 - number of kernel arguments * a1 - 32-bit address of the kernel arguments table * a2 - 32-bit address of the environment variables table * a3 - RAM size in bytes */ static void write_bootloader(uint8_t *base, uint64_t run_addr, uint64_t kernel_entry) { uint32_t *p; /* Small bootloader */ p = (uint32_t *)base; stl_p(p++, 0x08000000 | /* j 0x1fc00580 */ ((run_addr + 0x580) & 0x0fffffff) >> 2); stl_p(p++, 0x00000000); /* nop */ /* YAMON service vector */ stl_p(base + 0x500, run_addr + 0x0580); /* start: */ stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */ stl_p(base + 0x520, run_addr + 0x0580); /* start: */ stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */ stl_p(base + 0x534, run_addr + 0x0808); /* print: */ stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */ stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */ stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */ stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */ stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */ stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */ stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */ stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */ /* Second part of the bootloader */ p = (uint32_t *) (base + 0x580); /* * Load BAR registers as done by YAMON: * * - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff * - set up PCI0 MEM0 at 0x10000000, size 0x7e00000 * - set up PCI0 MEM1 at 0x18200000, size 0xbc00000 * */ /* Bus endianess is always reversed */ #if TARGET_BIG_ENDIAN #define cpu_to_gt32 cpu_to_le32 #else #define cpu_to_gt32 cpu_to_be32 #endif /* move GT64120 registers from 0x14000000 to 0x1be00000 */ bl_gen_write_u32(&p, /* GT_ISD */ cpu_mips_phys_to_kseg1(NULL, 0x14000000 + 0x68), cpu_to_gt32(0x1be00000 << 3)); /* setup MEM-to-PCI0 mapping */ /* setup PCI0 io window to 0x18000000-0x181fffff */ bl_gen_write_u32(&p, /* GT_PCI0IOLD */ cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x48), cpu_to_gt32(0x18000000 << 3)); bl_gen_write_u32(&p, /* GT_PCI0IOHD */ cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x50), cpu_to_gt32(0x08000000 << 3)); /* setup PCI0 mem windows */ bl_gen_write_u32(&p, /* GT_PCI0M0LD */ cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x58), cpu_to_gt32(0x10000000 << 3)); bl_gen_write_u32(&p, /* GT_PCI0M0HD */ cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x60), cpu_to_gt32(0x07e00000 << 3)); bl_gen_write_u32(&p, /* GT_PCI0M1LD */ cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x80), cpu_to_gt32(0x18200000 << 3)); bl_gen_write_u32(&p, /* GT_PCI0M1HD */ cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x88), cpu_to_gt32(0x0bc00000 << 3)); #undef cpu_to_gt32 bl_gen_jump_kernel(&p, true, ENVP_VADDR - 64, /* * If semihosting is used, arguments have already been * passed, so we preserve $a0. */ !semihosting_get_argc(), 2, true, ENVP_VADDR, true, ENVP_VADDR + 8, true, loaderparams.ram_low_size, kernel_entry); /* YAMON subroutines */ p = (uint32_t *) (base + 0x800); stl_p(p++, 0x03e00009); /* jalr ra */ stl_p(p++, 0x24020000); /* li v0,0 */ /* 808 YAMON print */ stl_p(p++, 0x03e06821); /* move t5,ra */ stl_p(p++, 0x00805821); /* move t3,a0 */ stl_p(p++, 0x00a05021); /* move t2,a1 */ stl_p(p++, 0x91440000); /* lbu a0,0(t2) */ stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */ stl_p(p++, 0x10800005); /* beqz a0,834 */ stl_p(p++, 0x00000000); /* nop */ stl_p(p++, 0x0ff0021c); /* jal 870 */ stl_p(p++, 0x00000000); /* nop */ stl_p(p++, 0x1000fff9); /* b 814 */ stl_p(p++, 0x00000000); /* nop */ stl_p(p++, 0x01a00009); /* jalr t5 */ stl_p(p++, 0x01602021); /* move a0,t3 */ /* 0x83c YAMON print_count */ stl_p(p++, 0x03e06821); /* move t5,ra */ stl_p(p++, 0x00805821); /* move t3,a0 */ stl_p(p++, 0x00a05021); /* move t2,a1 */ stl_p(p++, 0x00c06021); /* move t4,a2 */ stl_p(p++, 0x91440000); /* lbu a0,0(t2) */ stl_p(p++, 0x0ff0021c); /* jal 870 */ stl_p(p++, 0x00000000); /* nop */ stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */ stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */ stl_p(p++, 0x1580fffa); /* bnez t4,84c */ stl_p(p++, 0x00000000); /* nop */ stl_p(p++, 0x01a00009); /* jalr t5 */ stl_p(p++, 0x01602021); /* move a0,t3 */ /* 0x870 */ stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */ stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */ stl_p(p++, 0x91090005); /* lbu t1,5(t0) */ stl_p(p++, 0x00000000); /* nop */ stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */ stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */ stl_p(p++, 0x00000000); /* nop */ stl_p(p++, 0x03e00009); /* jalr ra */ stl_p(p++, 0xa1040000); /* sb a0,0(t0) */ } static void G_GNUC_PRINTF(3, 4) prom_set(uint32_t *prom_buf, int index, const char *string, ...) { va_list ap; uint32_t table_addr; if (index >= ENVP_NB_ENTRIES) { return; } if (string == NULL) { prom_buf[index] = 0; return; } table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE; prom_buf[index] = tswap32(ENVP_VADDR + table_addr); va_start(ap, string); vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap); va_end(ap); } static void reinitialize_rng_seed(void *opaque) { char *rng_seed_hex = opaque; uint8_t rng_seed[32]; qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed)); for (size_t i = 0; i < sizeof(rng_seed); ++i) { sprintf(rng_seed_hex + i * 2, "%02x", rng_seed[i]); } } /* Kernel */ static uint64_t load_kernel(void) { uint64_t kernel_entry, kernel_high, initrd_size; long kernel_size; ram_addr_t initrd_offset; int big_endian; uint32_t *prom_buf; long prom_size; int prom_index = 0; uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr); uint8_t rng_seed[32]; char rng_seed_hex[sizeof(rng_seed) * 2 + 1]; size_t rng_seed_prom_offset; #if TARGET_BIG_ENDIAN big_endian = 1; #else big_endian = 0; #endif kernel_size = load_elf(loaderparams.kernel_filename, NULL, cpu_mips_kseg0_to_phys, NULL, &kernel_entry, NULL, &kernel_high, NULL, big_endian, EM_MIPS, 1, 0); if (kernel_size < 0) { error_report("could not load kernel '%s': %s", loaderparams.kernel_filename, load_elf_strerror(kernel_size)); exit(1); } /* Check where the kernel has been linked */ if (kernel_entry & 0x80000000ll) { if (kvm_enabled()) { error_report("KVM guest kernels must be linked in useg. " "Did you forget to enable CONFIG_KVM_GUEST?"); exit(1); } xlate_to_kseg0 = cpu_mips_phys_to_kseg0; } else { /* if kernel entry is in useg it is probably a KVM T&E kernel */ mips_um_ksegs_enable(); xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0; } /* load initrd */ initrd_size = 0; initrd_offset = 0; if (loaderparams.initrd_filename) { initrd_size = get_image_size(loaderparams.initrd_filename); if (initrd_size > 0) { /* * The kernel allocates the bootmap memory in the low memory after * the initrd. It takes at most 128kiB for 2GB RAM and 4kiB * pages. */ initrd_offset = ROUND_UP(loaderparams.ram_low_size - (initrd_size + 128 * KiB), INITRD_PAGE_SIZE); if (kernel_high >= initrd_offset) { error_report("memory too small for initial ram disk '%s'", loaderparams.initrd_filename); exit(1); } initrd_size = load_image_targphys(loaderparams.initrd_filename, initrd_offset, loaderparams.ram_size - initrd_offset); } if (initrd_size == (target_ulong) -1) { error_report("could not load initial ram disk '%s'", loaderparams.initrd_filename); exit(1); } } /* Setup prom parameters. */ prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE); prom_buf = g_malloc(prom_size); prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename); if (initrd_size > 0) { prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s", xlate_to_kseg0(NULL, initrd_offset), initrd_size, loaderparams.kernel_cmdline); } else { prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline); } prom_set(prom_buf, prom_index++, "memsize"); prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size); prom_set(prom_buf, prom_index++, "ememsize"); prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size); prom_set(prom_buf, prom_index++, "modetty0"); prom_set(prom_buf, prom_index++, "38400n8r"); qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed)); for (size_t i = 0; i < sizeof(rng_seed); ++i) { sprintf(rng_seed_hex + i * 2, "%02x", rng_seed[i]); } prom_set(prom_buf, prom_index++, "rngseed"); rng_seed_prom_offset = prom_index * ENVP_ENTRY_SIZE + sizeof(uint32_t) * ENVP_NB_ENTRIES; prom_set(prom_buf, prom_index++, "%s", rng_seed_hex); prom_set(prom_buf, prom_index++, NULL); rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR); qemu_register_reset_nosnapshotload(reinitialize_rng_seed, rom_ptr(ENVP_PADDR, prom_size) + rng_seed_prom_offset); g_free(prom_buf); return kernel_entry; } static void malta_mips_config(MIPSCPU *cpu) { MachineState *ms = MACHINE(qdev_get_machine()); unsigned int smp_cpus = ms->smp.cpus; CPUMIPSState *env = &cpu->env; CPUState *cs = CPU(cpu); if (ase_mt_available(env)) { env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0, CP0MVPC0_PTC, 8, smp_cpus * cs->nr_threads - 1); env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0, CP0MVPC0_PVPE, 4, smp_cpus - 1); } } static void main_cpu_reset(void *opaque) { MIPSCPU *cpu = opaque; CPUMIPSState *env = &cpu->env; cpu_reset(CPU(cpu)); /* * The bootloader does not need to be rewritten as it is located in a * read only location. The kernel location and the arguments table * location does not change. */ if (loaderparams.kernel_filename) { env->CP0_Status &= ~(1 << CP0St_ERL); } malta_mips_config(cpu); if (kvm_enabled()) { /* Start running from the bootloader we wrote to end of RAM */ env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size; } } static void create_cpu_without_cps(MachineState *ms, MaltaState *s, qemu_irq *cbus_irq, qemu_irq *i8259_irq) { CPUMIPSState *env; MIPSCPU *cpu; int i; for (i = 0; i < ms->smp.cpus; i++) { cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk); /* Init internal devices */ cpu_mips_irq_init_cpu(cpu); cpu_mips_clock_init(cpu); qemu_register_reset(main_cpu_reset, cpu); } cpu = MIPS_CPU(first_cpu); env = &cpu->env; *i8259_irq = env->irq[2]; *cbus_irq = env->irq[4]; } static void create_cps(MachineState *ms, MaltaState *s, qemu_irq *cbus_irq, qemu_irq *i8259_irq) { object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS); object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type, &error_fatal); object_property_set_int(OBJECT(&s->cps), "num-vp", ms->smp.cpus, &error_fatal); qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk); sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal); sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1); *i8259_irq = get_cps_irq(&s->cps, 3); *cbus_irq = NULL; } static void mips_create_cpu(MachineState *ms, MaltaState *s, qemu_irq *cbus_irq, qemu_irq *i8259_irq) { if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) { create_cps(ms, s, cbus_irq, i8259_irq); } else { create_cpu_without_cps(ms, s, cbus_irq, i8259_irq); } } static void mips_malta_init(MachineState *machine) { ram_addr_t ram_size = machine->ram_size; ram_addr_t ram_low_size; const char *kernel_filename = machine->kernel_filename; const char *kernel_cmdline = machine->kernel_cmdline; const char *initrd_filename = machine->initrd_filename; char *filename; PFlashCFI01 *fl; MemoryRegion *system_memory = get_system_memory(); MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1); MemoryRegion *ram_low_postio; MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1); const size_t smbus_eeprom_size = 8 * 256; uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size); uint64_t kernel_entry, bootloader_run_addr; PCIBus *pci_bus; ISABus *isa_bus; qemu_irq cbus_irq, i8259_irq; I2CBus *smbus; DriveInfo *dinfo; int fl_idx = 0; int be; MaltaState *s; PCIDevice *piix4; DeviceState *dev; s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA)); sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal); /* create CPU */ mips_create_cpu(machine, s, &cbus_irq, &i8259_irq); /* allocate RAM */ if (ram_size > 2 * GiB) { error_report("Too much memory for this machine: %" PRId64 "MB," " maximum 2048MB", ram_size / MiB); exit(1); } /* register RAM at high address where it is undisturbed by IO */ memory_region_add_subregion(system_memory, 0x80000000, machine->ram); /* alias for pre IO hole access */ memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram", machine->ram, 0, MIN(ram_size, 256 * MiB)); memory_region_add_subregion(system_memory, 0, ram_low_preio); /* alias for post IO hole access, if there is enough RAM */ if (ram_size > 512 * MiB) { ram_low_postio = g_new(MemoryRegion, 1); memory_region_init_alias(ram_low_postio, NULL, "mips_malta_low_postio.ram", machine->ram, 512 * MiB, ram_size - 512 * MiB); memory_region_add_subregion(system_memory, 512 * MiB, ram_low_postio); } #if TARGET_BIG_ENDIAN be = 1; #else be = 0; #endif /* FPGA */ /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */ malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2)); /* Load firmware in flash / BIOS. */ dinfo = drive_get(IF_PFLASH, 0, fl_idx); fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios", FLASH_SIZE, dinfo ? blk_by_legacy_dinfo(dinfo) : NULL, 65536, 4, 0x0000, 0x0000, 0x0000, 0x0000, be); bios = pflash_cfi01_get_memory(fl); fl_idx++; if (kernel_filename) { ram_low_size = MIN(ram_size, 256 * MiB); /* For KVM we reserve 1MB of RAM for running bootloader */ if (kvm_enabled()) { ram_low_size -= 0x100000; bootloader_run_addr = cpu_mips_kvm_um_phys_to_kseg0(NULL, ram_low_size); } else { bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS); } /* Write a small bootloader to the flash location. */ loaderparams.ram_size = ram_size; loaderparams.ram_low_size = ram_low_size; loaderparams.kernel_filename = kernel_filename; loaderparams.kernel_cmdline = kernel_cmdline; loaderparams.initrd_filename = initrd_filename; kernel_entry = load_kernel(); if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) { write_bootloader(memory_region_get_ram_ptr(bios), bootloader_run_addr, kernel_entry); } else { write_bootloader_nanomips(memory_region_get_ram_ptr(bios), bootloader_run_addr, kernel_entry); } if (kvm_enabled()) { /* Write the bootloader code @ the end of RAM, 1MB reserved */ write_bootloader(memory_region_get_ram_ptr(ram_low_preio) + ram_low_size, bootloader_run_addr, kernel_entry); } } else { target_long bios_size = FLASH_SIZE; /* The flash region isn't executable from a KVM guest */ if (kvm_enabled()) { error_report("KVM enabled but no -kernel argument was specified. " "Booting from flash is not supported with KVM."); exit(1); } /* Load firmware from flash. */ if (!dinfo) { /* Load a BIOS image. */ filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, machine->firmware ?: BIOS_FILENAME); if (filename) { bios_size = load_image_targphys(filename, FLASH_ADDRESS, BIOS_SIZE); g_free(filename); } else { bios_size = -1; } if ((bios_size < 0 || bios_size > BIOS_SIZE) && machine->firmware && !qtest_enabled()) { error_report("Could not load MIPS bios '%s'", machine->firmware); exit(1); } } /* * In little endian mode the 32bit words in the bios are swapped, * a neat trick which allows bi-endian firmware. */ #if !TARGET_BIG_ENDIAN { uint32_t *end, *addr; const size_t swapsize = MIN(bios_size, 0x3e0000); addr = rom_ptr(FLASH_ADDRESS, swapsize); if (!addr) { addr = memory_region_get_ram_ptr(bios); } end = (void *)addr + swapsize; while (addr < end) { bswap32s(addr); addr++; } } #endif } /* * Map the BIOS at a 2nd physical location, as on the real board. * Copy it so that we can patch in the MIPS revision, which cannot be * handled by an overlapping region as the resulting ROM code subpage * regions are not executable. */ memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE, &error_fatal); if (!rom_copy(memory_region_get_ram_ptr(bios_copy), FLASH_ADDRESS, BIOS_SIZE)) { memcpy(memory_region_get_ram_ptr(bios_copy), memory_region_get_ram_ptr(bios), BIOS_SIZE); } memory_region_set_readonly(bios_copy, true); memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy); /* Board ID = 0x420 (Malta Board with CoreLV) */ stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420); /* Northbridge */ dev = sysbus_create_simple("gt64120", -1, NULL); pci_bus = PCI_BUS(qdev_get_child_bus(dev, "pci")); /* * The whole address space decoded by the GT-64120A doesn't generate * exception when accessing invalid memory. Create an empty slot to * emulate this feature. */ empty_slot_init("GT64120", 0, 0x20000000); /* Southbridge */ piix4 = pci_create_simple_multifunction(pci_bus, PCI_DEVFN(10, 0), true, TYPE_PIIX4_PCI_DEVICE); isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(piix4), "isa.0")); dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "ide")); pci_ide_create_devs(PCI_DEVICE(dev)); /* Interrupt controller */ qdev_connect_gpio_out_named(DEVICE(piix4), "intr", 0, i8259_irq); /* generate SPD EEPROM data */ dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "pm")); smbus = I2C_BUS(qdev_get_child_bus(dev, "i2c")); generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size); generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]); smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size); g_free(smbus_eeprom_buf); /* Super I/O: SMS FDC37M817 */ isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO); /* Network card */ network_init(pci_bus); /* Optional PCI video card */ pci_vga_init(pci_bus); } static void mips_malta_instance_init(Object *obj) { MaltaState *s = MIPS_MALTA(obj); s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk"); clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */ } static const TypeInfo mips_malta_device = { .name = TYPE_MIPS_MALTA, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(MaltaState), .instance_init = mips_malta_instance_init, }; GlobalProperty malta_compat[] = { { "PIIX4_PM", "memory-hotplug-support", "off" }, { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" }, { "PIIX4_PM", "acpi-root-pci-hotplug", "off" }, { "PIIX4_PM", "x-not-migrate-acpi-index", "true" }, }; const size_t malta_compat_len = G_N_ELEMENTS(malta_compat); static void mips_malta_machine_init(MachineClass *mc) { mc->desc = "MIPS Malta Core LV"; mc->init = mips_malta_init; mc->block_default_type = IF_IDE; mc->max_cpus = 16; mc->is_default = true; #ifdef TARGET_MIPS64 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc"); #else mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf"); #endif mc->default_ram_id = "mips_malta.ram"; compat_props_add(mc->compat_props, malta_compat, malta_compat_len); } DEFINE_MACHINE("malta", mips_malta_machine_init) static void mips_malta_register_types(void) { type_register_static(&mips_malta_device); } type_init(mips_malta_register_types)