/* * QEMU PowerPC XIVE2 interrupt controller model (POWER10) * * Copyright (c) 2019-2022, IBM Corporation. * * This code is licensed under the GPL version 2 or later. See the * COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qapi/error.h" #include "target/ppc/cpu.h" #include "sysemu/cpus.h" #include "sysemu/dma.h" #include "monitor/monitor.h" #include "hw/ppc/fdt.h" #include "hw/ppc/pnv.h" #include "hw/ppc/pnv_core.h" #include "hw/ppc/pnv_xscom.h" #include "hw/ppc/xive2.h" #include "hw/ppc/pnv_xive.h" #include "hw/ppc/xive_regs.h" #include "hw/ppc/xive2_regs.h" #include "hw/ppc/ppc.h" #include "hw/qdev-properties.h" #include "sysemu/reset.h" #include #include "pnv_xive2_regs.h" #undef XIVE2_DEBUG /* * Virtual structures table (VST) */ #define SBE_PER_BYTE 4 typedef struct XiveVstInfo { const char *name; uint32_t size; uint32_t max_blocks; } XiveVstInfo; static const XiveVstInfo vst_infos[] = { [VST_EAS] = { "EAT", sizeof(Xive2Eas), 16 }, [VST_ESB] = { "ESB", 1, 16 }, [VST_END] = { "ENDT", sizeof(Xive2End), 16 }, [VST_NVP] = { "NVPT", sizeof(Xive2Nvp), 16 }, [VST_NVG] = { "NVGT", sizeof(Xive2Nvgc), 16 }, [VST_NVC] = { "NVCT", sizeof(Xive2Nvgc), 16 }, [VST_IC] = { "IC", 1 /* ? */ , 16 }, /* Topology # */ [VST_SYNC] = { "SYNC", 1 /* ? */ , 16 }, /* Topology # */ /* * This table contains the backing store pages for the interrupt * fifos of the VC sub-engine in case of overflow. * * 0 - IPI, * 1 - HWD, * 2 - NxC, * 3 - INT, * 4 - OS-Queue, * 5 - Pool-Queue, * 6 - Hard-Queue */ [VST_ERQ] = { "ERQ", 1, VC_QUEUE_COUNT }, }; #define xive2_error(xive, fmt, ...) \ qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n", \ (xive)->chip->chip_id, ## __VA_ARGS__); /* * QEMU version of the GETFIELD/SETFIELD macros * * TODO: It might be better to use the existing extract64() and * deposit64() but this means that all the register definitions will * change and become incompatible with the ones found in skiboot. * * Keep it as it is for now until we find a common ground. */ static inline uint64_t GETFIELD(uint64_t mask, uint64_t word) { return (word & mask) >> ctz64(mask); } static inline uint64_t SETFIELD(uint64_t mask, uint64_t word, uint64_t value) { return (word & ~mask) | ((value << ctz64(mask)) & mask); } /* * TODO: Document block id override */ static uint32_t pnv_xive2_block_id(PnvXive2 *xive) { uint8_t blk = xive->chip->chip_id; uint64_t cfg_val = xive->cq_regs[CQ_XIVE_CFG >> 3]; if (cfg_val & CQ_XIVE_CFG_HYP_HARD_BLKID_OVERRIDE) { blk = GETFIELD(CQ_XIVE_CFG_HYP_HARD_BLOCK_ID, cfg_val); } return blk; } /* * Remote access to controllers. HW uses MMIOs. For now, a simple scan * of the chips is good enough. * * TODO: Block scope support */ static PnvXive2 *pnv_xive2_get_remote(uint8_t blk) { PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); int i; for (i = 0; i < pnv->num_chips; i++) { Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]); PnvXive2 *xive = &chip10->xive; if (pnv_xive2_block_id(xive) == blk) { return xive; } } return NULL; } /* * VST accessors for ESB, EAT, ENDT, NVP * * Indirect VST tables are arrays of VSDs pointing to a page (of same * size). Each page is a direct VST table. */ #define XIVE_VSD_SIZE 8 /* Indirect page size can be 4K, 64K, 2M, 16M. */ static uint64_t pnv_xive2_vst_page_size_allowed(uint32_t page_shift) { return page_shift == 12 || page_shift == 16 || page_shift == 21 || page_shift == 24; } static uint64_t pnv_xive2_vst_addr_direct(PnvXive2 *xive, uint32_t type, uint64_t vsd, uint32_t idx) { const XiveVstInfo *info = &vst_infos[type]; uint64_t vst_addr = vsd & VSD_ADDRESS_MASK; uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12); uint32_t idx_max; idx_max = vst_tsize / info->size - 1; if (idx > idx_max) { #ifdef XIVE2_DEBUG xive2_error(xive, "VST: %s entry %x out of range [ 0 .. %x ] !?", info->name, idx, idx_max); #endif return 0; } return vst_addr + idx * info->size; } static uint64_t pnv_xive2_vst_addr_indirect(PnvXive2 *xive, uint32_t type, uint64_t vsd, uint32_t idx) { const XiveVstInfo *info = &vst_infos[type]; uint64_t vsd_addr; uint32_t vsd_idx; uint32_t page_shift; uint32_t vst_per_page; /* Get the page size of the indirect table. */ vsd_addr = vsd & VSD_ADDRESS_MASK; ldq_be_dma(&address_space_memory, vsd_addr, &vsd, MEMTXATTRS_UNSPECIFIED); if (!(vsd & VSD_ADDRESS_MASK)) { xive2_error(xive, "VST: invalid %s entry %x !?", info->name, idx); return 0; } page_shift = GETFIELD(VSD_TSIZE, vsd) + 12; if (!pnv_xive2_vst_page_size_allowed(page_shift)) { xive2_error(xive, "VST: invalid %s page shift %d", info->name, page_shift); return 0; } vst_per_page = (1ull << page_shift) / info->size; vsd_idx = idx / vst_per_page; /* Load the VSD we are looking for, if not already done */ if (vsd_idx) { vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE; ldq_be_dma(&address_space_memory, vsd_addr, &vsd, MEMTXATTRS_UNSPECIFIED); if (!(vsd & VSD_ADDRESS_MASK)) { xive2_error(xive, "VST: invalid %s entry %x !?", info->name, idx); return 0; } /* * Check that the pages have a consistent size across the * indirect table */ if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) { xive2_error(xive, "VST: %s entry %x indirect page size differ !?", info->name, idx); return 0; } } return pnv_xive2_vst_addr_direct(xive, type, vsd, (idx % vst_per_page)); } static uint64_t pnv_xive2_vst_addr(PnvXive2 *xive, uint32_t type, uint8_t blk, uint32_t idx) { const XiveVstInfo *info = &vst_infos[type]; uint64_t vsd; if (blk >= info->max_blocks) { xive2_error(xive, "VST: invalid block id %d for VST %s %d !?", blk, info->name, idx); return 0; } vsd = xive->vsds[type][blk]; /* Remote VST access */ if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) { xive = pnv_xive2_get_remote(blk); return xive ? pnv_xive2_vst_addr(xive, type, blk, idx) : 0; } if (VSD_INDIRECT & vsd) { return pnv_xive2_vst_addr_indirect(xive, type, vsd, idx); } return pnv_xive2_vst_addr_direct(xive, type, vsd, idx); } static int pnv_xive2_vst_read(PnvXive2 *xive, uint32_t type, uint8_t blk, uint32_t idx, void *data) { const XiveVstInfo *info = &vst_infos[type]; uint64_t addr = pnv_xive2_vst_addr(xive, type, blk, idx); if (!addr) { return -1; } cpu_physical_memory_read(addr, data, info->size); return 0; } #define XIVE_VST_WORD_ALL -1 static int pnv_xive2_vst_write(PnvXive2 *xive, uint32_t type, uint8_t blk, uint32_t idx, void *data, uint32_t word_number) { const XiveVstInfo *info = &vst_infos[type]; uint64_t addr = pnv_xive2_vst_addr(xive, type, blk, idx); if (!addr) { return -1; } if (word_number == XIVE_VST_WORD_ALL) { cpu_physical_memory_write(addr, data, info->size); } else { cpu_physical_memory_write(addr + word_number * 4, data + word_number * 4, 4); } return 0; } static int pnv_xive2_get_pq(Xive2Router *xrtr, uint8_t blk, uint32_t idx, uint8_t *pq) { PnvXive2 *xive = PNV_XIVE2(xrtr); if (pnv_xive2_block_id(xive) != blk) { xive2_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx)); return -1; } *pq = xive_source_esb_get(&xive->ipi_source, idx); return 0; } static int pnv_xive2_set_pq(Xive2Router *xrtr, uint8_t blk, uint32_t idx, uint8_t *pq) { PnvXive2 *xive = PNV_XIVE2(xrtr); if (pnv_xive2_block_id(xive) != blk) { xive2_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx)); return -1; } *pq = xive_source_esb_set(&xive->ipi_source, idx, *pq); return 0; } static int pnv_xive2_get_end(Xive2Router *xrtr, uint8_t blk, uint32_t idx, Xive2End *end) { return pnv_xive2_vst_read(PNV_XIVE2(xrtr), VST_END, blk, idx, end); } static int pnv_xive2_write_end(Xive2Router *xrtr, uint8_t blk, uint32_t idx, Xive2End *end, uint8_t word_number) { return pnv_xive2_vst_write(PNV_XIVE2(xrtr), VST_END, blk, idx, end, word_number); } static int pnv_xive2_end_update(PnvXive2 *xive) { uint8_t blk = GETFIELD(VC_ENDC_WATCH_BLOCK_ID, xive->vc_regs[(VC_ENDC_WATCH0_SPEC >> 3)]); uint32_t idx = GETFIELD(VC_ENDC_WATCH_INDEX, xive->vc_regs[(VC_ENDC_WATCH0_SPEC >> 3)]); int i; uint64_t endc_watch[4]; for (i = 0; i < ARRAY_SIZE(endc_watch); i++) { endc_watch[i] = cpu_to_be64(xive->vc_regs[(VC_ENDC_WATCH0_DATA0 >> 3) + i]); } return pnv_xive2_vst_write(xive, VST_END, blk, idx, endc_watch, XIVE_VST_WORD_ALL); } static void pnv_xive2_end_cache_load(PnvXive2 *xive) { uint8_t blk = GETFIELD(VC_ENDC_WATCH_BLOCK_ID, xive->vc_regs[(VC_ENDC_WATCH0_SPEC >> 3)]); uint32_t idx = GETFIELD(VC_ENDC_WATCH_INDEX, xive->vc_regs[(VC_ENDC_WATCH0_SPEC >> 3)]); uint64_t endc_watch[4] = { 0 }; int i; if (pnv_xive2_vst_read(xive, VST_END, blk, idx, endc_watch)) { xive2_error(xive, "VST: no END entry %x/%x !?", blk, idx); } for (i = 0; i < ARRAY_SIZE(endc_watch); i++) { xive->vc_regs[(VC_ENDC_WATCH0_DATA0 >> 3) + i] = be64_to_cpu(endc_watch[i]); } } static int pnv_xive2_get_nvp(Xive2Router *xrtr, uint8_t blk, uint32_t idx, Xive2Nvp *nvp) { return pnv_xive2_vst_read(PNV_XIVE2(xrtr), VST_NVP, blk, idx, nvp); } static int pnv_xive2_write_nvp(Xive2Router *xrtr, uint8_t blk, uint32_t idx, Xive2Nvp *nvp, uint8_t word_number) { return pnv_xive2_vst_write(PNV_XIVE2(xrtr), VST_NVP, blk, idx, nvp, word_number); } static int pnv_xive2_nvp_update(PnvXive2 *xive) { uint8_t blk = GETFIELD(PC_NXC_WATCH_BLOCK_ID, xive->pc_regs[(PC_NXC_WATCH0_SPEC >> 3)]); uint32_t idx = GETFIELD(PC_NXC_WATCH_INDEX, xive->pc_regs[(PC_NXC_WATCH0_SPEC >> 3)]); int i; uint64_t nxc_watch[4]; for (i = 0; i < ARRAY_SIZE(nxc_watch); i++) { nxc_watch[i] = cpu_to_be64(xive->pc_regs[(PC_NXC_WATCH0_DATA0 >> 3) + i]); } return pnv_xive2_vst_write(xive, VST_NVP, blk, idx, nxc_watch, XIVE_VST_WORD_ALL); } static void pnv_xive2_nvp_cache_load(PnvXive2 *xive) { uint8_t blk = GETFIELD(PC_NXC_WATCH_BLOCK_ID, xive->pc_regs[(PC_NXC_WATCH0_SPEC >> 3)]); uint32_t idx = GETFIELD(PC_NXC_WATCH_INDEX, xive->pc_regs[(PC_NXC_WATCH0_SPEC >> 3)]); uint64_t nxc_watch[4] = { 0 }; int i; if (pnv_xive2_vst_read(xive, VST_NVP, blk, idx, nxc_watch)) { xive2_error(xive, "VST: no NVP entry %x/%x !?", blk, idx); } for (i = 0; i < ARRAY_SIZE(nxc_watch); i++) { xive->pc_regs[(PC_NXC_WATCH0_DATA0 >> 3) + i] = be64_to_cpu(nxc_watch[i]); } } static int pnv_xive2_get_eas(Xive2Router *xrtr, uint8_t blk, uint32_t idx, Xive2Eas *eas) { PnvXive2 *xive = PNV_XIVE2(xrtr); if (pnv_xive2_block_id(xive) != blk) { xive2_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx)); return -1; } return pnv_xive2_vst_read(xive, VST_EAS, blk, idx, eas); } static uint32_t pnv_xive2_get_config(Xive2Router *xrtr) { PnvXive2 *xive = PNV_XIVE2(xrtr); uint32_t cfg = 0; if (xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_GEN1_TIMA_OS) { cfg |= XIVE2_GEN1_TIMA_OS; } if (xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_EN_VP_SAVE_RESTORE) { cfg |= XIVE2_VP_SAVE_RESTORE; } if (GETFIELD(CQ_XIVE_CFG_HYP_HARD_RANGE, xive->cq_regs[CQ_XIVE_CFG >> 3]) == CQ_XIVE_CFG_THREADID_8BITS) { cfg |= XIVE2_THREADID_8BITS; } return cfg; } static bool pnv_xive2_is_cpu_enabled(PnvXive2 *xive, PowerPCCPU *cpu) { int pir = ppc_cpu_pir(cpu); uint32_t fc = PNV10_PIR2FUSEDCORE(pir); uint64_t reg = fc < 8 ? TCTXT_EN0 : TCTXT_EN1; uint32_t bit = pir & 0x3f; return xive->tctxt_regs[reg >> 3] & PPC_BIT(bit); } static int pnv_xive2_match_nvt(XivePresenter *xptr, uint8_t format, uint8_t nvt_blk, uint32_t nvt_idx, bool cam_ignore, uint8_t priority, uint32_t logic_serv, XiveTCTXMatch *match) { PnvXive2 *xive = PNV_XIVE2(xptr); PnvChip *chip = xive->chip; int count = 0; int i, j; bool gen1_tima_os = xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_GEN1_TIMA_OS; for (i = 0; i < chip->nr_cores; i++) { PnvCore *pc = chip->cores[i]; CPUCore *cc = CPU_CORE(pc); for (j = 0; j < cc->nr_threads; j++) { PowerPCCPU *cpu = pc->threads[j]; XiveTCTX *tctx; int ring; if (!pnv_xive2_is_cpu_enabled(xive, cpu)) { continue; } tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc); if (gen1_tima_os) { ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, nvt_idx, cam_ignore, logic_serv); } else { ring = xive2_presenter_tctx_match(xptr, tctx, format, nvt_blk, nvt_idx, cam_ignore, logic_serv); } /* * Save the context and follow on to catch duplicates, * that we don't support yet. */ if (ring != -1) { if (match->tctx) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a " "thread context NVT %x/%x\n", nvt_blk, nvt_idx); return false; } match->ring = ring; match->tctx = tctx; count++; } } } return count; } static uint8_t pnv_xive2_get_block_id(Xive2Router *xrtr) { return pnv_xive2_block_id(PNV_XIVE2(xrtr)); } /* * The TIMA MMIO space is shared among the chips and to identify the * chip from which the access is being done, we extract the chip id * from the PIR. */ static PnvXive2 *pnv_xive2_tm_get_xive(PowerPCCPU *cpu) { int pir = ppc_cpu_pir(cpu); XivePresenter *xptr = XIVE_TCTX(pnv_cpu_state(cpu)->intc)->xptr; PnvXive2 *xive = PNV_XIVE2(xptr); if (!pnv_xive2_is_cpu_enabled(xive, cpu)) { xive2_error(xive, "IC: CPU %x is not enabled", pir); } return xive; } /* * The internal sources of the interrupt controller have no knowledge * of the XIVE2 chip on which they reside. Encode the block id in the * source interrupt number before forwarding the source event * notification to the Router. This is required on a multichip system. */ static void pnv_xive2_notify(XiveNotifier *xn, uint32_t srcno, bool pq_checked) { PnvXive2 *xive = PNV_XIVE2(xn); uint8_t blk = pnv_xive2_block_id(xive); xive2_router_notify(xn, XIVE_EAS(blk, srcno), pq_checked); } /* * Set Translation Tables * * TODO add support for multiple sets */ static int pnv_xive2_stt_set_data(PnvXive2 *xive, uint64_t val) { uint8_t tsel = GETFIELD(CQ_TAR_SELECT, xive->cq_regs[CQ_TAR >> 3]); uint8_t entry = GETFIELD(CQ_TAR_ENTRY_SELECT, xive->cq_regs[CQ_TAR >> 3]); switch (tsel) { case CQ_TAR_NVPG: case CQ_TAR_ESB: case CQ_TAR_END: xive->tables[tsel][entry] = val; break; default: xive2_error(xive, "IC: unsupported table %d", tsel); return -1; } if (xive->cq_regs[CQ_TAR >> 3] & CQ_TAR_AUTOINC) { xive->cq_regs[CQ_TAR >> 3] = SETFIELD(CQ_TAR_ENTRY_SELECT, xive->cq_regs[CQ_TAR >> 3], ++entry); } return 0; } /* * Virtual Structure Tables (VST) configuration */ static void pnv_xive2_vst_set_exclusive(PnvXive2 *xive, uint8_t type, uint8_t blk, uint64_t vsd) { Xive2EndSource *end_xsrc = &xive->end_source; XiveSource *xsrc = &xive->ipi_source; const XiveVstInfo *info = &vst_infos[type]; uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12; uint64_t vst_tsize = 1ull << page_shift; uint64_t vst_addr = vsd & VSD_ADDRESS_MASK; /* Basic checks */ if (VSD_INDIRECT & vsd) { if (!pnv_xive2_vst_page_size_allowed(page_shift)) { xive2_error(xive, "VST: invalid %s page shift %d", info->name, page_shift); return; } } if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) { xive2_error(xive, "VST: %s table address 0x%"PRIx64 " is not aligned with page shift %d", info->name, vst_addr, page_shift); return; } /* Record the table configuration (in SRAM on HW) */ xive->vsds[type][blk] = vsd; /* Now tune the models with the configuration provided by the FW */ switch (type) { case VST_ESB: /* * Backing store pages for the source PQ bits. The model does * not use these PQ bits backed in RAM because the XiveSource * model has its own. * * If the table is direct, we can compute the number of PQ * entries provisioned by FW (such as skiboot) and resize the * ESB window accordingly. */ if (!(VSD_INDIRECT & vsd)) { memory_region_set_size(&xsrc->esb_mmio, vst_tsize * SBE_PER_BYTE * (1ull << xsrc->esb_shift)); } memory_region_add_subregion(&xive->esb_mmio, 0, &xsrc->esb_mmio); break; case VST_EAS: /* Nothing to be done */ break; case VST_END: /* * Backing store pages for the END. */ if (!(VSD_INDIRECT & vsd)) { memory_region_set_size(&end_xsrc->esb_mmio, (vst_tsize / info->size) * (1ull << end_xsrc->esb_shift)); } memory_region_add_subregion(&xive->end_mmio, 0, &end_xsrc->esb_mmio); break; case VST_NVP: /* Not modeled */ case VST_NVG: /* Not modeled */ case VST_NVC: /* Not modeled */ case VST_IC: /* Not modeled */ case VST_SYNC: /* Not modeled */ case VST_ERQ: /* Not modeled */ break; default: g_assert_not_reached(); } } /* * Both PC and VC sub-engines are configured as each use the Virtual * Structure Tables */ static void pnv_xive2_vst_set_data(PnvXive2 *xive, uint64_t vsd) { uint8_t mode = GETFIELD(VSD_MODE, vsd); uint8_t type = GETFIELD(VC_VSD_TABLE_SELECT, xive->vc_regs[VC_VSD_TABLE_ADDR >> 3]); uint8_t blk = GETFIELD(VC_VSD_TABLE_ADDRESS, xive->vc_regs[VC_VSD_TABLE_ADDR >> 3]); uint64_t vst_addr = vsd & VSD_ADDRESS_MASK; if (type > VST_ERQ) { xive2_error(xive, "VST: invalid table type %d", type); return; } if (blk >= vst_infos[type].max_blocks) { xive2_error(xive, "VST: invalid block id %d for" " %s table", blk, vst_infos[type].name); return; } if (!vst_addr) { xive2_error(xive, "VST: invalid %s table address", vst_infos[type].name); return; } switch (mode) { case VSD_MODE_FORWARD: xive->vsds[type][blk] = vsd; break; case VSD_MODE_EXCLUSIVE: pnv_xive2_vst_set_exclusive(xive, type, blk, vsd); break; default: xive2_error(xive, "VST: unsupported table mode %d", mode); return; } } /* * MMIO handlers */ /* * IC BAR layout * * Page 0: Internal CQ register accesses (reads & writes) * Page 1: Internal PC register accesses (reads & writes) * Page 2: Internal VC register accesses (reads & writes) * Page 3: Internal TCTXT (TIMA) reg accesses (read & writes) * Page 4: Notify Port page (writes only, w/data), * Page 5: Reserved * Page 6: Sync Poll page (writes only, dataless) * Page 7: Sync Inject page (writes only, dataless) * Page 8: LSI Trigger page (writes only, dataless) * Page 9: LSI SB Management page (reads & writes dataless) * Pages 10-255: Reserved * Pages 256-383: Direct mapped Thread Context Area (reads & writes) * covering the 128 threads in P10. * Pages 384-511: Reserved */ typedef struct PnvXive2Region { const char *name; uint32_t pgoff; uint32_t pgsize; const MemoryRegionOps *ops; } PnvXive2Region; static const MemoryRegionOps pnv_xive2_ic_cq_ops; static const MemoryRegionOps pnv_xive2_ic_pc_ops; static const MemoryRegionOps pnv_xive2_ic_vc_ops; static const MemoryRegionOps pnv_xive2_ic_tctxt_ops; static const MemoryRegionOps pnv_xive2_ic_notify_ops; static const MemoryRegionOps pnv_xive2_ic_sync_ops; static const MemoryRegionOps pnv_xive2_ic_lsi_ops; static const MemoryRegionOps pnv_xive2_ic_tm_indirect_ops; /* 512 pages. 4K: 2M range, 64K: 32M range */ static const PnvXive2Region pnv_xive2_ic_regions[] = { { "xive-ic-cq", 0, 1, &pnv_xive2_ic_cq_ops }, { "xive-ic-vc", 1, 1, &pnv_xive2_ic_vc_ops }, { "xive-ic-pc", 2, 1, &pnv_xive2_ic_pc_ops }, { "xive-ic-tctxt", 3, 1, &pnv_xive2_ic_tctxt_ops }, { "xive-ic-notify", 4, 1, &pnv_xive2_ic_notify_ops }, /* page 5 reserved */ { "xive-ic-sync", 6, 2, &pnv_xive2_ic_sync_ops }, { "xive-ic-lsi", 8, 2, &pnv_xive2_ic_lsi_ops }, /* pages 10-255 reserved */ { "xive-ic-tm-indirect", 256, 128, &pnv_xive2_ic_tm_indirect_ops }, /* pages 384-511 reserved */ }; /* * CQ operations */ static uint64_t pnv_xive2_ic_cq_read(void *opaque, hwaddr offset, unsigned size) { PnvXive2 *xive = PNV_XIVE2(opaque); uint32_t reg = offset >> 3; uint64_t val = 0; switch (offset) { case CQ_XIVE_CAP: /* Set at reset */ case CQ_XIVE_CFG: val = xive->cq_regs[reg]; break; case CQ_MSGSND: /* TODO check the #cores of the machine */ val = 0xffffffff00000000; break; case CQ_CFG_PB_GEN: val = CQ_CFG_PB_GEN_PB_INIT; /* TODO: fix CQ_CFG_PB_GEN default value */ break; default: xive2_error(xive, "CQ: invalid read @%"HWADDR_PRIx, offset); } return val; } static uint64_t pnv_xive2_bar_size(uint64_t val) { return 1ull << (GETFIELD(CQ_BAR_RANGE, val) + 24); } static void pnv_xive2_ic_cq_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { PnvXive2 *xive = PNV_XIVE2(opaque); MemoryRegion *sysmem = get_system_memory(); uint32_t reg = offset >> 3; int i; switch (offset) { case CQ_XIVE_CFG: case CQ_RST_CTL: /* TODO: reset all BARs */ break; case CQ_IC_BAR: xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12; if (!(val & CQ_IC_BAR_VALID)) { xive->ic_base = 0; if (xive->cq_regs[reg] & CQ_IC_BAR_VALID) { for (i = 0; i < ARRAY_SIZE(xive->ic_mmios); i++) { memory_region_del_subregion(&xive->ic_mmio, &xive->ic_mmios[i]); } memory_region_del_subregion(sysmem, &xive->ic_mmio); } } else { xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K); if (!(xive->cq_regs[reg] & CQ_IC_BAR_VALID)) { for (i = 0; i < ARRAY_SIZE(xive->ic_mmios); i++) { memory_region_add_subregion(&xive->ic_mmio, pnv_xive2_ic_regions[i].pgoff << xive->ic_shift, &xive->ic_mmios[i]); } memory_region_add_subregion(sysmem, xive->ic_base, &xive->ic_mmio); } } break; case CQ_TM_BAR: xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12; if (!(val & CQ_TM_BAR_VALID)) { xive->tm_base = 0; if (xive->cq_regs[reg] & CQ_TM_BAR_VALID) { memory_region_del_subregion(sysmem, &xive->tm_mmio); } } else { xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K); if (!(xive->cq_regs[reg] & CQ_TM_BAR_VALID)) { memory_region_add_subregion(sysmem, xive->tm_base, &xive->tm_mmio); } } break; case CQ_ESB_BAR: xive->esb_shift = val & CQ_BAR_64K ? 16 : 12; if (!(val & CQ_BAR_VALID)) { xive->esb_base = 0; if (xive->cq_regs[reg] & CQ_BAR_VALID) { memory_region_del_subregion(sysmem, &xive->esb_mmio); } } else { xive->esb_base = val & CQ_BAR_ADDR; if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) { memory_region_set_size(&xive->esb_mmio, pnv_xive2_bar_size(val)); memory_region_add_subregion(sysmem, xive->esb_base, &xive->esb_mmio); } } break; case CQ_END_BAR: xive->end_shift = val & CQ_BAR_64K ? 16 : 12; if (!(val & CQ_BAR_VALID)) { xive->end_base = 0; if (xive->cq_regs[reg] & CQ_BAR_VALID) { memory_region_del_subregion(sysmem, &xive->end_mmio); } } else { xive->end_base = val & CQ_BAR_ADDR; if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) { memory_region_set_size(&xive->end_mmio, pnv_xive2_bar_size(val)); memory_region_add_subregion(sysmem, xive->end_base, &xive->end_mmio); } } break; case CQ_NVC_BAR: xive->nvc_shift = val & CQ_BAR_64K ? 16 : 12; if (!(val & CQ_BAR_VALID)) { xive->nvc_base = 0; if (xive->cq_regs[reg] & CQ_BAR_VALID) { memory_region_del_subregion(sysmem, &xive->nvc_mmio); } } else { xive->nvc_base = val & CQ_BAR_ADDR; if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) { memory_region_set_size(&xive->nvc_mmio, pnv_xive2_bar_size(val)); memory_region_add_subregion(sysmem, xive->nvc_base, &xive->nvc_mmio); } } break; case CQ_NVPG_BAR: xive->nvpg_shift = val & CQ_BAR_64K ? 16 : 12; if (!(val & CQ_BAR_VALID)) { xive->nvpg_base = 0; if (xive->cq_regs[reg] & CQ_BAR_VALID) { memory_region_del_subregion(sysmem, &xive->nvpg_mmio); } } else { xive->nvpg_base = val & CQ_BAR_ADDR; if (!(xive->cq_regs[reg] & CQ_BAR_VALID)) { memory_region_set_size(&xive->nvpg_mmio, pnv_xive2_bar_size(val)); memory_region_add_subregion(sysmem, xive->nvpg_base, &xive->nvpg_mmio); } } break; case CQ_TAR: /* Set Translation Table Address */ break; case CQ_TDR: /* Set Translation Table Data */ pnv_xive2_stt_set_data(xive, val); break; case CQ_FIRMASK_OR: /* FIR error reporting */ break; default: xive2_error(xive, "CQ: invalid write 0x%"HWADDR_PRIx, offset); return; } xive->cq_regs[reg] = val; } static const MemoryRegionOps pnv_xive2_ic_cq_ops = { .read = pnv_xive2_ic_cq_read, .write = pnv_xive2_ic_cq_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 8, .max_access_size = 8, }, .impl = { .min_access_size = 8, .max_access_size = 8, }, }; static uint64_t pnv_xive2_ic_vc_read(void *opaque, hwaddr offset, unsigned size) { PnvXive2 *xive = PNV_XIVE2(opaque); uint64_t val = 0; uint32_t reg = offset >> 3; switch (offset) { /* * VSD table settings. */ case VC_VSD_TABLE_ADDR: case VC_VSD_TABLE_DATA: val = xive->vc_regs[reg]; break; /* * ESB cache updates (not modeled) */ case VC_ESBC_FLUSH_CTRL: xive->vc_regs[reg] &= ~VC_ESBC_FLUSH_CTRL_POLL_VALID; val = xive->vc_regs[reg]; break; /* * EAS cache updates (not modeled) */ case VC_EASC_FLUSH_CTRL: xive->vc_regs[reg] &= ~VC_EASC_FLUSH_CTRL_POLL_VALID; val = xive->vc_regs[reg]; break; /* * END cache updates */ case VC_ENDC_WATCH0_SPEC: xive->vc_regs[reg] &= ~(VC_ENDC_WATCH_FULL | VC_ENDC_WATCH_CONFLICT); val = xive->vc_regs[reg]; break; case VC_ENDC_WATCH0_DATA0: /* * Load DATA registers from cache with data requested by the * SPEC register */ pnv_xive2_end_cache_load(xive); val = xive->vc_regs[reg]; break; case VC_ENDC_WATCH0_DATA1 ... VC_ENDC_WATCH0_DATA3: val = xive->vc_regs[reg]; break; case VC_ENDC_FLUSH_CTRL: xive->vc_regs[reg] &= ~VC_ENDC_FLUSH_CTRL_POLL_VALID; val = xive->vc_regs[reg]; break; /* * Indirect invalidation */ case VC_AT_MACRO_KILL_MASK: val = xive->vc_regs[reg]; break; case VC_AT_MACRO_KILL: xive->vc_regs[reg] &= ~VC_AT_MACRO_KILL_VALID; val = xive->vc_regs[reg]; break; /* * Interrupt fifo overflow in memory backing store (Not modeled) */ case VC_QUEUES_CFG_REM0 ... VC_QUEUES_CFG_REM6: val = xive->vc_regs[reg]; break; /* * Synchronisation */ case VC_ENDC_SYNC_DONE: val = VC_ENDC_SYNC_POLL_DONE; break; default: xive2_error(xive, "VC: invalid read @%"HWADDR_PRIx, offset); } return val; } static void pnv_xive2_ic_vc_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { PnvXive2 *xive = PNV_XIVE2(opaque); uint32_t reg = offset >> 3; switch (offset) { /* * VSD table settings. */ case VC_VSD_TABLE_ADDR: break; case VC_VSD_TABLE_DATA: pnv_xive2_vst_set_data(xive, val); break; /* * ESB cache updates (not modeled) */ /* case VC_ESBC_FLUSH_CTRL: */ case VC_ESBC_FLUSH_POLL: xive->vc_regs[VC_ESBC_FLUSH_CTRL >> 3] |= VC_ESBC_FLUSH_CTRL_POLL_VALID; /* ESB update */ break; /* * EAS cache updates (not modeled) */ /* case VC_EASC_FLUSH_CTRL: */ case VC_EASC_FLUSH_POLL: xive->vc_regs[VC_EASC_FLUSH_CTRL >> 3] |= VC_EASC_FLUSH_CTRL_POLL_VALID; /* EAS update */ break; /* * END cache updates */ case VC_ENDC_WATCH0_SPEC: val &= ~VC_ENDC_WATCH_CONFLICT; /* HW will set this bit */ break; case VC_ENDC_WATCH0_DATA1 ... VC_ENDC_WATCH0_DATA3: break; case VC_ENDC_WATCH0_DATA0: /* writing to DATA0 triggers the cache write */ xive->vc_regs[reg] = val; pnv_xive2_end_update(xive); break; /* case VC_ENDC_FLUSH_CTRL: */ case VC_ENDC_FLUSH_POLL: xive->vc_regs[VC_ENDC_FLUSH_CTRL >> 3] |= VC_ENDC_FLUSH_CTRL_POLL_VALID; break; /* * Indirect invalidation */ case VC_AT_MACRO_KILL: case VC_AT_MACRO_KILL_MASK: break; /* * Interrupt fifo overflow in memory backing store (Not modeled) */ case VC_QUEUES_CFG_REM0 ... VC_QUEUES_CFG_REM6: break; /* * Synchronisation */ case VC_ENDC_SYNC_DONE: break; default: xive2_error(xive, "VC: invalid write @%"HWADDR_PRIx, offset); return; } xive->vc_regs[reg] = val; } static const MemoryRegionOps pnv_xive2_ic_vc_ops = { .read = pnv_xive2_ic_vc_read, .write = pnv_xive2_ic_vc_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 8, .max_access_size = 8, }, .impl = { .min_access_size = 8, .max_access_size = 8, }, }; static uint64_t pnv_xive2_ic_pc_read(void *opaque, hwaddr offset, unsigned size) { PnvXive2 *xive = PNV_XIVE2(opaque); uint64_t val = -1; uint32_t reg = offset >> 3; switch (offset) { /* * VSD table settings. */ case PC_VSD_TABLE_ADDR: case PC_VSD_TABLE_DATA: val = xive->pc_regs[reg]; break; /* * cache updates */ case PC_NXC_WATCH0_SPEC: xive->pc_regs[reg] &= ~(PC_NXC_WATCH_FULL | PC_NXC_WATCH_CONFLICT); val = xive->pc_regs[reg]; break; case PC_NXC_WATCH0_DATA0: /* * Load DATA registers from cache with data requested by the * SPEC register */ pnv_xive2_nvp_cache_load(xive); val = xive->pc_regs[reg]; break; case PC_NXC_WATCH0_DATA1 ... PC_NXC_WATCH0_DATA3: val = xive->pc_regs[reg]; break; case PC_NXC_FLUSH_CTRL: xive->pc_regs[reg] &= ~PC_NXC_FLUSH_CTRL_POLL_VALID; val = xive->pc_regs[reg]; break; /* * Indirect invalidation */ case PC_AT_KILL: xive->pc_regs[reg] &= ~PC_AT_KILL_VALID; val = xive->pc_regs[reg]; break; default: xive2_error(xive, "PC: invalid read @%"HWADDR_PRIx, offset); } return val; } static void pnv_xive2_ic_pc_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { PnvXive2 *xive = PNV_XIVE2(opaque); uint32_t reg = offset >> 3; switch (offset) { /* * VSD table settings. Only taken into account in the VC * sub-engine because the Xive2Router model combines both VC and PC * sub-engines */ case PC_VSD_TABLE_ADDR: case PC_VSD_TABLE_DATA: break; /* * cache updates */ case PC_NXC_WATCH0_SPEC: val &= ~PC_NXC_WATCH_CONFLICT; /* HW will set this bit */ break; case PC_NXC_WATCH0_DATA1 ... PC_NXC_WATCH0_DATA3: break; case PC_NXC_WATCH0_DATA0: /* writing to DATA0 triggers the cache write */ xive->pc_regs[reg] = val; pnv_xive2_nvp_update(xive); break; /* case PC_NXC_FLUSH_CTRL: */ case PC_NXC_FLUSH_POLL: xive->pc_regs[PC_NXC_FLUSH_CTRL >> 3] |= PC_NXC_FLUSH_CTRL_POLL_VALID; break; /* * Indirect invalidation */ case PC_AT_KILL: case PC_AT_KILL_MASK: break; default: xive2_error(xive, "PC: invalid write @%"HWADDR_PRIx, offset); return; } xive->pc_regs[reg] = val; } static const MemoryRegionOps pnv_xive2_ic_pc_ops = { .read = pnv_xive2_ic_pc_read, .write = pnv_xive2_ic_pc_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 8, .max_access_size = 8, }, .impl = { .min_access_size = 8, .max_access_size = 8, }, }; static uint64_t pnv_xive2_ic_tctxt_read(void *opaque, hwaddr offset, unsigned size) { PnvXive2 *xive = PNV_XIVE2(opaque); uint64_t val = -1; uint32_t reg = offset >> 3; switch (offset) { /* * XIVE2 hardware thread enablement */ case TCTXT_EN0: case TCTXT_EN1: val = xive->tctxt_regs[reg]; break; case TCTXT_EN0_SET: case TCTXT_EN0_RESET: val = xive->tctxt_regs[TCTXT_EN0 >> 3]; break; case TCTXT_EN1_SET: case TCTXT_EN1_RESET: val = xive->tctxt_regs[TCTXT_EN1 >> 3]; break; default: xive2_error(xive, "TCTXT: invalid read @%"HWADDR_PRIx, offset); } return val; } static void pnv_xive2_ic_tctxt_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { PnvXive2 *xive = PNV_XIVE2(opaque); switch (offset) { /* * XIVE2 hardware thread enablement */ case TCTXT_EN0: /* Physical Thread Enable */ case TCTXT_EN1: /* Physical Thread Enable (fused core) */ break; case TCTXT_EN0_SET: xive->tctxt_regs[TCTXT_EN0 >> 3] |= val; break; case TCTXT_EN1_SET: xive->tctxt_regs[TCTXT_EN1 >> 3] |= val; break; case TCTXT_EN0_RESET: xive->tctxt_regs[TCTXT_EN0 >> 3] &= ~val; break; case TCTXT_EN1_RESET: xive->tctxt_regs[TCTXT_EN1 >> 3] &= ~val; break; default: xive2_error(xive, "TCTXT: invalid write @%"HWADDR_PRIx, offset); return; } } static const MemoryRegionOps pnv_xive2_ic_tctxt_ops = { .read = pnv_xive2_ic_tctxt_read, .write = pnv_xive2_ic_tctxt_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 8, .max_access_size = 8, }, .impl = { .min_access_size = 8, .max_access_size = 8, }, }; /* * Redirect XSCOM to MMIO handlers */ static uint64_t pnv_xive2_xscom_read(void *opaque, hwaddr offset, unsigned size) { PnvXive2 *xive = PNV_XIVE2(opaque); uint64_t val = -1; uint32_t xscom_reg = offset >> 3; uint32_t mmio_offset = (xscom_reg & 0xFF) << 3; switch (xscom_reg) { case 0x000 ... 0x0FF: val = pnv_xive2_ic_cq_read(opaque, mmio_offset, size); break; case 0x100 ... 0x1FF: val = pnv_xive2_ic_vc_read(opaque, mmio_offset, size); break; case 0x200 ... 0x2FF: val = pnv_xive2_ic_pc_read(opaque, mmio_offset, size); break; case 0x300 ... 0x3FF: val = pnv_xive2_ic_tctxt_read(opaque, mmio_offset, size); break; default: xive2_error(xive, "XSCOM: invalid read @%"HWADDR_PRIx, offset); } return val; } static void pnv_xive2_xscom_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { PnvXive2 *xive = PNV_XIVE2(opaque); uint32_t xscom_reg = offset >> 3; uint32_t mmio_offset = (xscom_reg & 0xFF) << 3; switch (xscom_reg) { case 0x000 ... 0x0FF: pnv_xive2_ic_cq_write(opaque, mmio_offset, val, size); break; case 0x100 ... 0x1FF: pnv_xive2_ic_vc_write(opaque, mmio_offset, val, size); break; case 0x200 ... 0x2FF: pnv_xive2_ic_pc_write(opaque, mmio_offset, val, size); break; case 0x300 ... 0x3FF: pnv_xive2_ic_tctxt_write(opaque, mmio_offset, val, size); break; default: xive2_error(xive, "XSCOM: invalid write @%"HWADDR_PRIx, offset); } } static const MemoryRegionOps pnv_xive2_xscom_ops = { .read = pnv_xive2_xscom_read, .write = pnv_xive2_xscom_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 8, .max_access_size = 8, }, .impl = { .min_access_size = 8, .max_access_size = 8, }, }; /* * Notify port page. The layout is compatible between 4K and 64K pages : * * Page 1 Notify page (writes only) * 0x000 - 0x7FF IPI interrupt (NPU) * 0x800 - 0xFFF HW interrupt triggers (PSI, PHB) */ static void pnv_xive2_ic_hw_trigger(PnvXive2 *xive, hwaddr addr, uint64_t val) { uint8_t blk; uint32_t idx; if (val & XIVE_TRIGGER_END) { xive2_error(xive, "IC: END trigger at @0x%"HWADDR_PRIx" data 0x%"PRIx64, addr, val); return; } /* * Forward the source event notification directly to the Router. * The source interrupt number should already be correctly encoded * with the chip block id by the sending device (PHB, PSI). */ blk = XIVE_EAS_BLOCK(val); idx = XIVE_EAS_INDEX(val); xive2_router_notify(XIVE_NOTIFIER(xive), XIVE_EAS(blk, idx), !!(val & XIVE_TRIGGER_PQ)); } static void pnv_xive2_ic_notify_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { PnvXive2 *xive = PNV_XIVE2(opaque); /* VC: IPI triggers */ switch (offset) { case 0x000 ... 0x7FF: /* TODO: check IPI notify sub-page routing */ pnv_xive2_ic_hw_trigger(opaque, offset, val); break; /* VC: HW triggers */ case 0x800 ... 0xFFF: pnv_xive2_ic_hw_trigger(opaque, offset, val); break; default: xive2_error(xive, "NOTIFY: invalid write @%"HWADDR_PRIx, offset); } } static uint64_t pnv_xive2_ic_notify_read(void *opaque, hwaddr offset, unsigned size) { PnvXive2 *xive = PNV_XIVE2(opaque); /* loads are invalid */ xive2_error(xive, "NOTIFY: invalid read @%"HWADDR_PRIx, offset); return -1; } static const MemoryRegionOps pnv_xive2_ic_notify_ops = { .read = pnv_xive2_ic_notify_read, .write = pnv_xive2_ic_notify_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 8, .max_access_size = 8, }, .impl = { .min_access_size = 8, .max_access_size = 8, }, }; static uint64_t pnv_xive2_ic_lsi_read(void *opaque, hwaddr offset, unsigned size) { PnvXive2 *xive = PNV_XIVE2(opaque); xive2_error(xive, "LSI: invalid read @%"HWADDR_PRIx, offset); return -1; } static void pnv_xive2_ic_lsi_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { PnvXive2 *xive = PNV_XIVE2(opaque); xive2_error(xive, "LSI: invalid write @%"HWADDR_PRIx, offset); } static const MemoryRegionOps pnv_xive2_ic_lsi_ops = { .read = pnv_xive2_ic_lsi_read, .write = pnv_xive2_ic_lsi_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 8, .max_access_size = 8, }, .impl = { .min_access_size = 8, .max_access_size = 8, }, }; /* * Sync MMIO page (write only) */ #define PNV_XIVE2_SYNC_IPI 0x000 #define PNV_XIVE2_SYNC_HW 0x080 #define PNV_XIVE2_SYNC_NxC 0x100 #define PNV_XIVE2_SYNC_INT 0x180 #define PNV_XIVE2_SYNC_OS_ESC 0x200 #define PNV_XIVE2_SYNC_POOL_ESC 0x280 #define PNV_XIVE2_SYNC_HARD_ESC 0x300 static uint64_t pnv_xive2_ic_sync_read(void *opaque, hwaddr offset, unsigned size) { PnvXive2 *xive = PNV_XIVE2(opaque); /* loads are invalid */ xive2_error(xive, "SYNC: invalid read @%"HWADDR_PRIx, offset); return -1; } static void pnv_xive2_ic_sync_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { PnvXive2 *xive = PNV_XIVE2(opaque); switch (offset) { case PNV_XIVE2_SYNC_IPI: case PNV_XIVE2_SYNC_HW: case PNV_XIVE2_SYNC_NxC: case PNV_XIVE2_SYNC_INT: case PNV_XIVE2_SYNC_OS_ESC: case PNV_XIVE2_SYNC_POOL_ESC: case PNV_XIVE2_SYNC_HARD_ESC: break; default: xive2_error(xive, "SYNC: invalid write @%"HWADDR_PRIx, offset); } } static const MemoryRegionOps pnv_xive2_ic_sync_ops = { .read = pnv_xive2_ic_sync_read, .write = pnv_xive2_ic_sync_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 8, .max_access_size = 8, }, .impl = { .min_access_size = 8, .max_access_size = 8, }, }; /* * When the TM direct pages of the IC controller are accessed, the * target HW thread is deduced from the page offset. */ static uint32_t pnv_xive2_ic_tm_get_pir(PnvXive2 *xive, hwaddr offset) { /* On P10, the node ID shift in the PIR register is 8 bits */ return xive->chip->chip_id << 8 | offset >> xive->ic_shift; } static XiveTCTX *pnv_xive2_get_indirect_tctx(PnvXive2 *xive, uint32_t pir) { PnvChip *chip = xive->chip; PowerPCCPU *cpu = NULL; cpu = pnv_chip_find_cpu(chip, pir); if (!cpu) { xive2_error(xive, "IC: invalid PIR %x for indirect access", pir); return NULL; } if (!pnv_xive2_is_cpu_enabled(xive, cpu)) { xive2_error(xive, "IC: CPU %x is not enabled", pir); } return XIVE_TCTX(pnv_cpu_state(cpu)->intc); } static uint64_t pnv_xive2_ic_tm_indirect_read(void *opaque, hwaddr offset, unsigned size) { PnvXive2 *xive = PNV_XIVE2(opaque); uint32_t pir; XiveTCTX *tctx; uint64_t val = -1; pir = pnv_xive2_ic_tm_get_pir(xive, offset); tctx = pnv_xive2_get_indirect_tctx(xive, pir); if (tctx) { val = xive_tctx_tm_read(NULL, tctx, offset, size); } return val; } static void pnv_xive2_ic_tm_indirect_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { PnvXive2 *xive = PNV_XIVE2(opaque); uint32_t pir; XiveTCTX *tctx; pir = pnv_xive2_ic_tm_get_pir(xive, offset); tctx = pnv_xive2_get_indirect_tctx(xive, pir); if (tctx) { xive_tctx_tm_write(NULL, tctx, offset, val, size); } } static const MemoryRegionOps pnv_xive2_ic_tm_indirect_ops = { .read = pnv_xive2_ic_tm_indirect_read, .write = pnv_xive2_ic_tm_indirect_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 8, .max_access_size = 8, }, .impl = { .min_access_size = 8, .max_access_size = 8, }, }; /* * TIMA ops */ /* * Special TIMA offsets to handle accesses in a POWER10 way. * * Only the CAM line updates done by the hypervisor should be handled * specifically. */ #define HV_PAGE_OFFSET (XIVE_TM_HV_PAGE << TM_SHIFT) #define HV_PUSH_OS_CTX_OFFSET (HV_PAGE_OFFSET | (TM_QW1_OS + TM_WORD2)) #define HV_PULL_OS_CTX_OFFSET (HV_PAGE_OFFSET | TM_SPC_PULL_OS_CTX) static void pnv_xive2_tm_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { PowerPCCPU *cpu = POWERPC_CPU(current_cpu); PnvXive2 *xive = pnv_xive2_tm_get_xive(cpu); XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc); XivePresenter *xptr = XIVE_PRESENTER(xive); bool gen1_tima_os = xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_GEN1_TIMA_OS; /* TODO: should we switch the TM ops table instead ? */ if (!gen1_tima_os && offset == HV_PUSH_OS_CTX_OFFSET) { xive2_tm_push_os_ctx(xptr, tctx, offset, value, size); return; } /* Other TM ops are the same as XIVE1 */ xive_tctx_tm_write(xptr, tctx, offset, value, size); } static uint64_t pnv_xive2_tm_read(void *opaque, hwaddr offset, unsigned size) { PowerPCCPU *cpu = POWERPC_CPU(current_cpu); PnvXive2 *xive = pnv_xive2_tm_get_xive(cpu); XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc); XivePresenter *xptr = XIVE_PRESENTER(xive); bool gen1_tima_os = xive->cq_regs[CQ_XIVE_CFG >> 3] & CQ_XIVE_CFG_GEN1_TIMA_OS; /* TODO: should we switch the TM ops table instead ? */ if (!gen1_tima_os && offset == HV_PULL_OS_CTX_OFFSET) { return xive2_tm_pull_os_ctx(xptr, tctx, offset, size); } /* Other TM ops are the same as XIVE1 */ return xive_tctx_tm_read(xptr, tctx, offset, size); } static const MemoryRegionOps pnv_xive2_tm_ops = { .read = pnv_xive2_tm_read, .write = pnv_xive2_tm_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 1, .max_access_size = 8, }, .impl = { .min_access_size = 1, .max_access_size = 8, }, }; static uint64_t pnv_xive2_nvc_read(void *opaque, hwaddr offset, unsigned size) { PnvXive2 *xive = PNV_XIVE2(opaque); xive2_error(xive, "NVC: invalid read @%"HWADDR_PRIx, offset); return -1; } static void pnv_xive2_nvc_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { PnvXive2 *xive = PNV_XIVE2(opaque); xive2_error(xive, "NVC: invalid write @%"HWADDR_PRIx, offset); } static const MemoryRegionOps pnv_xive2_nvc_ops = { .read = pnv_xive2_nvc_read, .write = pnv_xive2_nvc_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 8, .max_access_size = 8, }, .impl = { .min_access_size = 8, .max_access_size = 8, }, }; static uint64_t pnv_xive2_nvpg_read(void *opaque, hwaddr offset, unsigned size) { PnvXive2 *xive = PNV_XIVE2(opaque); xive2_error(xive, "NVPG: invalid read @%"HWADDR_PRIx, offset); return -1; } static void pnv_xive2_nvpg_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { PnvXive2 *xive = PNV_XIVE2(opaque); xive2_error(xive, "NVPG: invalid write @%"HWADDR_PRIx, offset); } static const MemoryRegionOps pnv_xive2_nvpg_ops = { .read = pnv_xive2_nvpg_read, .write = pnv_xive2_nvpg_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 8, .max_access_size = 8, }, .impl = { .min_access_size = 8, .max_access_size = 8, }, }; /* * POWER10 default capabilities: 0x2000120076f000FC */ #define PNV_XIVE2_CAPABILITIES 0x2000120076f000FC /* * POWER10 default configuration: 0x0030000033000000 * * 8bits thread id was dropped for P10 */ #define PNV_XIVE2_CONFIGURATION 0x0030000033000000 static void pnv_xive2_reset(void *dev) { PnvXive2 *xive = PNV_XIVE2(dev); XiveSource *xsrc = &xive->ipi_source; Xive2EndSource *end_xsrc = &xive->end_source; xive->cq_regs[CQ_XIVE_CAP >> 3] = xive->capabilities; xive->cq_regs[CQ_XIVE_CFG >> 3] = xive->config; /* HW hardwires the #Topology of the chip in the block field */ xive->cq_regs[CQ_XIVE_CFG >> 3] |= SETFIELD(CQ_XIVE_CFG_HYP_HARD_BLOCK_ID, 0ull, xive->chip->chip_id); /* Set default page size to 64k */ xive->ic_shift = xive->esb_shift = xive->end_shift = 16; xive->nvc_shift = xive->nvpg_shift = xive->tm_shift = 16; /* Clear source MMIOs */ if (memory_region_is_mapped(&xsrc->esb_mmio)) { memory_region_del_subregion(&xive->esb_mmio, &xsrc->esb_mmio); } if (memory_region_is_mapped(&end_xsrc->esb_mmio)) { memory_region_del_subregion(&xive->end_mmio, &end_xsrc->esb_mmio); } } /* * Maximum number of IRQs and ENDs supported by HW. Will be tuned by * software. */ #define PNV_XIVE2_NR_IRQS (PNV10_XIVE2_ESB_SIZE / (1ull << XIVE_ESB_64K_2PAGE)) #define PNV_XIVE2_NR_ENDS (PNV10_XIVE2_END_SIZE / (1ull << XIVE_ESB_64K_2PAGE)) static void pnv_xive2_realize(DeviceState *dev, Error **errp) { PnvXive2 *xive = PNV_XIVE2(dev); PnvXive2Class *pxc = PNV_XIVE2_GET_CLASS(dev); XiveSource *xsrc = &xive->ipi_source; Xive2EndSource *end_xsrc = &xive->end_source; Error *local_err = NULL; int i; pxc->parent_realize(dev, &local_err); if (local_err) { error_propagate(errp, local_err); return; } assert(xive->chip); /* * The XiveSource and Xive2EndSource objects are realized with the * maximum allowed HW configuration. The ESB MMIO regions will be * resized dynamically when the controller is configured by the FW * to limit accesses to resources not provisioned. */ object_property_set_int(OBJECT(xsrc), "flags", XIVE_SRC_STORE_EOI, &error_fatal); object_property_set_int(OBJECT(xsrc), "nr-irqs", PNV_XIVE2_NR_IRQS, &error_fatal); object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_fatal); qdev_realize(DEVICE(xsrc), NULL, &local_err); if (local_err) { error_propagate(errp, local_err); return; } object_property_set_int(OBJECT(end_xsrc), "nr-ends", PNV_XIVE2_NR_ENDS, &error_fatal); object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive), &error_abort); qdev_realize(DEVICE(end_xsrc), NULL, &local_err); if (local_err) { error_propagate(errp, local_err); return; } /* XSCOM region, used for initial configuration of the BARs */ memory_region_init_io(&xive->xscom_regs, OBJECT(dev), &pnv_xive2_xscom_ops, xive, "xscom-xive", PNV10_XSCOM_XIVE2_SIZE << 3); /* Interrupt controller MMIO regions */ xive->ic_shift = 16; memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic", PNV10_XIVE2_IC_SIZE); for (i = 0; i < ARRAY_SIZE(xive->ic_mmios); i++) { memory_region_init_io(&xive->ic_mmios[i], OBJECT(dev), pnv_xive2_ic_regions[i].ops, xive, pnv_xive2_ic_regions[i].name, pnv_xive2_ic_regions[i].pgsize << xive->ic_shift); } /* * VC MMIO regions. */ xive->esb_shift = 16; xive->end_shift = 16; memory_region_init(&xive->esb_mmio, OBJECT(xive), "xive-esb", PNV10_XIVE2_ESB_SIZE); memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-end", PNV10_XIVE2_END_SIZE); /* Presenter Controller MMIO region (not modeled) */ xive->nvc_shift = 16; xive->nvpg_shift = 16; memory_region_init_io(&xive->nvc_mmio, OBJECT(dev), &pnv_xive2_nvc_ops, xive, "xive-nvc", PNV10_XIVE2_NVC_SIZE); memory_region_init_io(&xive->nvpg_mmio, OBJECT(dev), &pnv_xive2_nvpg_ops, xive, "xive-nvpg", PNV10_XIVE2_NVPG_SIZE); /* Thread Interrupt Management Area (Direct) */ xive->tm_shift = 16; memory_region_init_io(&xive->tm_mmio, OBJECT(dev), &pnv_xive2_tm_ops, xive, "xive-tima", PNV10_XIVE2_TM_SIZE); qemu_register_reset(pnv_xive2_reset, dev); } static Property pnv_xive2_properties[] = { DEFINE_PROP_UINT64("ic-bar", PnvXive2, ic_base, 0), DEFINE_PROP_UINT64("esb-bar", PnvXive2, esb_base, 0), DEFINE_PROP_UINT64("end-bar", PnvXive2, end_base, 0), DEFINE_PROP_UINT64("nvc-bar", PnvXive2, nvc_base, 0), DEFINE_PROP_UINT64("nvpg-bar", PnvXive2, nvpg_base, 0), DEFINE_PROP_UINT64("tm-bar", PnvXive2, tm_base, 0), DEFINE_PROP_UINT64("capabilities", PnvXive2, capabilities, PNV_XIVE2_CAPABILITIES), DEFINE_PROP_UINT64("config", PnvXive2, config, PNV_XIVE2_CONFIGURATION), DEFINE_PROP_LINK("chip", PnvXive2, chip, TYPE_PNV_CHIP, PnvChip *), DEFINE_PROP_END_OF_LIST(), }; static void pnv_xive2_instance_init(Object *obj) { PnvXive2 *xive = PNV_XIVE2(obj); object_initialize_child(obj, "ipi_source", &xive->ipi_source, TYPE_XIVE_SOURCE); object_initialize_child(obj, "end_source", &xive->end_source, TYPE_XIVE2_END_SOURCE); } static int pnv_xive2_dt_xscom(PnvXScomInterface *dev, void *fdt, int xscom_offset) { const char compat_p10[] = "ibm,power10-xive-x"; char *name; int offset; uint32_t reg[] = { cpu_to_be32(PNV10_XSCOM_XIVE2_BASE), cpu_to_be32(PNV10_XSCOM_XIVE2_SIZE) }; name = g_strdup_printf("xive@%x", PNV10_XSCOM_XIVE2_BASE); offset = fdt_add_subnode(fdt, xscom_offset, name); _FDT(offset); g_free(name); _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg)))); _FDT(fdt_setprop(fdt, offset, "compatible", compat_p10, sizeof(compat_p10))); return 0; } static void pnv_xive2_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass); Xive2RouterClass *xrc = XIVE2_ROUTER_CLASS(klass); XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass); XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass); PnvXive2Class *pxc = PNV_XIVE2_CLASS(klass); xdc->dt_xscom = pnv_xive2_dt_xscom; dc->desc = "PowerNV XIVE2 Interrupt Controller (POWER10)"; device_class_set_parent_realize(dc, pnv_xive2_realize, &pxc->parent_realize); device_class_set_props(dc, pnv_xive2_properties); xrc->get_eas = pnv_xive2_get_eas; xrc->get_pq = pnv_xive2_get_pq; xrc->set_pq = pnv_xive2_set_pq; xrc->get_end = pnv_xive2_get_end; xrc->write_end = pnv_xive2_write_end; xrc->get_nvp = pnv_xive2_get_nvp; xrc->write_nvp = pnv_xive2_write_nvp; xrc->get_config = pnv_xive2_get_config; xrc->get_block_id = pnv_xive2_get_block_id; xnc->notify = pnv_xive2_notify; xpc->match_nvt = pnv_xive2_match_nvt; }; static const TypeInfo pnv_xive2_info = { .name = TYPE_PNV_XIVE2, .parent = TYPE_XIVE2_ROUTER, .instance_init = pnv_xive2_instance_init, .instance_size = sizeof(PnvXive2), .class_init = pnv_xive2_class_init, .class_size = sizeof(PnvXive2Class), .interfaces = (InterfaceInfo[]) { { TYPE_PNV_XSCOM_INTERFACE }, { } } }; static void pnv_xive2_register_types(void) { type_register_static(&pnv_xive2_info); } type_init(pnv_xive2_register_types) static void xive2_nvp_pic_print_info(Xive2Nvp *nvp, uint32_t nvp_idx, Monitor *mon) { uint8_t eq_blk = xive_get_field32(NVP2_W5_VP_END_BLOCK, nvp->w5); uint32_t eq_idx = xive_get_field32(NVP2_W5_VP_END_INDEX, nvp->w5); if (!xive2_nvp_is_valid(nvp)) { return; } monitor_printf(mon, " %08x end:%02x/%04x IPB:%02x", nvp_idx, eq_blk, eq_idx, xive_get_field32(NVP2_W2_IPB, nvp->w2)); /* * When the NVP is HW controlled, more fields are updated */ if (xive2_nvp_is_hw(nvp)) { monitor_printf(mon, " CPPR:%02x", xive_get_field32(NVP2_W2_CPPR, nvp->w2)); if (xive2_nvp_is_co(nvp)) { monitor_printf(mon, " CO:%04x", xive_get_field32(NVP2_W1_CO_THRID, nvp->w1)); } } monitor_printf(mon, "\n"); } /* * If the table is direct, we can compute the number of PQ entries * provisioned by FW. */ static uint32_t pnv_xive2_nr_esbs(PnvXive2 *xive) { uint8_t blk = pnv_xive2_block_id(xive); uint64_t vsd = xive->vsds[VST_ESB][blk]; uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12); return VSD_INDIRECT & vsd ? 0 : vst_tsize * SBE_PER_BYTE; } /* * Compute the number of entries per indirect subpage. */ static uint64_t pnv_xive2_vst_per_subpage(PnvXive2 *xive, uint32_t type) { uint8_t blk = pnv_xive2_block_id(xive); uint64_t vsd = xive->vsds[type][blk]; const XiveVstInfo *info = &vst_infos[type]; uint64_t vsd_addr; uint32_t page_shift; /* For direct tables, fake a valid value */ if (!(VSD_INDIRECT & vsd)) { return 1; } /* Get the page size of the indirect table. */ vsd_addr = vsd & VSD_ADDRESS_MASK; ldq_be_dma(&address_space_memory, vsd_addr, &vsd, MEMTXATTRS_UNSPECIFIED); if (!(vsd & VSD_ADDRESS_MASK)) { #ifdef XIVE2_DEBUG xive2_error(xive, "VST: invalid %s entry!?", info->name); #endif return 0; } page_shift = GETFIELD(VSD_TSIZE, vsd) + 12; if (!pnv_xive2_vst_page_size_allowed(page_shift)) { xive2_error(xive, "VST: invalid %s page shift %d", info->name, page_shift); return 0; } return (1ull << page_shift) / info->size; } void pnv_xive2_pic_print_info(PnvXive2 *xive, Monitor *mon) { Xive2Router *xrtr = XIVE2_ROUTER(xive); uint8_t blk = pnv_xive2_block_id(xive); uint8_t chip_id = xive->chip->chip_id; uint32_t srcno0 = XIVE_EAS(blk, 0); uint32_t nr_esbs = pnv_xive2_nr_esbs(xive); Xive2Eas eas; Xive2End end; Xive2Nvp nvp; int i; uint64_t xive_nvp_per_subpage; monitor_printf(mon, "XIVE[%x] Source %08x .. %08x\n", blk, srcno0, srcno0 + nr_esbs - 1); xive_source_pic_print_info(&xive->ipi_source, srcno0, mon); monitor_printf(mon, "XIVE[%x] EAT %08x .. %08x\n", blk, srcno0, srcno0 + nr_esbs - 1); for (i = 0; i < nr_esbs; i++) { if (xive2_router_get_eas(xrtr, blk, i, &eas)) { break; } if (!xive2_eas_is_masked(&eas)) { xive2_eas_pic_print_info(&eas, i, mon); } } monitor_printf(mon, "XIVE[%x] #%d END Escalation EAT\n", chip_id, blk); i = 0; while (!xive2_router_get_end(xrtr, blk, i, &end)) { xive2_end_eas_pic_print_info(&end, i++, mon); } monitor_printf(mon, "XIVE[%x] #%d ENDT\n", chip_id, blk); i = 0; while (!xive2_router_get_end(xrtr, blk, i, &end)) { xive2_end_pic_print_info(&end, i++, mon); } monitor_printf(mon, "XIVE[%x] #%d NVPT %08x .. %08x\n", chip_id, blk, 0, XIVE2_NVP_COUNT - 1); xive_nvp_per_subpage = pnv_xive2_vst_per_subpage(xive, VST_NVP); for (i = 0; i < XIVE2_NVP_COUNT; i += xive_nvp_per_subpage) { while (!xive2_router_get_nvp(xrtr, blk, i, &nvp)) { xive2_nvp_pic_print_info(&nvp, i++, mon); } } }