/* * QEMU PowerPC XIVE interrupt controller model * * Copyright (c) 2017-2019, IBM Corporation. * * This code is licensed under the GPL version 2 or later. See the * COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qemu/module.h" #include "qapi/error.h" #include "target/ppc/cpu.h" #include "sysemu/cpus.h" #include "sysemu/dma.h" #include "sysemu/reset.h" #include "monitor/monitor.h" #include "hw/ppc/fdt.h" #include "hw/ppc/pnv.h" #include "hw/ppc/pnv_chip.h" #include "hw/ppc/pnv_core.h" #include "hw/ppc/pnv_xscom.h" #include "hw/ppc/pnv_xive.h" #include "hw/ppc/xive_regs.h" #include "hw/qdev-properties.h" #include "hw/ppc/ppc.h" #include "trace.h" #include #include "pnv_xive_regs.h" #undef XIVE_DEBUG /* * Virtual structures table (VST) */ #define SBE_PER_BYTE 4 typedef struct XiveVstInfo { const char *name; uint32_t size; uint32_t max_blocks; } XiveVstInfo; static const XiveVstInfo vst_infos[] = { [VST_TSEL_IVT] = { "EAT", sizeof(XiveEAS), 16 }, [VST_TSEL_SBE] = { "SBE", 1, 16 }, [VST_TSEL_EQDT] = { "ENDT", sizeof(XiveEND), 16 }, [VST_TSEL_VPDT] = { "VPDT", sizeof(XiveNVT), 32 }, /* * Interrupt fifo backing store table (not modeled) : * * 0 - IPI, * 1 - HWD, * 2 - First escalate, * 3 - Second escalate, * 4 - Redistribution, * 5 - IPI cascaded queue ? */ [VST_TSEL_IRQ] = { "IRQ", 1, 6 }, }; #define xive_error(xive, fmt, ...) \ qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n", \ (xive)->chip->chip_id, ## __VA_ARGS__); /* * When PC_TCTXT_CHIPID_OVERRIDE is configured, the PC_TCTXT_CHIPID * field overrides the hardwired chip ID in the Powerbus operations * and for CAM compares */ static uint8_t pnv_xive_block_id(PnvXive *xive) { uint8_t blk = xive->chip->chip_id; uint64_t cfg_val = xive->regs[PC_TCTXT_CFG >> 3]; if (cfg_val & PC_TCTXT_CHIPID_OVERRIDE) { blk = GETFIELD(PC_TCTXT_CHIPID, cfg_val); } return blk; } /* * Remote access to controllers. HW uses MMIOs. For now, a simple scan * of the chips is good enough. * * TODO: Block scope support */ static PnvXive *pnv_xive_get_remote(uint8_t blk) { PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); int i; for (i = 0; i < pnv->num_chips; i++) { Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]); PnvXive *xive = &chip9->xive; if (pnv_xive_block_id(xive) == blk) { return xive; } } return NULL; } /* * VST accessors for SBE, EAT, ENDT, NVT * * Indirect VST tables are arrays of VSDs pointing to a page (of same * size). Each page is a direct VST table. */ #define XIVE_VSD_SIZE 8 /* Indirect page size can be 4K, 64K, 2M, 16M. */ static uint64_t pnv_xive_vst_page_size_allowed(uint32_t page_shift) { return page_shift == 12 || page_shift == 16 || page_shift == 21 || page_shift == 24; } static uint64_t pnv_xive_vst_addr_direct(PnvXive *xive, uint32_t type, uint64_t vsd, uint32_t idx) { const XiveVstInfo *info = &vst_infos[type]; uint64_t vst_addr = vsd & VSD_ADDRESS_MASK; uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12); uint32_t idx_max; idx_max = vst_tsize / info->size - 1; if (idx > idx_max) { #ifdef XIVE_DEBUG xive_error(xive, "VST: %s entry %x out of range [ 0 .. %x ] !?", info->name, idx, idx_max); #endif return 0; } return vst_addr + idx * info->size; } static uint64_t pnv_xive_vst_addr_indirect(PnvXive *xive, uint32_t type, uint64_t vsd, uint32_t idx) { const XiveVstInfo *info = &vst_infos[type]; uint64_t vsd_addr; uint32_t vsd_idx; uint32_t page_shift; uint32_t vst_per_page; /* Get the page size of the indirect table. */ vsd_addr = vsd & VSD_ADDRESS_MASK; if (ldq_be_dma(&address_space_memory, vsd_addr, &vsd, MEMTXATTRS_UNSPECIFIED)) { xive_error(xive, "VST: failed to access %s entry %x @0x%" PRIx64, info->name, idx, vsd_addr); return 0; } if (!(vsd & VSD_ADDRESS_MASK)) { #ifdef XIVE_DEBUG xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx); #endif return 0; } page_shift = GETFIELD(VSD_TSIZE, vsd) + 12; if (!pnv_xive_vst_page_size_allowed(page_shift)) { xive_error(xive, "VST: invalid %s page shift %d", info->name, page_shift); return 0; } vst_per_page = (1ull << page_shift) / info->size; vsd_idx = idx / vst_per_page; /* Load the VSD we are looking for, if not already done */ if (vsd_idx) { vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE; if (ldq_be_dma(&address_space_memory, vsd_addr, &vsd, MEMTXATTRS_UNSPECIFIED)) { xive_error(xive, "VST: failed to access %s entry %x @0x%" PRIx64, info->name, vsd_idx, vsd_addr); return 0; } if (!(vsd & VSD_ADDRESS_MASK)) { #ifdef XIVE_DEBUG xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx); #endif return 0; } /* * Check that the pages have a consistent size across the * indirect table */ if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) { xive_error(xive, "VST: %s entry %x indirect page size differ !?", info->name, idx); return 0; } } return pnv_xive_vst_addr_direct(xive, type, vsd, (idx % vst_per_page)); } static uint64_t pnv_xive_vst_addr(PnvXive *xive, uint32_t type, uint8_t blk, uint32_t idx) { const XiveVstInfo *info = &vst_infos[type]; uint64_t vsd; if (blk >= info->max_blocks) { xive_error(xive, "VST: invalid block id %d for VST %s %d !?", blk, info->name, idx); return 0; } vsd = xive->vsds[type][blk]; /* Remote VST access */ if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) { xive = pnv_xive_get_remote(blk); return xive ? pnv_xive_vst_addr(xive, type, blk, idx) : 0; } if (VSD_INDIRECT & vsd) { return pnv_xive_vst_addr_indirect(xive, type, vsd, idx); } return pnv_xive_vst_addr_direct(xive, type, vsd, idx); } static int pnv_xive_vst_read(PnvXive *xive, uint32_t type, uint8_t blk, uint32_t idx, void *data) { const XiveVstInfo *info = &vst_infos[type]; uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx); if (!addr) { return -1; } cpu_physical_memory_read(addr, data, info->size); return 0; } #define XIVE_VST_WORD_ALL -1 static int pnv_xive_vst_write(PnvXive *xive, uint32_t type, uint8_t blk, uint32_t idx, void *data, uint32_t word_number) { const XiveVstInfo *info = &vst_infos[type]; uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx); if (!addr) { return -1; } if (word_number == XIVE_VST_WORD_ALL) { cpu_physical_memory_write(addr, data, info->size); } else { cpu_physical_memory_write(addr + word_number * 4, data + word_number * 4, 4); } return 0; } static int pnv_xive_get_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx, XiveEND *end) { return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end); } static int pnv_xive_write_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx, XiveEND *end, uint8_t word_number) { return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end, word_number); } static int pnv_xive_end_update(PnvXive *xive) { uint8_t blk = GETFIELD(VC_EQC_CWATCH_BLOCKID, xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]); uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET, xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]); int i; uint64_t eqc_watch[4]; for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) { eqc_watch[i] = cpu_to_be64(xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i]); } return pnv_xive_vst_write(xive, VST_TSEL_EQDT, blk, idx, eqc_watch, XIVE_VST_WORD_ALL); } static void pnv_xive_end_cache_load(PnvXive *xive) { uint8_t blk = GETFIELD(VC_EQC_CWATCH_BLOCKID, xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]); uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET, xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]); uint64_t eqc_watch[4] = { 0 }; int i; if (pnv_xive_vst_read(xive, VST_TSEL_EQDT, blk, idx, eqc_watch)) { xive_error(xive, "VST: no END entry %x/%x !?", blk, idx); } for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) { xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(eqc_watch[i]); } } static int pnv_xive_get_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx, XiveNVT *nvt) { return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt); } static int pnv_xive_write_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx, XiveNVT *nvt, uint8_t word_number) { return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt, word_number); } static int pnv_xive_nvt_update(PnvXive *xive) { uint8_t blk = GETFIELD(PC_VPC_CWATCH_BLOCKID, xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]); uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET, xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]); int i; uint64_t vpc_watch[8]; for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) { vpc_watch[i] = cpu_to_be64(xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i]); } return pnv_xive_vst_write(xive, VST_TSEL_VPDT, blk, idx, vpc_watch, XIVE_VST_WORD_ALL); } static void pnv_xive_nvt_cache_load(PnvXive *xive) { uint8_t blk = GETFIELD(PC_VPC_CWATCH_BLOCKID, xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]); uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET, xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]); uint64_t vpc_watch[8] = { 0 }; int i; if (pnv_xive_vst_read(xive, VST_TSEL_VPDT, blk, idx, vpc_watch)) { xive_error(xive, "VST: no NVT entry %x/%x !?", blk, idx); } for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) { xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(vpc_watch[i]); } } static int pnv_xive_get_eas(XiveRouter *xrtr, uint8_t blk, uint32_t idx, XiveEAS *eas) { PnvXive *xive = PNV_XIVE(xrtr); /* * EAT lookups should be local to the IC */ if (pnv_xive_block_id(xive) != blk) { xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx)); return -1; } return pnv_xive_vst_read(xive, VST_TSEL_IVT, blk, idx, eas); } static int pnv_xive_get_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx, uint8_t *pq) { PnvXive *xive = PNV_XIVE(xrtr); if (pnv_xive_block_id(xive) != blk) { xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx)); return -1; } *pq = xive_source_esb_get(&xive->ipi_source, idx); return 0; } static int pnv_xive_set_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx, uint8_t *pq) { PnvXive *xive = PNV_XIVE(xrtr); if (pnv_xive_block_id(xive) != blk) { xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx)); return -1; } *pq = xive_source_esb_set(&xive->ipi_source, idx, *pq); return 0; } /* * One bit per thread id. The first register PC_THREAD_EN_REG0 covers * the first cores 0-15 (normal) of the chip or 0-7 (fused). The * second register covers cores 16-23 (normal) or 8-11 (fused). */ static bool pnv_xive_is_cpu_enabled(PnvXive *xive, PowerPCCPU *cpu) { int pir = ppc_cpu_pir(cpu); uint32_t fc = PNV9_PIR2FUSEDCORE(pir); uint64_t reg = fc < 8 ? PC_THREAD_EN_REG0 : PC_THREAD_EN_REG1; uint32_t bit = pir & 0x3f; return xive->regs[reg >> 3] & PPC_BIT(bit); } static int pnv_xive_match_nvt(XivePresenter *xptr, uint8_t format, uint8_t nvt_blk, uint32_t nvt_idx, bool cam_ignore, uint8_t priority, uint32_t logic_serv, XiveTCTXMatch *match) { PnvXive *xive = PNV_XIVE(xptr); PnvChip *chip = xive->chip; int count = 0; int i, j; for (i = 0; i < chip->nr_cores; i++) { PnvCore *pc = chip->cores[i]; CPUCore *cc = CPU_CORE(pc); for (j = 0; j < cc->nr_threads; j++) { PowerPCCPU *cpu = pc->threads[j]; XiveTCTX *tctx; int ring; if (!pnv_xive_is_cpu_enabled(xive, cpu)) { continue; } tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc); /* * Check the thread context CAM lines and record matches. */ ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, nvt_idx, cam_ignore, logic_serv); /* * Save the context and follow on to catch duplicates, that we * don't support yet. */ if (ring != -1) { if (match->tctx) { qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a " "thread context NVT %x/%x\n", nvt_blk, nvt_idx); return -1; } match->ring = ring; match->tctx = tctx; count++; } } } return count; } static uint8_t pnv_xive_get_block_id(XiveRouter *xrtr) { return pnv_xive_block_id(PNV_XIVE(xrtr)); } /* * The TIMA MMIO space is shared among the chips and to identify the * chip from which the access is being done, we extract the chip id * from the PIR. */ static PnvXive *pnv_xive_tm_get_xive(PowerPCCPU *cpu) { int pir = ppc_cpu_pir(cpu); XivePresenter *xptr = XIVE_TCTX(pnv_cpu_state(cpu)->intc)->xptr; PnvXive *xive = PNV_XIVE(xptr); if (!pnv_xive_is_cpu_enabled(xive, cpu)) { xive_error(xive, "IC: CPU %x is not enabled", pir); } return xive; } /* * The internal sources (IPIs) of the interrupt controller have no * knowledge of the XIVE chip on which they reside. Encode the block * id in the source interrupt number before forwarding the source * event notification to the Router. This is required on a multichip * system. */ static void pnv_xive_notify(XiveNotifier *xn, uint32_t srcno, bool pq_checked) { PnvXive *xive = PNV_XIVE(xn); uint8_t blk = pnv_xive_block_id(xive); xive_router_notify(xn, XIVE_EAS(blk, srcno), pq_checked); } /* * XIVE helpers */ static uint64_t pnv_xive_vc_size(PnvXive *xive) { return (~xive->regs[CQ_VC_BARM >> 3] + 1) & CQ_VC_BARM_MASK; } static uint64_t pnv_xive_edt_shift(PnvXive *xive) { return ctz64(pnv_xive_vc_size(xive) / XIVE_TABLE_EDT_MAX); } static uint64_t pnv_xive_pc_size(PnvXive *xive) { return (~xive->regs[CQ_PC_BARM >> 3] + 1) & CQ_PC_BARM_MASK; } static uint32_t pnv_xive_nr_ipis(PnvXive *xive, uint8_t blk) { uint64_t vsd = xive->vsds[VST_TSEL_SBE][blk]; uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12); return VSD_INDIRECT & vsd ? 0 : vst_tsize * SBE_PER_BYTE; } /* * Compute the number of entries per indirect subpage. */ static uint64_t pnv_xive_vst_per_subpage(PnvXive *xive, uint32_t type) { uint8_t blk = pnv_xive_block_id(xive); uint64_t vsd = xive->vsds[type][blk]; const XiveVstInfo *info = &vst_infos[type]; uint64_t vsd_addr; uint32_t page_shift; /* For direct tables, fake a valid value */ if (!(VSD_INDIRECT & vsd)) { return 1; } /* Get the page size of the indirect table. */ vsd_addr = vsd & VSD_ADDRESS_MASK; if (ldq_be_dma(&address_space_memory, vsd_addr, &vsd, MEMTXATTRS_UNSPECIFIED)) { xive_error(xive, "VST: failed to access %s entry @0x%" PRIx64, info->name, vsd_addr); return 0; } if (!(vsd & VSD_ADDRESS_MASK)) { #ifdef XIVE_DEBUG xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx); #endif return 0; } page_shift = GETFIELD(VSD_TSIZE, vsd) + 12; if (!pnv_xive_vst_page_size_allowed(page_shift)) { xive_error(xive, "VST: invalid %s page shift %d", info->name, page_shift); return 0; } return (1ull << page_shift) / info->size; } /* * EDT Table * * The Virtualization Controller MMIO region containing the IPI ESB * pages and END ESB pages is sub-divided into "sets" which map * portions of the VC region to the different ESB pages. It is * configured at runtime through the EDT "Domain Table" to let the * firmware decide how to split the VC address space between IPI ESB * pages and END ESB pages. */ /* * Computes the overall size of the IPI or the END ESB pages */ static uint64_t pnv_xive_edt_size(PnvXive *xive, uint64_t type) { uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive); uint64_t size = 0; int i; for (i = 0; i < XIVE_TABLE_EDT_MAX; i++) { uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]); if (edt_type == type) { size += edt_size; } } return size; } /* * Maps an offset of the VC region in the IPI or END region using the * layout defined by the EDT "Domaine Table" */ static uint64_t pnv_xive_edt_offset(PnvXive *xive, uint64_t vc_offset, uint64_t type) { int i; uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive); uint64_t edt_offset = vc_offset; for (i = 0; i < XIVE_TABLE_EDT_MAX && (i * edt_size) < vc_offset; i++) { uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]); if (edt_type != type) { edt_offset -= edt_size; } } return edt_offset; } static void pnv_xive_edt_resize(PnvXive *xive) { uint64_t ipi_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_IPI); uint64_t end_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_EQ); memory_region_set_size(&xive->ipi_edt_mmio, ipi_edt_size); memory_region_add_subregion(&xive->ipi_mmio, 0, &xive->ipi_edt_mmio); memory_region_set_size(&xive->end_edt_mmio, end_edt_size); memory_region_add_subregion(&xive->end_mmio, 0, &xive->end_edt_mmio); } /* * XIVE Table configuration. Only EDT is supported. */ static int pnv_xive_table_set_data(PnvXive *xive, uint64_t val) { uint64_t tsel = xive->regs[CQ_TAR >> 3] & CQ_TAR_TSEL; uint8_t tsel_index = GETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3]); uint64_t *xive_table; uint8_t max_index; switch (tsel) { case CQ_TAR_TSEL_BLK: max_index = ARRAY_SIZE(xive->blk); xive_table = xive->blk; break; case CQ_TAR_TSEL_MIG: max_index = ARRAY_SIZE(xive->mig); xive_table = xive->mig; break; case CQ_TAR_TSEL_EDT: max_index = ARRAY_SIZE(xive->edt); xive_table = xive->edt; break; case CQ_TAR_TSEL_VDT: max_index = ARRAY_SIZE(xive->vdt); xive_table = xive->vdt; break; default: xive_error(xive, "IC: invalid table %d", (int) tsel); return -1; } if (tsel_index >= max_index) { xive_error(xive, "IC: invalid index %d", (int) tsel_index); return -1; } xive_table[tsel_index] = val; if (xive->regs[CQ_TAR >> 3] & CQ_TAR_TBL_AUTOINC) { xive->regs[CQ_TAR >> 3] = SETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3], ++tsel_index); } /* * EDT configuration is complete. Resize the MMIO windows exposing * the IPI and the END ESBs in the VC region. */ if (tsel == CQ_TAR_TSEL_EDT && tsel_index == ARRAY_SIZE(xive->edt)) { pnv_xive_edt_resize(xive); } return 0; } /* * Virtual Structure Tables (VST) configuration */ static void pnv_xive_vst_set_exclusive(PnvXive *xive, uint8_t type, uint8_t blk, uint64_t vsd) { XiveENDSource *end_xsrc = &xive->end_source; XiveSource *xsrc = &xive->ipi_source; const XiveVstInfo *info = &vst_infos[type]; uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12; uint64_t vst_tsize = 1ull << page_shift; uint64_t vst_addr = vsd & VSD_ADDRESS_MASK; /* Basic checks */ if (VSD_INDIRECT & vsd) { if (!(xive->regs[VC_GLOBAL_CONFIG >> 3] & VC_GCONF_INDIRECT)) { xive_error(xive, "VST: %s indirect tables are not enabled", info->name); return; } if (!pnv_xive_vst_page_size_allowed(page_shift)) { xive_error(xive, "VST: invalid %s page shift %d", info->name, page_shift); return; } } if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) { xive_error(xive, "VST: %s table address 0x%"PRIx64" is not aligned with" " page shift %d", info->name, vst_addr, page_shift); return; } /* Record the table configuration (in SRAM on HW) */ xive->vsds[type][blk] = vsd; /* Now tune the models with the configuration provided by the FW */ switch (type) { case VST_TSEL_IVT: /* Nothing to be done */ break; case VST_TSEL_EQDT: /* * Backing store pages for the END. * * If the table is direct, we can compute the number of PQ * entries provisioned by FW (such as skiboot) and resize the * END ESB window accordingly. */ if (!(VSD_INDIRECT & vsd)) { memory_region_set_size(&end_xsrc->esb_mmio, (vst_tsize / info->size) * (1ull << xsrc->esb_shift)); } memory_region_add_subregion(&xive->end_edt_mmio, 0, &end_xsrc->esb_mmio); break; case VST_TSEL_SBE: /* * Backing store pages for the source PQ bits. The model does * not use these PQ bits backed in RAM because the XiveSource * model has its own. * * If the table is direct, we can compute the number of PQ * entries provisioned by FW (such as skiboot) and resize the * ESB window accordingly. */ if (!(VSD_INDIRECT & vsd)) { memory_region_set_size(&xsrc->esb_mmio, vst_tsize * SBE_PER_BYTE * (1ull << xsrc->esb_shift)); } memory_region_add_subregion(&xive->ipi_edt_mmio, 0, &xsrc->esb_mmio); break; case VST_TSEL_VPDT: /* Not modeled */ case VST_TSEL_IRQ: /* Not modeled */ /* * These tables contains the backing store pages for the * interrupt fifos of the VC sub-engine in case of overflow. */ break; default: g_assert_not_reached(); } } /* * Both PC and VC sub-engines are configured as each use the Virtual * Structure Tables : SBE, EAS, END and NVT. */ static void pnv_xive_vst_set_data(PnvXive *xive, uint64_t vsd, bool pc_engine) { uint8_t mode = GETFIELD(VSD_MODE, vsd); uint8_t type = GETFIELD(VST_TABLE_SELECT, xive->regs[VC_VSD_TABLE_ADDR >> 3]); uint8_t blk = GETFIELD(VST_TABLE_BLOCK, xive->regs[VC_VSD_TABLE_ADDR >> 3]); uint64_t vst_addr = vsd & VSD_ADDRESS_MASK; if (type > VST_TSEL_IRQ) { xive_error(xive, "VST: invalid table type %d", type); return; } if (blk >= vst_infos[type].max_blocks) { xive_error(xive, "VST: invalid block id %d for" " %s table", blk, vst_infos[type].name); return; } /* * Only take the VC sub-engine configuration into account because * the XiveRouter model combines both VC and PC sub-engines */ if (pc_engine) { return; } if (!vst_addr) { xive_error(xive, "VST: invalid %s table address", vst_infos[type].name); return; } switch (mode) { case VSD_MODE_FORWARD: xive->vsds[type][blk] = vsd; break; case VSD_MODE_EXCLUSIVE: pnv_xive_vst_set_exclusive(xive, type, blk, vsd); break; default: xive_error(xive, "VST: unsupported table mode %d", mode); return; } } /* * Interrupt controller MMIO region. The layout is compatible between * 4K and 64K pages : * * Page 0 sub-engine BARs * 0x000 - 0x3FF IC registers * 0x400 - 0x7FF PC registers * 0x800 - 0xFFF VC registers * * Page 1 Notify page (writes only) * 0x000 - 0x7FF HW interrupt triggers (PSI, PHB) * 0x800 - 0xFFF forwards and syncs * * Page 2 LSI Trigger page (writes only) (not modeled) * Page 3 LSI SB EOI page (reads only) (not modeled) * * Page 4-7 indirect TIMA */ /* * IC - registers MMIO */ static void pnv_xive_ic_reg_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { PnvXive *xive = PNV_XIVE(opaque); MemoryRegion *sysmem = get_system_memory(); uint32_t reg = offset >> 3; bool is_chip0 = xive->chip->chip_id == 0; switch (offset) { /* * XIVE CQ (PowerBus bridge) settings */ case CQ_MSGSND: /* msgsnd for doorbells */ case CQ_FIRMASK_OR: /* FIR error reporting */ break; case CQ_PBI_CTL: if (val & CQ_PBI_PC_64K) { xive->pc_shift = 16; } if (val & CQ_PBI_VC_64K) { xive->vc_shift = 16; } break; case CQ_CFG_PB_GEN: /* PowerBus General Configuration */ /* * TODO: CQ_INT_ADDR_OPT for 1-block-per-chip mode */ break; /* * XIVE Virtualization Controller settings */ case VC_GLOBAL_CONFIG: break; /* * XIVE Presenter Controller settings */ case PC_GLOBAL_CONFIG: /* * PC_GCONF_CHIPID_OVR * Overrides Int command Chip ID with the Chip ID field (DEBUG) */ break; case PC_TCTXT_CFG: /* * TODO: block group support */ break; case PC_TCTXT_TRACK: /* * PC_TCTXT_TRACK_EN: * enable block tracking and exchange of block ownership * information between Interrupt controllers */ break; /* * Misc settings */ case VC_SBC_CONFIG: /* Store EOI configuration */ /* * Configure store EOI if required by firwmare (skiboot has removed * support recently though) */ if (val & (VC_SBC_CONF_CPLX_CIST | VC_SBC_CONF_CIST_BOTH)) { xive->ipi_source.esb_flags |= XIVE_SRC_STORE_EOI; } break; case VC_EQC_CONFIG: /* TODO: silent escalation */ case VC_AIB_TX_ORDER_TAG2: /* relax ordering */ break; /* * XIVE BAR settings (XSCOM only) */ case CQ_RST_CTL: /* bit4: resets all BAR registers */ break; case CQ_IC_BAR: /* IC BAR. 8 pages */ xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12; if (!(val & CQ_IC_BAR_VALID)) { xive->ic_base = 0; if (xive->regs[reg] & CQ_IC_BAR_VALID) { memory_region_del_subregion(&xive->ic_mmio, &xive->ic_reg_mmio); memory_region_del_subregion(&xive->ic_mmio, &xive->ic_notify_mmio); memory_region_del_subregion(&xive->ic_mmio, &xive->ic_lsi_mmio); memory_region_del_subregion(&xive->ic_mmio, &xive->tm_indirect_mmio); memory_region_del_subregion(sysmem, &xive->ic_mmio); } } else { xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K); if (!(xive->regs[reg] & CQ_IC_BAR_VALID)) { memory_region_add_subregion(sysmem, xive->ic_base, &xive->ic_mmio); memory_region_add_subregion(&xive->ic_mmio, 0, &xive->ic_reg_mmio); memory_region_add_subregion(&xive->ic_mmio, 1ul << xive->ic_shift, &xive->ic_notify_mmio); memory_region_add_subregion(&xive->ic_mmio, 2ul << xive->ic_shift, &xive->ic_lsi_mmio); memory_region_add_subregion(&xive->ic_mmio, 4ull << xive->ic_shift, &xive->tm_indirect_mmio); } } break; case CQ_TM1_BAR: /* TM BAR. 4 pages. Map only once */ case CQ_TM2_BAR: /* second TM BAR. for hotplug. Not modeled */ xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12; if (!(val & CQ_TM_BAR_VALID)) { xive->tm_base = 0; if (xive->regs[reg] & CQ_TM_BAR_VALID && is_chip0) { memory_region_del_subregion(sysmem, &xive->tm_mmio); } } else { xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K); if (!(xive->regs[reg] & CQ_TM_BAR_VALID) && is_chip0) { memory_region_add_subregion(sysmem, xive->tm_base, &xive->tm_mmio); } } break; case CQ_PC_BARM: xive->regs[reg] = val; memory_region_set_size(&xive->pc_mmio, pnv_xive_pc_size(xive)); break; case CQ_PC_BAR: /* From 32M to 512G */ if (!(val & CQ_PC_BAR_VALID)) { xive->pc_base = 0; if (xive->regs[reg] & CQ_PC_BAR_VALID) { memory_region_del_subregion(sysmem, &xive->pc_mmio); } } else { xive->pc_base = val & ~(CQ_PC_BAR_VALID); if (!(xive->regs[reg] & CQ_PC_BAR_VALID)) { memory_region_add_subregion(sysmem, xive->pc_base, &xive->pc_mmio); } } break; case CQ_VC_BARM: xive->regs[reg] = val; memory_region_set_size(&xive->vc_mmio, pnv_xive_vc_size(xive)); break; case CQ_VC_BAR: /* From 64M to 4TB */ if (!(val & CQ_VC_BAR_VALID)) { xive->vc_base = 0; if (xive->regs[reg] & CQ_VC_BAR_VALID) { memory_region_del_subregion(sysmem, &xive->vc_mmio); } } else { xive->vc_base = val & ~(CQ_VC_BAR_VALID); if (!(xive->regs[reg] & CQ_VC_BAR_VALID)) { memory_region_add_subregion(sysmem, xive->vc_base, &xive->vc_mmio); } } break; /* * XIVE Table settings. */ case CQ_TAR: /* Table Address */ break; case CQ_TDR: /* Table Data */ pnv_xive_table_set_data(xive, val); break; /* * XIVE VC & PC Virtual Structure Table settings */ case VC_VSD_TABLE_ADDR: case PC_VSD_TABLE_ADDR: /* Virtual table selector */ break; case VC_VSD_TABLE_DATA: /* Virtual table setting */ case PC_VSD_TABLE_DATA: pnv_xive_vst_set_data(xive, val, offset == PC_VSD_TABLE_DATA); break; /* * Interrupt fifo overflow in memory backing store (Not modeled) */ case VC_IRQ_CONFIG_IPI: case VC_IRQ_CONFIG_HW: case VC_IRQ_CONFIG_CASCADE1: case VC_IRQ_CONFIG_CASCADE2: case VC_IRQ_CONFIG_REDIST: case VC_IRQ_CONFIG_IPI_CASC: break; /* * XIVE hardware thread enablement */ case PC_THREAD_EN_REG0: /* Physical Thread Enable */ case PC_THREAD_EN_REG1: /* Physical Thread Enable (fused core) */ break; case PC_THREAD_EN_REG0_SET: xive->regs[PC_THREAD_EN_REG0 >> 3] |= val; break; case PC_THREAD_EN_REG1_SET: xive->regs[PC_THREAD_EN_REG1 >> 3] |= val; break; case PC_THREAD_EN_REG0_CLR: xive->regs[PC_THREAD_EN_REG0 >> 3] &= ~val; break; case PC_THREAD_EN_REG1_CLR: xive->regs[PC_THREAD_EN_REG1 >> 3] &= ~val; break; /* * Indirect TIMA access set up. Defines the PIR of the HW thread * to use. */ case PC_TCTXT_INDIR0 ... PC_TCTXT_INDIR3: break; /* * XIVE PC & VC cache updates for EAS, NVT and END */ case VC_IVC_SCRUB_MASK: case VC_IVC_SCRUB_TRIG: break; case VC_EQC_CWATCH_SPEC: val &= ~VC_EQC_CWATCH_CONFLICT; /* HW resets this bit */ break; case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3: break; case VC_EQC_CWATCH_DAT0: /* writing to DATA0 triggers the cache write */ xive->regs[reg] = val; pnv_xive_end_update(xive); break; case VC_EQC_SCRUB_MASK: case VC_EQC_SCRUB_TRIG: /* * The scrubbing registers flush the cache in RAM and can also * invalidate. */ break; case PC_VPC_CWATCH_SPEC: val &= ~PC_VPC_CWATCH_CONFLICT; /* HW resets this bit */ break; case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7: break; case PC_VPC_CWATCH_DAT0: /* writing to DATA0 triggers the cache write */ xive->regs[reg] = val; pnv_xive_nvt_update(xive); break; case PC_VPC_SCRUB_MASK: case PC_VPC_SCRUB_TRIG: /* * The scrubbing registers flush the cache in RAM and can also * invalidate. */ break; /* * XIVE PC & VC cache invalidation */ case PC_AT_KILL: break; case VC_AT_MACRO_KILL: break; case PC_AT_KILL_MASK: case VC_AT_MACRO_KILL_MASK: break; default: xive_error(xive, "IC: invalid write to reg=0x%"HWADDR_PRIx, offset); return; } xive->regs[reg] = val; } static uint64_t pnv_xive_ic_reg_read(void *opaque, hwaddr offset, unsigned size) { PnvXive *xive = PNV_XIVE(opaque); uint64_t val = 0; uint32_t reg = offset >> 3; switch (offset) { case CQ_CFG_PB_GEN: case CQ_IC_BAR: case CQ_TM1_BAR: case CQ_TM2_BAR: case CQ_PC_BAR: case CQ_PC_BARM: case CQ_VC_BAR: case CQ_VC_BARM: case CQ_TAR: case CQ_TDR: case CQ_PBI_CTL: case PC_TCTXT_CFG: case PC_TCTXT_TRACK: case PC_TCTXT_INDIR0: case PC_TCTXT_INDIR1: case PC_TCTXT_INDIR2: case PC_TCTXT_INDIR3: case PC_GLOBAL_CONFIG: case PC_VPC_SCRUB_MASK: case VC_GLOBAL_CONFIG: case VC_AIB_TX_ORDER_TAG2: case VC_IRQ_CONFIG_IPI: case VC_IRQ_CONFIG_HW: case VC_IRQ_CONFIG_CASCADE1: case VC_IRQ_CONFIG_CASCADE2: case VC_IRQ_CONFIG_REDIST: case VC_IRQ_CONFIG_IPI_CASC: case VC_EQC_SCRUB_MASK: case VC_IVC_SCRUB_MASK: case VC_SBC_CONFIG: case VC_AT_MACRO_KILL_MASK: case VC_VSD_TABLE_ADDR: case PC_VSD_TABLE_ADDR: case VC_VSD_TABLE_DATA: case PC_VSD_TABLE_DATA: case PC_THREAD_EN_REG0: case PC_THREAD_EN_REG1: val = xive->regs[reg]; break; /* * XIVE hardware thread enablement */ case PC_THREAD_EN_REG0_SET: case PC_THREAD_EN_REG0_CLR: val = xive->regs[PC_THREAD_EN_REG0 >> 3]; break; case PC_THREAD_EN_REG1_SET: case PC_THREAD_EN_REG1_CLR: val = xive->regs[PC_THREAD_EN_REG1 >> 3]; break; case CQ_MSGSND: /* Identifies which cores have msgsnd enabled. */ val = 0xffffff0000000000; break; /* * XIVE PC & VC cache updates for EAS, NVT and END */ case VC_EQC_CWATCH_SPEC: xive->regs[reg] = ~(VC_EQC_CWATCH_FULL | VC_EQC_CWATCH_CONFLICT); val = xive->regs[reg]; break; case VC_EQC_CWATCH_DAT0: /* * Load DATA registers from cache with data requested by the * SPEC register */ pnv_xive_end_cache_load(xive); val = xive->regs[reg]; break; case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3: val = xive->regs[reg]; break; case PC_VPC_CWATCH_SPEC: xive->regs[reg] = ~(PC_VPC_CWATCH_FULL | PC_VPC_CWATCH_CONFLICT); val = xive->regs[reg]; break; case PC_VPC_CWATCH_DAT0: /* * Load DATA registers from cache with data requested by the * SPEC register */ pnv_xive_nvt_cache_load(xive); val = xive->regs[reg]; break; case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7: val = xive->regs[reg]; break; case PC_VPC_SCRUB_TRIG: case VC_IVC_SCRUB_TRIG: case VC_EQC_SCRUB_TRIG: xive->regs[reg] &= ~VC_SCRUB_VALID; val = xive->regs[reg]; break; /* * XIVE PC & VC cache invalidation */ case PC_AT_KILL: xive->regs[reg] &= ~PC_AT_KILL_VALID; val = xive->regs[reg]; break; case VC_AT_MACRO_KILL: xive->regs[reg] &= ~VC_KILL_VALID; val = xive->regs[reg]; break; /* * XIVE synchronisation */ case VC_EQC_CONFIG: val = VC_EQC_SYNC_MASK; break; default: xive_error(xive, "IC: invalid read reg=0x%"HWADDR_PRIx, offset); } return val; } static const MemoryRegionOps pnv_xive_ic_reg_ops = { .read = pnv_xive_ic_reg_read, .write = pnv_xive_ic_reg_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 8, .max_access_size = 8, }, .impl = { .min_access_size = 8, .max_access_size = 8, }, }; /* * IC - Notify MMIO port page (write only) */ #define PNV_XIVE_FORWARD_IPI 0x800 /* Forward IPI */ #define PNV_XIVE_FORWARD_HW 0x880 /* Forward HW */ #define PNV_XIVE_FORWARD_OS_ESC 0x900 /* Forward OS escalation */ #define PNV_XIVE_FORWARD_HW_ESC 0x980 /* Forward Hyp escalation */ #define PNV_XIVE_FORWARD_REDIS 0xa00 /* Forward Redistribution */ #define PNV_XIVE_RESERVED5 0xa80 /* Cache line 5 PowerBUS operation */ #define PNV_XIVE_RESERVED6 0xb00 /* Cache line 6 PowerBUS operation */ #define PNV_XIVE_RESERVED7 0xb80 /* Cache line 7 PowerBUS operation */ /* VC synchronisation */ #define PNV_XIVE_SYNC_IPI 0xc00 /* Sync IPI */ #define PNV_XIVE_SYNC_HW 0xc80 /* Sync HW */ #define PNV_XIVE_SYNC_OS_ESC 0xd00 /* Sync OS escalation */ #define PNV_XIVE_SYNC_HW_ESC 0xd80 /* Sync Hyp escalation */ #define PNV_XIVE_SYNC_REDIS 0xe00 /* Sync Redistribution */ /* PC synchronisation */ #define PNV_XIVE_SYNC_PULL 0xe80 /* Sync pull context */ #define PNV_XIVE_SYNC_PUSH 0xf00 /* Sync push context */ #define PNV_XIVE_SYNC_VPC 0xf80 /* Sync remove VPC store */ static void pnv_xive_ic_hw_trigger(PnvXive *xive, hwaddr addr, uint64_t val) { uint8_t blk; uint32_t idx; trace_pnv_xive_ic_hw_trigger(addr, val); if (val & XIVE_TRIGGER_END) { xive_error(xive, "IC: END trigger at @0x%"HWADDR_PRIx" data 0x%"PRIx64, addr, val); return; } /* * Forward the source event notification directly to the Router. * The source interrupt number should already be correctly encoded * with the chip block id by the sending device (PHB, PSI). */ blk = XIVE_EAS_BLOCK(val); idx = XIVE_EAS_INDEX(val); xive_router_notify(XIVE_NOTIFIER(xive), XIVE_EAS(blk, idx), !!(val & XIVE_TRIGGER_PQ)); } static void pnv_xive_ic_notify_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { PnvXive *xive = PNV_XIVE(opaque); /* VC: HW triggers */ switch (addr) { case 0x000 ... 0x7FF: pnv_xive_ic_hw_trigger(opaque, addr, val); break; /* VC: Forwarded IRQs */ case PNV_XIVE_FORWARD_IPI: case PNV_XIVE_FORWARD_HW: case PNV_XIVE_FORWARD_OS_ESC: case PNV_XIVE_FORWARD_HW_ESC: case PNV_XIVE_FORWARD_REDIS: /* TODO: forwarded IRQs. Should be like HW triggers */ xive_error(xive, "IC: forwarded at @0x%"HWADDR_PRIx" IRQ 0x%"PRIx64, addr, val); break; /* VC syncs */ case PNV_XIVE_SYNC_IPI: case PNV_XIVE_SYNC_HW: case PNV_XIVE_SYNC_OS_ESC: case PNV_XIVE_SYNC_HW_ESC: case PNV_XIVE_SYNC_REDIS: break; /* PC syncs */ case PNV_XIVE_SYNC_PULL: case PNV_XIVE_SYNC_PUSH: case PNV_XIVE_SYNC_VPC: break; default: xive_error(xive, "IC: invalid notify write @%"HWADDR_PRIx, addr); } } static uint64_t pnv_xive_ic_notify_read(void *opaque, hwaddr addr, unsigned size) { PnvXive *xive = PNV_XIVE(opaque); /* loads are invalid */ xive_error(xive, "IC: invalid notify read @%"HWADDR_PRIx, addr); return -1; } static const MemoryRegionOps pnv_xive_ic_notify_ops = { .read = pnv_xive_ic_notify_read, .write = pnv_xive_ic_notify_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 8, .max_access_size = 8, }, .impl = { .min_access_size = 8, .max_access_size = 8, }, }; /* * IC - LSI MMIO handlers (not modeled) */ static void pnv_xive_ic_lsi_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { PnvXive *xive = PNV_XIVE(opaque); xive_error(xive, "IC: LSI invalid write @%"HWADDR_PRIx, addr); } static uint64_t pnv_xive_ic_lsi_read(void *opaque, hwaddr addr, unsigned size) { PnvXive *xive = PNV_XIVE(opaque); xive_error(xive, "IC: LSI invalid read @%"HWADDR_PRIx, addr); return -1; } static const MemoryRegionOps pnv_xive_ic_lsi_ops = { .read = pnv_xive_ic_lsi_read, .write = pnv_xive_ic_lsi_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 8, .max_access_size = 8, }, .impl = { .min_access_size = 8, .max_access_size = 8, }, }; /* * IC - Indirect TIMA MMIO handlers */ /* * When the TIMA is accessed from the indirect page, the thread id of * the target CPU is configured in the PC_TCTXT_INDIR0 register before * use. This is used for resets and for debug purpose also. */ static XiveTCTX *pnv_xive_get_indirect_tctx(PnvXive *xive) { PnvChip *chip = xive->chip; uint64_t tctxt_indir = xive->regs[PC_TCTXT_INDIR0 >> 3]; PowerPCCPU *cpu = NULL; int pir; if (!(tctxt_indir & PC_TCTXT_INDIR_VALID)) { xive_error(xive, "IC: no indirect TIMA access in progress"); return NULL; } pir = (chip->chip_id << 8) | GETFIELD(PC_TCTXT_INDIR_THRDID, tctxt_indir); cpu = pnv_chip_find_cpu(chip, pir); if (!cpu) { xive_error(xive, "IC: invalid PIR %x for indirect access", pir); return NULL; } /* Check that HW thread is XIVE enabled */ if (!pnv_xive_is_cpu_enabled(xive, cpu)) { xive_error(xive, "IC: CPU %x is not enabled", pir); } return XIVE_TCTX(pnv_cpu_state(cpu)->intc); } static void xive_tm_indirect_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque)); xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size); } static uint64_t xive_tm_indirect_read(void *opaque, hwaddr offset, unsigned size) { XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque)); return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size); } static const MemoryRegionOps xive_tm_indirect_ops = { .read = xive_tm_indirect_read, .write = xive_tm_indirect_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 1, .max_access_size = 8, }, .impl = { .min_access_size = 1, .max_access_size = 8, }, }; static void pnv_xive_tm_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { PowerPCCPU *cpu = POWERPC_CPU(current_cpu); PnvXive *xive = pnv_xive_tm_get_xive(cpu); XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc); xive_tctx_tm_write(XIVE_PRESENTER(xive), tctx, offset, value, size); } static uint64_t pnv_xive_tm_read(void *opaque, hwaddr offset, unsigned size) { PowerPCCPU *cpu = POWERPC_CPU(current_cpu); PnvXive *xive = pnv_xive_tm_get_xive(cpu); XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc); return xive_tctx_tm_read(XIVE_PRESENTER(xive), tctx, offset, size); } const MemoryRegionOps pnv_xive_tm_ops = { .read = pnv_xive_tm_read, .write = pnv_xive_tm_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 1, .max_access_size = 8, }, .impl = { .min_access_size = 1, .max_access_size = 8, }, }; /* * Interrupt controller XSCOM region. */ static uint64_t pnv_xive_xscom_read(void *opaque, hwaddr addr, unsigned size) { switch (addr >> 3) { case X_VC_EQC_CONFIG: /* FIXME (skiboot): This is the only XSCOM load. Bizarre. */ return VC_EQC_SYNC_MASK; default: return pnv_xive_ic_reg_read(opaque, addr, size); } } static void pnv_xive_xscom_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { pnv_xive_ic_reg_write(opaque, addr, val, size); } static const MemoryRegionOps pnv_xive_xscom_ops = { .read = pnv_xive_xscom_read, .write = pnv_xive_xscom_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 8, .max_access_size = 8, }, .impl = { .min_access_size = 8, .max_access_size = 8, } }; /* * Virtualization Controller MMIO region containing the IPI and END ESB pages */ static uint64_t pnv_xive_vc_read(void *opaque, hwaddr offset, unsigned size) { PnvXive *xive = PNV_XIVE(opaque); uint64_t edt_index = offset >> pnv_xive_edt_shift(xive); uint64_t edt_type = 0; uint64_t edt_offset; MemTxResult result; AddressSpace *edt_as = NULL; uint64_t ret = -1; if (edt_index < XIVE_TABLE_EDT_MAX) { edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]); } switch (edt_type) { case CQ_TDR_EDT_IPI: edt_as = &xive->ipi_as; break; case CQ_TDR_EDT_EQ: edt_as = &xive->end_as; break; default: xive_error(xive, "VC: invalid EDT type for read @%"HWADDR_PRIx, offset); return -1; } /* Remap the offset for the targeted address space */ edt_offset = pnv_xive_edt_offset(xive, offset, edt_type); ret = address_space_ldq(edt_as, edt_offset, MEMTXATTRS_UNSPECIFIED, &result); if (result != MEMTX_OK) { xive_error(xive, "VC: %s read failed at @0x%"HWADDR_PRIx " -> @0x%" HWADDR_PRIx, edt_type == CQ_TDR_EDT_IPI ? "IPI" : "END", offset, edt_offset); return -1; } return ret; } static void pnv_xive_vc_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { PnvXive *xive = PNV_XIVE(opaque); uint64_t edt_index = offset >> pnv_xive_edt_shift(xive); uint64_t edt_type = 0; uint64_t edt_offset; MemTxResult result; AddressSpace *edt_as = NULL; if (edt_index < XIVE_TABLE_EDT_MAX) { edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]); } switch (edt_type) { case CQ_TDR_EDT_IPI: edt_as = &xive->ipi_as; break; case CQ_TDR_EDT_EQ: edt_as = &xive->end_as; break; default: xive_error(xive, "VC: invalid EDT type for write @%"HWADDR_PRIx, offset); return; } /* Remap the offset for the targeted address space */ edt_offset = pnv_xive_edt_offset(xive, offset, edt_type); address_space_stq(edt_as, edt_offset, val, MEMTXATTRS_UNSPECIFIED, &result); if (result != MEMTX_OK) { xive_error(xive, "VC: write failed at @0x%"HWADDR_PRIx, edt_offset); } } static const MemoryRegionOps pnv_xive_vc_ops = { .read = pnv_xive_vc_read, .write = pnv_xive_vc_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 8, .max_access_size = 8, }, .impl = { .min_access_size = 8, .max_access_size = 8, }, }; /* * Presenter Controller MMIO region. The Virtualization Controller * updates the IPB in the NVT table when required. Not modeled. */ static uint64_t pnv_xive_pc_read(void *opaque, hwaddr addr, unsigned size) { PnvXive *xive = PNV_XIVE(opaque); xive_error(xive, "PC: invalid read @%"HWADDR_PRIx, addr); return -1; } static void pnv_xive_pc_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { PnvXive *xive = PNV_XIVE(opaque); xive_error(xive, "PC: invalid write to VC @%"HWADDR_PRIx, addr); } static const MemoryRegionOps pnv_xive_pc_ops = { .read = pnv_xive_pc_read, .write = pnv_xive_pc_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 8, .max_access_size = 8, }, .impl = { .min_access_size = 8, .max_access_size = 8, }, }; static void xive_nvt_pic_print_info(XiveNVT *nvt, uint32_t nvt_idx, Monitor *mon) { uint8_t eq_blk = xive_get_field32(NVT_W1_EQ_BLOCK, nvt->w1); uint32_t eq_idx = xive_get_field32(NVT_W1_EQ_INDEX, nvt->w1); if (!xive_nvt_is_valid(nvt)) { return; } monitor_printf(mon, " %08x end:%02x/%04x IPB:%02x\n", nvt_idx, eq_blk, eq_idx, xive_get_field32(NVT_W4_IPB, nvt->w4)); } void pnv_xive_pic_print_info(PnvXive *xive, Monitor *mon) { XiveRouter *xrtr = XIVE_ROUTER(xive); uint8_t blk = pnv_xive_block_id(xive); uint8_t chip_id = xive->chip->chip_id; uint32_t srcno0 = XIVE_EAS(blk, 0); uint32_t nr_ipis = pnv_xive_nr_ipis(xive, blk); XiveEAS eas; XiveEND end; XiveNVT nvt; int i; uint64_t xive_nvt_per_subpage; monitor_printf(mon, "XIVE[%x] #%d Source %08x .. %08x\n", chip_id, blk, srcno0, srcno0 + nr_ipis - 1); xive_source_pic_print_info(&xive->ipi_source, srcno0, mon); monitor_printf(mon, "XIVE[%x] #%d EAT %08x .. %08x\n", chip_id, blk, srcno0, srcno0 + nr_ipis - 1); for (i = 0; i < nr_ipis; i++) { if (xive_router_get_eas(xrtr, blk, i, &eas)) { break; } if (!xive_eas_is_masked(&eas)) { xive_eas_pic_print_info(&eas, i, mon); } } monitor_printf(mon, "XIVE[%x] #%d ENDT\n", chip_id, blk); i = 0; while (!xive_router_get_end(xrtr, blk, i, &end)) { xive_end_pic_print_info(&end, i++, mon); } monitor_printf(mon, "XIVE[%x] #%d END Escalation EAT\n", chip_id, blk); i = 0; while (!xive_router_get_end(xrtr, blk, i, &end)) { xive_end_eas_pic_print_info(&end, i++, mon); } monitor_printf(mon, "XIVE[%x] #%d NVTT %08x .. %08x\n", chip_id, blk, 0, XIVE_NVT_COUNT - 1); xive_nvt_per_subpage = pnv_xive_vst_per_subpage(xive, VST_TSEL_VPDT); for (i = 0; i < XIVE_NVT_COUNT; i += xive_nvt_per_subpage) { while (!xive_router_get_nvt(xrtr, blk, i, &nvt)) { xive_nvt_pic_print_info(&nvt, i++, mon); } } } static void pnv_xive_reset(void *dev) { PnvXive *xive = PNV_XIVE(dev); XiveSource *xsrc = &xive->ipi_source; XiveENDSource *end_xsrc = &xive->end_source; /* Default page size (Should be changed at runtime to 64k) */ xive->ic_shift = xive->vc_shift = xive->pc_shift = 12; /* Clear subregions */ if (memory_region_is_mapped(&xsrc->esb_mmio)) { memory_region_del_subregion(&xive->ipi_edt_mmio, &xsrc->esb_mmio); } if (memory_region_is_mapped(&xive->ipi_edt_mmio)) { memory_region_del_subregion(&xive->ipi_mmio, &xive->ipi_edt_mmio); } if (memory_region_is_mapped(&end_xsrc->esb_mmio)) { memory_region_del_subregion(&xive->end_edt_mmio, &end_xsrc->esb_mmio); } if (memory_region_is_mapped(&xive->end_edt_mmio)) { memory_region_del_subregion(&xive->end_mmio, &xive->end_edt_mmio); } } static void pnv_xive_init(Object *obj) { PnvXive *xive = PNV_XIVE(obj); object_initialize_child(obj, "ipi_source", &xive->ipi_source, TYPE_XIVE_SOURCE); object_initialize_child(obj, "end_source", &xive->end_source, TYPE_XIVE_END_SOURCE); } /* * Maximum number of IRQs and ENDs supported by HW */ #define PNV_XIVE_NR_IRQS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE)) #define PNV_XIVE_NR_ENDS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE)) static void pnv_xive_realize(DeviceState *dev, Error **errp) { PnvXive *xive = PNV_XIVE(dev); PnvXiveClass *pxc = PNV_XIVE_GET_CLASS(dev); XiveSource *xsrc = &xive->ipi_source; XiveENDSource *end_xsrc = &xive->end_source; Error *local_err = NULL; pxc->parent_realize(dev, &local_err); if (local_err) { error_propagate(errp, local_err); return; } assert(xive->chip); /* * The XiveSource and XiveENDSource objects are realized with the * maximum allowed HW configuration. The ESB MMIO regions will be * resized dynamically when the controller is configured by the FW * to limit accesses to resources not provisioned. */ object_property_set_int(OBJECT(xsrc), "nr-irqs", PNV_XIVE_NR_IRQS, &error_fatal); object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_abort); if (!qdev_realize(DEVICE(xsrc), NULL, errp)) { return; } object_property_set_int(OBJECT(end_xsrc), "nr-ends", PNV_XIVE_NR_ENDS, &error_fatal); object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive), &error_abort); if (!qdev_realize(DEVICE(end_xsrc), NULL, errp)) { return; } /* Default page size. Generally changed at runtime to 64k */ xive->ic_shift = xive->vc_shift = xive->pc_shift = 12; /* XSCOM region, used for initial configuration of the BARs */ memory_region_init_io(&xive->xscom_regs, OBJECT(dev), &pnv_xive_xscom_ops, xive, "xscom-xive", PNV9_XSCOM_XIVE_SIZE << 3); /* Interrupt controller MMIO regions */ memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic", PNV9_XIVE_IC_SIZE); memory_region_init_io(&xive->ic_reg_mmio, OBJECT(dev), &pnv_xive_ic_reg_ops, xive, "xive-ic-reg", 1 << xive->ic_shift); memory_region_init_io(&xive->ic_notify_mmio, OBJECT(dev), &pnv_xive_ic_notify_ops, xive, "xive-ic-notify", 1 << xive->ic_shift); /* The Pervasive LSI trigger and EOI pages (not modeled) */ memory_region_init_io(&xive->ic_lsi_mmio, OBJECT(dev), &pnv_xive_ic_lsi_ops, xive, "xive-ic-lsi", 2 << xive->ic_shift); /* Thread Interrupt Management Area (Indirect) */ memory_region_init_io(&xive->tm_indirect_mmio, OBJECT(dev), &xive_tm_indirect_ops, xive, "xive-tima-indirect", PNV9_XIVE_TM_SIZE); /* * Overall Virtualization Controller MMIO region containing the * IPI ESB pages and END ESB pages. The layout is defined by the * EDT "Domain table" and the accesses are dispatched using * address spaces for each. */ memory_region_init_io(&xive->vc_mmio, OBJECT(xive), &pnv_xive_vc_ops, xive, "xive-vc", PNV9_XIVE_VC_SIZE); memory_region_init(&xive->ipi_mmio, OBJECT(xive), "xive-vc-ipi", PNV9_XIVE_VC_SIZE); address_space_init(&xive->ipi_as, &xive->ipi_mmio, "xive-vc-ipi"); memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-vc-end", PNV9_XIVE_VC_SIZE); address_space_init(&xive->end_as, &xive->end_mmio, "xive-vc-end"); /* * The MMIO windows exposing the IPI ESBs and the END ESBs in the * VC region. Their size is configured by the FW in the EDT table. */ memory_region_init(&xive->ipi_edt_mmio, OBJECT(xive), "xive-vc-ipi-edt", 0); memory_region_init(&xive->end_edt_mmio, OBJECT(xive), "xive-vc-end-edt", 0); /* Presenter Controller MMIO region (not modeled) */ memory_region_init_io(&xive->pc_mmio, OBJECT(xive), &pnv_xive_pc_ops, xive, "xive-pc", PNV9_XIVE_PC_SIZE); /* Thread Interrupt Management Area (Direct) */ memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &pnv_xive_tm_ops, xive, "xive-tima", PNV9_XIVE_TM_SIZE); qemu_register_reset(pnv_xive_reset, dev); } static int pnv_xive_dt_xscom(PnvXScomInterface *dev, void *fdt, int xscom_offset) { const char compat[] = "ibm,power9-xive-x"; char *name; int offset; uint32_t lpc_pcba = PNV9_XSCOM_XIVE_BASE; uint32_t reg[] = { cpu_to_be32(lpc_pcba), cpu_to_be32(PNV9_XSCOM_XIVE_SIZE) }; name = g_strdup_printf("xive@%x", lpc_pcba); offset = fdt_add_subnode(fdt, xscom_offset, name); _FDT(offset); g_free(name); _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg)))); _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat)))); return 0; } static Property pnv_xive_properties[] = { DEFINE_PROP_UINT64("ic-bar", PnvXive, ic_base, 0), DEFINE_PROP_UINT64("vc-bar", PnvXive, vc_base, 0), DEFINE_PROP_UINT64("pc-bar", PnvXive, pc_base, 0), DEFINE_PROP_UINT64("tm-bar", PnvXive, tm_base, 0), /* The PnvChip id identifies the XIVE interrupt controller. */ DEFINE_PROP_LINK("chip", PnvXive, chip, TYPE_PNV_CHIP, PnvChip *), DEFINE_PROP_END_OF_LIST(), }; static void pnv_xive_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass); XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass); XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass); XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass); PnvXiveClass *pxc = PNV_XIVE_CLASS(klass); xdc->dt_xscom = pnv_xive_dt_xscom; dc->desc = "PowerNV XIVE Interrupt Controller"; device_class_set_parent_realize(dc, pnv_xive_realize, &pxc->parent_realize); dc->realize = pnv_xive_realize; device_class_set_props(dc, pnv_xive_properties); xrc->get_eas = pnv_xive_get_eas; xrc->get_pq = pnv_xive_get_pq; xrc->set_pq = pnv_xive_set_pq; xrc->get_end = pnv_xive_get_end; xrc->write_end = pnv_xive_write_end; xrc->get_nvt = pnv_xive_get_nvt; xrc->write_nvt = pnv_xive_write_nvt; xrc->get_block_id = pnv_xive_get_block_id; xnc->notify = pnv_xive_notify; xpc->match_nvt = pnv_xive_match_nvt; }; static const TypeInfo pnv_xive_info = { .name = TYPE_PNV_XIVE, .parent = TYPE_XIVE_ROUTER, .instance_init = pnv_xive_init, .instance_size = sizeof(PnvXive), .class_init = pnv_xive_class_init, .class_size = sizeof(PnvXiveClass), .interfaces = (InterfaceInfo[]) { { TYPE_PNV_XSCOM_INTERFACE }, { } } }; static void pnv_xive_register_types(void) { type_register_static(&pnv_xive_info); } type_init(pnv_xive_register_types)