/* * OpenPIC emulation * * Copyright (c) 2004 Jocelyn Mayer * 2011 Alexander Graf * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /* * * Based on OpenPic implementations: * - Motorola MPC8245 & MPC8540 user manuals. * - Motorola Harrier programmer manual * */ #include "qemu/osdep.h" #include "hw/irq.h" #include "hw/pci/pci.h" #include "hw/ppc/openpic.h" #include "hw/ppc/ppc_e500.h" #include "hw/qdev-properties.h" #include "hw/sysbus.h" #include "migration/vmstate.h" #include "hw/pci/msi.h" #include "qapi/error.h" #include "qemu/bitops.h" #include "qapi/qmp/qerror.h" #include "qemu/module.h" #include "qemu/timer.h" #include "qemu/error-report.h" /* #define DEBUG_OPENPIC */ #ifdef DEBUG_OPENPIC static const int debug_openpic = 1; #else static const int debug_openpic = 0; #endif static int get_current_cpu(void); #define DPRINTF(fmt, ...) do { \ if (debug_openpic) { \ info_report("Core%d: " fmt, get_current_cpu(), ## __VA_ARGS__); \ } \ } while (0) /* OpenPIC capability flags */ #define OPENPIC_FLAG_IDR_CRIT (1 << 0) #define OPENPIC_FLAG_ILR (2 << 0) /* OpenPIC address map */ #define OPENPIC_GLB_REG_START 0x0 #define OPENPIC_GLB_REG_SIZE 0x10F0 #define OPENPIC_TMR_REG_START 0x10F0 #define OPENPIC_TMR_REG_SIZE 0x220 #define OPENPIC_MSI_REG_START 0x1600 #define OPENPIC_MSI_REG_SIZE 0x200 #define OPENPIC_SUMMARY_REG_START 0x3800 #define OPENPIC_SUMMARY_REG_SIZE 0x800 #define OPENPIC_SRC_REG_START 0x10000 #define OPENPIC_SRC_REG_SIZE (OPENPIC_MAX_SRC * 0x20) #define OPENPIC_CPU_REG_START 0x20000 #define OPENPIC_CPU_REG_SIZE 0x100 + ((MAX_CPU - 1) * 0x1000) static FslMpicInfo fsl_mpic_20 = { .max_ext = 12, }; static FslMpicInfo fsl_mpic_42 = { .max_ext = 12, }; #define FRR_NIRQ_SHIFT 16 #define FRR_NCPU_SHIFT 8 #define FRR_VID_SHIFT 0 #define VID_REVISION_1_2 2 #define VID_REVISION_1_3 3 #define VIR_GENERIC 0x00000000 /* Generic Vendor ID */ #define VIR_MPIC2A 0x00004614 /* IBM MPIC-2A */ #define GCR_RESET 0x80000000 #define GCR_MODE_PASS 0x00000000 #define GCR_MODE_MIXED 0x20000000 #define GCR_MODE_PROXY 0x60000000 #define TBCR_CI 0x80000000 /* count inhibit */ #define TCCR_TOG 0x80000000 /* toggles when decrement to zero */ #define IDR_EP_SHIFT 31 #define IDR_EP_MASK (1U << IDR_EP_SHIFT) #define IDR_CI0_SHIFT 30 #define IDR_CI1_SHIFT 29 #define IDR_P1_SHIFT 1 #define IDR_P0_SHIFT 0 #define ILR_INTTGT_MASK 0x000000ff #define ILR_INTTGT_INT 0x00 #define ILR_INTTGT_CINT 0x01 /* critical */ #define ILR_INTTGT_MCP 0x02 /* machine check */ /* * The currently supported INTTGT values happen to be the same as QEMU's * openpic output codes, but don't depend on this. The output codes * could change (unlikely, but...) or support could be added for * more INTTGT values. */ static const int inttgt_output[][2] = { { ILR_INTTGT_INT, OPENPIC_OUTPUT_INT }, { ILR_INTTGT_CINT, OPENPIC_OUTPUT_CINT }, { ILR_INTTGT_MCP, OPENPIC_OUTPUT_MCK }, }; static int inttgt_to_output(int inttgt) { int i; for (i = 0; i < ARRAY_SIZE(inttgt_output); i++) { if (inttgt_output[i][0] == inttgt) { return inttgt_output[i][1]; } } error_report("%s: unsupported inttgt %d", __func__, inttgt); return OPENPIC_OUTPUT_INT; } static int output_to_inttgt(int output) { int i; for (i = 0; i < ARRAY_SIZE(inttgt_output); i++) { if (inttgt_output[i][1] == output) { return inttgt_output[i][0]; } } abort(); } #define MSIIR_OFFSET 0x140 #define MSIIR_SRS_SHIFT 29 #define MSIIR_SRS_MASK (0x7 << MSIIR_SRS_SHIFT) #define MSIIR_IBS_SHIFT 24 #define MSIIR_IBS_MASK (0x1f << MSIIR_IBS_SHIFT) static int get_current_cpu(void) { if (!current_cpu) { return -1; } return current_cpu->cpu_index; } static uint32_t openpic_cpu_read_internal(void *opaque, hwaddr addr, int idx); static void openpic_cpu_write_internal(void *opaque, hwaddr addr, uint32_t val, int idx); static void openpic_reset(DeviceState *d); /* * Convert between openpic clock ticks and nanosecs. In the hardware the clock * frequency is driven by board inputs to the PIC which the PIC would then * divide by 4 or 8. For now hard code to 25MZ. */ #define OPENPIC_TIMER_FREQ_MHZ 25 #define OPENPIC_TIMER_NS_PER_TICK (1000 / OPENPIC_TIMER_FREQ_MHZ) static inline uint64_t ns_to_ticks(uint64_t ns) { return ns / OPENPIC_TIMER_NS_PER_TICK; } static inline uint64_t ticks_to_ns(uint64_t ticks) { return ticks * OPENPIC_TIMER_NS_PER_TICK; } static inline void IRQ_setbit(IRQQueue *q, int n_IRQ) { set_bit(n_IRQ, q->queue); } static inline void IRQ_resetbit(IRQQueue *q, int n_IRQ) { clear_bit(n_IRQ, q->queue); } static void IRQ_check(OpenPICState *opp, IRQQueue *q) { int irq = -1; int next = -1; int priority = -1; for (;;) { irq = find_next_bit(q->queue, opp->max_irq, irq + 1); if (irq == opp->max_irq) { break; } DPRINTF("IRQ_check: irq %d set ivpr_pr=%d pr=%d", irq, IVPR_PRIORITY(opp->src[irq].ivpr), priority); if (IVPR_PRIORITY(opp->src[irq].ivpr) > priority) { next = irq; priority = IVPR_PRIORITY(opp->src[irq].ivpr); } } q->next = next; q->priority = priority; } static int IRQ_get_next(OpenPICState *opp, IRQQueue *q) { /* XXX: optimize */ IRQ_check(opp, q); return q->next; } static void IRQ_local_pipe(OpenPICState *opp, int n_CPU, int n_IRQ, bool active, bool was_active) { IRQDest *dst; IRQSource *src; int priority; dst = &opp->dst[n_CPU]; src = &opp->src[n_IRQ]; DPRINTF("%s: IRQ %d active %d was %d", __func__, n_IRQ, active, was_active); if (src->output != OPENPIC_OUTPUT_INT) { DPRINTF("%s: output %d irq %d active %d was %d count %d", __func__, src->output, n_IRQ, active, was_active, dst->outputs_active[src->output]); /* * On Freescale MPIC, critical interrupts ignore priority, * IACK, EOI, etc. Before MPIC v4.1 they also ignore * masking. */ if (active) { if (!was_active && dst->outputs_active[src->output]++ == 0) { DPRINTF("%s: Raise OpenPIC output %d cpu %d irq %d", __func__, src->output, n_CPU, n_IRQ); qemu_irq_raise(dst->irqs[src->output]); } } else { if (was_active && --dst->outputs_active[src->output] == 0) { DPRINTF("%s: Lower OpenPIC output %d cpu %d irq %d", __func__, src->output, n_CPU, n_IRQ); qemu_irq_lower(dst->irqs[src->output]); } } return; } priority = IVPR_PRIORITY(src->ivpr); /* * Even if the interrupt doesn't have enough priority, * it is still raised, in case ctpr is lowered later. */ if (active) { IRQ_setbit(&dst->raised, n_IRQ); } else { IRQ_resetbit(&dst->raised, n_IRQ); } IRQ_check(opp, &dst->raised); if (active && priority <= dst->ctpr) { DPRINTF("%s: IRQ %d priority %d too low for ctpr %d on CPU %d", __func__, n_IRQ, priority, dst->ctpr, n_CPU); active = 0; } if (active) { if (IRQ_get_next(opp, &dst->servicing) >= 0 && priority <= dst->servicing.priority) { DPRINTF("%s: IRQ %d is hidden by servicing IRQ %d on CPU %d", __func__, n_IRQ, dst->servicing.next, n_CPU); } else { DPRINTF("%s: Raise OpenPIC INT output cpu %d irq %d/%d", __func__, n_CPU, n_IRQ, dst->raised.next); qemu_irq_raise(opp->dst[n_CPU].irqs[OPENPIC_OUTPUT_INT]); } } else { IRQ_get_next(opp, &dst->servicing); if (dst->raised.priority > dst->ctpr && dst->raised.priority > dst->servicing.priority) { DPRINTF("%s: IRQ %d inactive, IRQ %d prio %d above %d/%d, CPU %d", __func__, n_IRQ, dst->raised.next, dst->raised.priority, dst->ctpr, dst->servicing.priority, n_CPU); /* IRQ line stays asserted */ } else { DPRINTF("%s: IRQ %d inactive, current prio %d/%d, CPU %d", __func__, n_IRQ, dst->ctpr, dst->servicing.priority, n_CPU); qemu_irq_lower(opp->dst[n_CPU].irqs[OPENPIC_OUTPUT_INT]); } } } /* update pic state because registers for n_IRQ have changed value */ static void openpic_update_irq(OpenPICState *opp, int n_IRQ) { IRQSource *src; bool active, was_active; int i; src = &opp->src[n_IRQ]; active = src->pending; if ((src->ivpr & IVPR_MASK_MASK) && !src->nomask) { /* Interrupt source is disabled */ DPRINTF("%s: IRQ %d is disabled", __func__, n_IRQ); active = false; } was_active = !!(src->ivpr & IVPR_ACTIVITY_MASK); /* * We don't have a similar check for already-active because * ctpr may have changed and we need to withdraw the interrupt. */ if (!active && !was_active) { DPRINTF("%s: IRQ %d is already inactive", __func__, n_IRQ); return; } if (active) { src->ivpr |= IVPR_ACTIVITY_MASK; } else { src->ivpr &= ~IVPR_ACTIVITY_MASK; } if (src->destmask == 0) { /* No target */ DPRINTF("%s: IRQ %d has no target", __func__, n_IRQ); return; } if (src->destmask == (1 << src->last_cpu)) { /* Only one CPU is allowed to receive this IRQ */ IRQ_local_pipe(opp, src->last_cpu, n_IRQ, active, was_active); } else if (!(src->ivpr & IVPR_MODE_MASK)) { /* Directed delivery mode */ for (i = 0; i < opp->nb_cpus; i++) { if (src->destmask & (1 << i)) { IRQ_local_pipe(opp, i, n_IRQ, active, was_active); } } } else { /* Distributed delivery mode */ for (i = src->last_cpu + 1; i != src->last_cpu; i++) { if (i == opp->nb_cpus) { i = 0; } if (src->destmask & (1 << i)) { IRQ_local_pipe(opp, i, n_IRQ, active, was_active); src->last_cpu = i; break; } } } } static void openpic_set_irq(void *opaque, int n_IRQ, int level) { OpenPICState *opp = opaque; IRQSource *src; if (n_IRQ >= OPENPIC_MAX_IRQ) { error_report("%s: IRQ %d out of range", __func__, n_IRQ); abort(); } src = &opp->src[n_IRQ]; DPRINTF("openpic: set irq %d = %d ivpr=0x%08x", n_IRQ, level, src->ivpr); if (src->level) { /* level-sensitive irq */ src->pending = level; openpic_update_irq(opp, n_IRQ); } else { /* edge-sensitive irq */ if (level) { src->pending = 1; openpic_update_irq(opp, n_IRQ); } if (src->output != OPENPIC_OUTPUT_INT) { /* * Edge-triggered interrupts shouldn't be used * with non-INT delivery, but just in case, * try to make it do something sane rather than * cause an interrupt storm. This is close to * what you'd probably see happen in real hardware. */ src->pending = 0; openpic_update_irq(opp, n_IRQ); } } } static inline uint32_t read_IRQreg_idr(OpenPICState *opp, int n_IRQ) { return opp->src[n_IRQ].idr; } static inline uint32_t read_IRQreg_ilr(OpenPICState *opp, int n_IRQ) { if (opp->flags & OPENPIC_FLAG_ILR) { return output_to_inttgt(opp->src[n_IRQ].output); } return 0xffffffff; } static inline uint32_t read_IRQreg_ivpr(OpenPICState *opp, int n_IRQ) { return opp->src[n_IRQ].ivpr; } static inline void write_IRQreg_idr(OpenPICState *opp, int n_IRQ, uint32_t val) { IRQSource *src = &opp->src[n_IRQ]; uint32_t normal_mask = (1UL << opp->nb_cpus) - 1; uint32_t crit_mask = 0; uint32_t mask = normal_mask; int crit_shift = IDR_EP_SHIFT - opp->nb_cpus; int i; if (opp->flags & OPENPIC_FLAG_IDR_CRIT) { crit_mask = mask << crit_shift; mask |= crit_mask | IDR_EP; } src->idr = val & mask; DPRINTF("Set IDR %d to 0x%08x", n_IRQ, src->idr); if (opp->flags & OPENPIC_FLAG_IDR_CRIT) { if (src->idr & crit_mask) { if (src->idr & normal_mask) { DPRINTF("%s: IRQ configured for multiple output types, using " "critical", __func__); } src->output = OPENPIC_OUTPUT_CINT; src->nomask = true; src->destmask = 0; for (i = 0; i < opp->nb_cpus; i++) { int n_ci = IDR_CI0_SHIFT - i; if (src->idr & (1UL << n_ci)) { src->destmask |= 1UL << i; } } } else { src->output = OPENPIC_OUTPUT_INT; src->nomask = false; src->destmask = src->idr & normal_mask; } } else { src->destmask = src->idr; } } static inline void write_IRQreg_ilr(OpenPICState *opp, int n_IRQ, uint32_t val) { if (opp->flags & OPENPIC_FLAG_ILR) { IRQSource *src = &opp->src[n_IRQ]; src->output = inttgt_to_output(val & ILR_INTTGT_MASK); DPRINTF("Set ILR %d to 0x%08x, output %d", n_IRQ, src->idr, src->output); /* TODO: on MPIC v4.0 only, set nomask for non-INT */ } } static inline void write_IRQreg_ivpr(OpenPICState *opp, int n_IRQ, uint32_t val) { uint32_t mask; /* * NOTE when implementing newer FSL MPIC models: starting with v4.0, * the polarity bit is read-only on internal interrupts. */ mask = IVPR_MASK_MASK | IVPR_PRIORITY_MASK | IVPR_SENSE_MASK | IVPR_POLARITY_MASK | opp->vector_mask; /* ACTIVITY bit is read-only */ opp->src[n_IRQ].ivpr = (opp->src[n_IRQ].ivpr & IVPR_ACTIVITY_MASK) | (val & mask); /* * For FSL internal interrupts, The sense bit is reserved and zero, * and the interrupt is always level-triggered. Timers and IPIs * have no sense or polarity bits, and are edge-triggered. */ switch (opp->src[n_IRQ].type) { case IRQ_TYPE_NORMAL: opp->src[n_IRQ].level = !!(opp->src[n_IRQ].ivpr & IVPR_SENSE_MASK); break; case IRQ_TYPE_FSLINT: opp->src[n_IRQ].ivpr &= ~IVPR_SENSE_MASK; break; case IRQ_TYPE_FSLSPECIAL: opp->src[n_IRQ].ivpr &= ~(IVPR_POLARITY_MASK | IVPR_SENSE_MASK); break; } openpic_update_irq(opp, n_IRQ); DPRINTF("Set IVPR %d to 0x%08x -> 0x%08x", n_IRQ, val, opp->src[n_IRQ].ivpr); } static void openpic_gcr_write(OpenPICState *opp, uint64_t val) { bool mpic_proxy = false; if (val & GCR_RESET) { openpic_reset(DEVICE(opp)); return; } opp->gcr &= ~opp->mpic_mode_mask; opp->gcr |= val & opp->mpic_mode_mask; /* Set external proxy mode */ if ((val & opp->mpic_mode_mask) == GCR_MODE_PROXY) { mpic_proxy = true; } ppce500_set_mpic_proxy(mpic_proxy); } static void openpic_gbl_write(void *opaque, hwaddr addr, uint64_t val, unsigned len) { OpenPICState *opp = opaque; IRQDest *dst; int idx; DPRINTF("%s: addr %#" HWADDR_PRIx " <= %08" PRIx64, __func__, addr, val); if (addr & 0xF) { return; } switch (addr) { case 0x00: /* Block Revision Register1 (BRR1) is Readonly */ break; case 0x40: case 0x50: case 0x60: case 0x70: case 0x80: case 0x90: case 0xA0: case 0xB0: openpic_cpu_write_internal(opp, addr, val, get_current_cpu()); break; case 0x1000: /* FRR */ break; case 0x1020: /* GCR */ openpic_gcr_write(opp, val); break; case 0x1080: /* VIR */ break; case 0x1090: /* PIR */ for (idx = 0; idx < opp->nb_cpus; idx++) { if ((val & (1 << idx)) && !(opp->pir & (1 << idx))) { DPRINTF("Raise OpenPIC RESET output for CPU %d", idx); dst = &opp->dst[idx]; qemu_irq_raise(dst->irqs[OPENPIC_OUTPUT_RESET]); } else if (!(val & (1 << idx)) && (opp->pir & (1 << idx))) { DPRINTF("Lower OpenPIC RESET output for CPU %d", idx); dst = &opp->dst[idx]; qemu_irq_lower(dst->irqs[OPENPIC_OUTPUT_RESET]); } } opp->pir = val; break; case 0x10A0: /* IPI_IVPR */ case 0x10B0: case 0x10C0: case 0x10D0: idx = (addr - 0x10A0) >> 4; write_IRQreg_ivpr(opp, opp->irq_ipi0 + idx, val); break; case 0x10E0: /* SPVE */ opp->spve = val & opp->vector_mask; break; default: break; } } static uint64_t openpic_gbl_read(void *opaque, hwaddr addr, unsigned len) { OpenPICState *opp = opaque; uint32_t retval; DPRINTF("%s: addr %#" HWADDR_PRIx, __func__, addr); retval = 0xFFFFFFFF; if (addr & 0xF) { return retval; } switch (addr) { case 0x1000: /* FRR */ retval = opp->frr; break; case 0x1020: /* GCR */ retval = opp->gcr; break; case 0x1080: /* VIR */ retval = opp->vir; break; case 0x1090: /* PIR */ retval = 0x00000000; break; case 0x00: /* Block Revision Register1 (BRR1) */ retval = opp->brr1; break; case 0x40: case 0x50: case 0x60: case 0x70: case 0x80: case 0x90: case 0xA0: case 0xB0: retval = openpic_cpu_read_internal(opp, addr, get_current_cpu()); break; case 0x10A0: /* IPI_IVPR */ case 0x10B0: case 0x10C0: case 0x10D0: { int idx; idx = (addr - 0x10A0) >> 4; retval = read_IRQreg_ivpr(opp, opp->irq_ipi0 + idx); } break; case 0x10E0: /* SPVE */ retval = opp->spve; break; default: break; } DPRINTF("%s: => 0x%08x", __func__, retval); return retval; } static void openpic_tmr_set_tmr(OpenPICTimer *tmr, uint32_t val, bool enabled); static void qemu_timer_cb(void *opaque) { OpenPICTimer *tmr = opaque; OpenPICState *opp = tmr->opp; uint32_t n_IRQ = tmr->n_IRQ; uint32_t val = tmr->tbcr & ~TBCR_CI; uint32_t tog = ((tmr->tccr & TCCR_TOG) ^ TCCR_TOG); /* invert toggle. */ DPRINTF("%s n_IRQ=%d", __func__, n_IRQ); /* Reload current count from base count and setup timer. */ tmr->tccr = val | tog; openpic_tmr_set_tmr(tmr, val, /*enabled=*/true); /* Raise the interrupt. */ opp->src[n_IRQ].destmask = read_IRQreg_idr(opp, n_IRQ); openpic_set_irq(opp, n_IRQ, 1); openpic_set_irq(opp, n_IRQ, 0); } /* * If enabled is true, arranges for an interrupt to be raised val clocks into * the future, if enabled is false cancels the timer. */ static void openpic_tmr_set_tmr(OpenPICTimer *tmr, uint32_t val, bool enabled) { uint64_t ns = ticks_to_ns(val & ~TCCR_TOG); /* * A count of zero causes a timer to be set to expire immediately. This * effectively stops the simulation since the timer is constantly expiring * which prevents guest code execution, so we don't honor that * configuration. On real hardware, this situation would generate an * interrupt on every clock cycle if the interrupt was unmasked. */ if ((ns == 0) || !enabled) { tmr->qemu_timer_active = false; tmr->tccr = tmr->tccr & TCCR_TOG; timer_del(tmr->qemu_timer); /* set timer to never expire. */ } else { tmr->qemu_timer_active = true; uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); tmr->origin_time = now; timer_mod(tmr->qemu_timer, now + ns); /* set timer expiration. */ } } /* * Returns the current tccr value, i.e., timer value (in clocks) with * appropriate TOG. */ static uint64_t openpic_tmr_get_timer(OpenPICTimer *tmr) { uint64_t retval; if (!tmr->qemu_timer_active) { retval = tmr->tccr; } else { uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); uint64_t used = now - tmr->origin_time; /* nsecs */ uint32_t used_ticks = (uint32_t)ns_to_ticks(used); uint32_t count = (tmr->tccr & ~TCCR_TOG) - used_ticks; retval = (uint32_t)((tmr->tccr & TCCR_TOG) | (count & ~TCCR_TOG)); } return retval; } static void openpic_tmr_write(void *opaque, hwaddr addr, uint64_t val, unsigned len) { OpenPICState *opp = opaque; int idx; DPRINTF("%s: addr %#" HWADDR_PRIx " <= %08" PRIx64, __func__, (addr + 0x10f0), val); if (addr & 0xF) { return; } if (addr == 0) { /* TFRR */ opp->tfrr = val; return; } addr -= 0x10; /* correct for TFRR */ idx = (addr >> 6) & 0x3; switch (addr & 0x30) { case 0x00: /* TCCR */ break; case 0x10: /* TBCR */ /* Did the enable status change? */ if ((opp->timers[idx].tbcr & TBCR_CI) != (val & TBCR_CI)) { /* Did "Count Inhibit" transition from 1 to 0? */ if ((val & TBCR_CI) == 0) { opp->timers[idx].tccr = val & ~TCCR_TOG; } openpic_tmr_set_tmr(&opp->timers[idx], (val & ~TBCR_CI), /*enabled=*/((val & TBCR_CI) == 0)); } opp->timers[idx].tbcr = val; break; case 0x20: /* TVPR */ write_IRQreg_ivpr(opp, opp->irq_tim0 + idx, val); break; case 0x30: /* TDR */ write_IRQreg_idr(opp, opp->irq_tim0 + idx, val); break; } } static uint64_t openpic_tmr_read(void *opaque, hwaddr addr, unsigned len) { OpenPICState *opp = opaque; uint32_t retval = -1; int idx; DPRINTF("%s: addr %#" HWADDR_PRIx, __func__, addr + 0x10f0); if (addr & 0xF) { goto out; } if (addr == 0) { /* TFRR */ retval = opp->tfrr; goto out; } addr -= 0x10; /* correct for TFRR */ idx = (addr >> 6) & 0x3; switch (addr & 0x30) { case 0x00: /* TCCR */ retval = openpic_tmr_get_timer(&opp->timers[idx]); break; case 0x10: /* TBCR */ retval = opp->timers[idx].tbcr; break; case 0x20: /* TVPR */ retval = read_IRQreg_ivpr(opp, opp->irq_tim0 + idx); break; case 0x30: /* TDR */ retval = read_IRQreg_idr(opp, opp->irq_tim0 + idx); break; } out: DPRINTF("%s: => 0x%08x", __func__, retval); return retval; } static void openpic_src_write(void *opaque, hwaddr addr, uint64_t val, unsigned len) { OpenPICState *opp = opaque; int idx; DPRINTF("%s: addr %#" HWADDR_PRIx " <= %08" PRIx64, __func__, addr, val); addr = addr & 0xffff; idx = addr >> 5; switch (addr & 0x1f) { case 0x00: write_IRQreg_ivpr(opp, idx, val); break; case 0x10: write_IRQreg_idr(opp, idx, val); break; case 0x18: write_IRQreg_ilr(opp, idx, val); break; } } static uint64_t openpic_src_read(void *opaque, uint64_t addr, unsigned len) { OpenPICState *opp = opaque; uint32_t retval; int idx; DPRINTF("%s: addr %#" HWADDR_PRIx, __func__, addr); retval = 0xFFFFFFFF; addr = addr & 0xffff; idx = addr >> 5; switch (addr & 0x1f) { case 0x00: retval = read_IRQreg_ivpr(opp, idx); break; case 0x10: retval = read_IRQreg_idr(opp, idx); break; case 0x18: retval = read_IRQreg_ilr(opp, idx); break; } DPRINTF("%s: => 0x%08x", __func__, retval); return retval; } static void openpic_msi_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { OpenPICState *opp = opaque; int idx = opp->irq_msi; int srs, ibs; DPRINTF("%s: addr %#" HWADDR_PRIx " <= 0x%08" PRIx64, __func__, addr, val); if (addr & 0xF) { return; } switch (addr) { case MSIIR_OFFSET: srs = val >> MSIIR_SRS_SHIFT; idx += srs; ibs = (val & MSIIR_IBS_MASK) >> MSIIR_IBS_SHIFT; opp->msi[srs].msir |= 1 << ibs; openpic_set_irq(opp, idx, 1); break; default: /* most registers are read-only, thus ignored */ break; } } static uint64_t openpic_msi_read(void *opaque, hwaddr addr, unsigned size) { OpenPICState *opp = opaque; uint64_t r = 0; int i, srs; DPRINTF("%s: addr %#" HWADDR_PRIx, __func__, addr); if (addr & 0xF) { return -1; } srs = addr >> 4; switch (addr) { case 0x00: case 0x10: case 0x20: case 0x30: case 0x40: case 0x50: case 0x60: case 0x70: /* MSIRs */ r = opp->msi[srs].msir; /* Clear on read */ opp->msi[srs].msir = 0; openpic_set_irq(opp, opp->irq_msi + srs, 0); break; case 0x120: /* MSISR */ for (i = 0; i < MAX_MSI; i++) { r |= (opp->msi[i].msir ? 1 : 0) << i; } break; } return r; } static uint64_t openpic_summary_read(void *opaque, hwaddr addr, unsigned size) { uint64_t r = 0; DPRINTF("%s: addr %#" HWADDR_PRIx, __func__, addr); /* TODO: EISR/EIMR */ return r; } static void openpic_summary_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { DPRINTF("%s: addr %#" HWADDR_PRIx " <= 0x%08" PRIx64, __func__, addr, val); /* TODO: EISR/EIMR */ } static void openpic_cpu_write_internal(void *opaque, hwaddr addr, uint32_t val, int idx) { OpenPICState *opp = opaque; IRQSource *src; IRQDest *dst; int s_IRQ, n_IRQ; DPRINTF("%s: cpu %d addr %#" HWADDR_PRIx " <= 0x%08x", __func__, idx, addr, val); if (idx < 0 || idx >= opp->nb_cpus) { return; } if (addr & 0xF) { return; } dst = &opp->dst[idx]; addr &= 0xFF0; switch (addr) { case 0x40: /* IPIDR */ case 0x50: case 0x60: case 0x70: idx = (addr - 0x40) >> 4; /* we use IDE as mask which CPUs to deliver the IPI to still. */ opp->src[opp->irq_ipi0 + idx].destmask |= val; openpic_set_irq(opp, opp->irq_ipi0 + idx, 1); openpic_set_irq(opp, opp->irq_ipi0 + idx, 0); break; case 0x80: /* CTPR */ dst->ctpr = val & 0x0000000F; DPRINTF("%s: set CPU %d ctpr to %d, raised %d servicing %d", __func__, idx, dst->ctpr, dst->raised.priority, dst->servicing.priority); if (dst->raised.priority <= dst->ctpr) { DPRINTF("%s: Lower OpenPIC INT output cpu %d due to ctpr", __func__, idx); qemu_irq_lower(dst->irqs[OPENPIC_OUTPUT_INT]); } else if (dst->raised.priority > dst->servicing.priority) { DPRINTF("%s: Raise OpenPIC INT output cpu %d irq %d", __func__, idx, dst->raised.next); qemu_irq_raise(dst->irqs[OPENPIC_OUTPUT_INT]); } break; case 0x90: /* WHOAMI */ /* Read-only register */ break; case 0xA0: /* IACK */ /* Read-only register */ break; case 0xB0: /* EOI */ DPRINTF("EOI"); s_IRQ = IRQ_get_next(opp, &dst->servicing); if (s_IRQ < 0) { DPRINTF("%s: EOI with no interrupt in service", __func__); break; } IRQ_resetbit(&dst->servicing, s_IRQ); /* Set up next servicing IRQ */ s_IRQ = IRQ_get_next(opp, &dst->servicing); /* Check queued interrupts. */ n_IRQ = IRQ_get_next(opp, &dst->raised); src = &opp->src[n_IRQ]; if (n_IRQ != -1 && (s_IRQ == -1 || IVPR_PRIORITY(src->ivpr) > dst->servicing.priority)) { DPRINTF("Raise OpenPIC INT output cpu %d irq %d", idx, n_IRQ); qemu_irq_raise(opp->dst[idx].irqs[OPENPIC_OUTPUT_INT]); } break; default: break; } } static void openpic_cpu_write(void *opaque, hwaddr addr, uint64_t val, unsigned len) { openpic_cpu_write_internal(opaque, addr, val, (addr & 0x1f000) >> 12); } static uint32_t openpic_iack(OpenPICState *opp, IRQDest *dst, int cpu) { IRQSource *src; int retval, irq; DPRINTF("Lower OpenPIC INT output"); qemu_irq_lower(dst->irqs[OPENPIC_OUTPUT_INT]); irq = IRQ_get_next(opp, &dst->raised); DPRINTF("IACK: irq=%d", irq); if (irq == -1) { /* No more interrupt pending */ return opp->spve; } src = &opp->src[irq]; if (!(src->ivpr & IVPR_ACTIVITY_MASK) || !(IVPR_PRIORITY(src->ivpr) > dst->ctpr)) { error_report("%s: bad raised IRQ %d ctpr %d ivpr 0x%08x", __func__, irq, dst->ctpr, src->ivpr); openpic_update_irq(opp, irq); retval = opp->spve; } else { /* IRQ enter servicing state */ IRQ_setbit(&dst->servicing, irq); retval = IVPR_VECTOR(opp, src->ivpr); } if (!src->level) { /* edge-sensitive IRQ */ src->ivpr &= ~IVPR_ACTIVITY_MASK; src->pending = 0; IRQ_resetbit(&dst->raised, irq); } /* Timers and IPIs support multicast. */ if (((irq >= opp->irq_ipi0) && (irq < (opp->irq_ipi0 + OPENPIC_MAX_IPI))) || ((irq >= opp->irq_tim0) && (irq < (opp->irq_tim0 + OPENPIC_MAX_TMR)))) { DPRINTF("irq is IPI or TMR"); src->destmask &= ~(1 << cpu); if (src->destmask && !src->level) { /* trigger on CPUs that didn't know about it yet */ openpic_set_irq(opp, irq, 1); openpic_set_irq(opp, irq, 0); /* if all CPUs knew about it, set active bit again */ src->ivpr |= IVPR_ACTIVITY_MASK; } } return retval; } static uint32_t openpic_cpu_read_internal(void *opaque, hwaddr addr, int idx) { OpenPICState *opp = opaque; IRQDest *dst; uint32_t retval; DPRINTF("%s: cpu %d addr %#" HWADDR_PRIx, __func__, idx, addr); retval = 0xFFFFFFFF; if (idx < 0 || idx >= opp->nb_cpus) { return retval; } if (addr & 0xF) { return retval; } dst = &opp->dst[idx]; addr &= 0xFF0; switch (addr) { case 0x80: /* CTPR */ retval = dst->ctpr; break; case 0x90: /* WHOAMI */ retval = idx; break; case 0xA0: /* IACK */ retval = openpic_iack(opp, dst, idx); break; case 0xB0: /* EOI */ retval = 0; break; default: break; } DPRINTF("%s: => 0x%08x", __func__, retval); return retval; } static uint64_t openpic_cpu_read(void *opaque, hwaddr addr, unsigned len) { return openpic_cpu_read_internal(opaque, addr, (addr & 0x1f000) >> 12); } static const MemoryRegionOps openpic_glb_ops_le = { .write = openpic_gbl_write, .read = openpic_gbl_read, .endianness = DEVICE_LITTLE_ENDIAN, .impl = { .min_access_size = 4, .max_access_size = 4, }, }; static const MemoryRegionOps openpic_glb_ops_be = { .write = openpic_gbl_write, .read = openpic_gbl_read, .endianness = DEVICE_BIG_ENDIAN, .impl = { .min_access_size = 4, .max_access_size = 4, }, }; static const MemoryRegionOps openpic_tmr_ops_le = { .write = openpic_tmr_write, .read = openpic_tmr_read, .endianness = DEVICE_LITTLE_ENDIAN, .impl = { .min_access_size = 4, .max_access_size = 4, }, }; static const MemoryRegionOps openpic_tmr_ops_be = { .write = openpic_tmr_write, .read = openpic_tmr_read, .endianness = DEVICE_BIG_ENDIAN, .impl = { .min_access_size = 4, .max_access_size = 4, }, }; static const MemoryRegionOps openpic_cpu_ops_le = { .write = openpic_cpu_write, .read = openpic_cpu_read, .endianness = DEVICE_LITTLE_ENDIAN, .impl = { .min_access_size = 4, .max_access_size = 4, }, }; static const MemoryRegionOps openpic_cpu_ops_be = { .write = openpic_cpu_write, .read = openpic_cpu_read, .endianness = DEVICE_BIG_ENDIAN, .impl = { .min_access_size = 4, .max_access_size = 4, }, }; static const MemoryRegionOps openpic_src_ops_le = { .write = openpic_src_write, .read = openpic_src_read, .endianness = DEVICE_LITTLE_ENDIAN, .impl = { .min_access_size = 4, .max_access_size = 4, }, }; static const MemoryRegionOps openpic_src_ops_be = { .write = openpic_src_write, .read = openpic_src_read, .endianness = DEVICE_BIG_ENDIAN, .impl = { .min_access_size = 4, .max_access_size = 4, }, }; static const MemoryRegionOps openpic_msi_ops_be = { .read = openpic_msi_read, .write = openpic_msi_write, .endianness = DEVICE_BIG_ENDIAN, .impl = { .min_access_size = 4, .max_access_size = 4, }, }; static const MemoryRegionOps openpic_summary_ops_be = { .read = openpic_summary_read, .write = openpic_summary_write, .endianness = DEVICE_BIG_ENDIAN, .impl = { .min_access_size = 4, .max_access_size = 4, }, }; static void openpic_reset(DeviceState *d) { OpenPICState *opp = OPENPIC(d); int i; opp->gcr = GCR_RESET; /* Initialise controller registers */ opp->frr = ((opp->nb_irqs - 1) << FRR_NIRQ_SHIFT) | ((opp->nb_cpus - 1) << FRR_NCPU_SHIFT) | (opp->vid << FRR_VID_SHIFT); opp->pir = 0; opp->spve = -1 & opp->vector_mask; opp->tfrr = opp->tfrr_reset; /* Initialise IRQ sources */ for (i = 0; i < opp->max_irq; i++) { opp->src[i].ivpr = opp->ivpr_reset; switch (opp->src[i].type) { case IRQ_TYPE_NORMAL: opp->src[i].level = !!(opp->ivpr_reset & IVPR_SENSE_MASK); break; case IRQ_TYPE_FSLINT: opp->src[i].ivpr |= IVPR_POLARITY_MASK; break; case IRQ_TYPE_FSLSPECIAL: break; } /* Mask all IPI interrupts for Freescale OpenPIC */ if ((opp->model == OPENPIC_MODEL_FSL_MPIC_20) || (opp->model == OPENPIC_MODEL_FSL_MPIC_42)) { if (i >= opp->irq_ipi0 && i < opp->irq_tim0) { write_IRQreg_idr(opp, i, 0); continue; } } write_IRQreg_idr(opp, i, opp->idr_reset); } /* Initialise IRQ destinations */ for (i = 0; i < opp->nb_cpus; i++) { opp->dst[i].ctpr = 15; opp->dst[i].raised.next = -1; opp->dst[i].raised.priority = 0; bitmap_clear(opp->dst[i].raised.queue, 0, IRQQUEUE_SIZE_BITS); opp->dst[i].servicing.next = -1; opp->dst[i].servicing.priority = 0; bitmap_clear(opp->dst[i].servicing.queue, 0, IRQQUEUE_SIZE_BITS); } /* Initialise timers */ for (i = 0; i < OPENPIC_MAX_TMR; i++) { opp->timers[i].tccr = 0; opp->timers[i].tbcr = TBCR_CI; if (opp->timers[i].qemu_timer_active) { timer_del(opp->timers[i].qemu_timer); /* Inhibit timer */ opp->timers[i].qemu_timer_active = false; } } /* Go out of RESET state */ opp->gcr = 0; } typedef struct MemReg { const char *name; MemoryRegionOps const *ops; hwaddr start_addr; ram_addr_t size; } MemReg; static void fsl_common_init(OpenPICState *opp) { int i; int virq = OPENPIC_MAX_SRC; opp->vid = VID_REVISION_1_2; opp->vir = VIR_GENERIC; opp->vector_mask = 0xFFFF; opp->tfrr_reset = 0; opp->ivpr_reset = IVPR_MASK_MASK; opp->idr_reset = 1 << 0; opp->max_irq = OPENPIC_MAX_IRQ; opp->irq_ipi0 = virq; virq += OPENPIC_MAX_IPI; opp->irq_tim0 = virq; virq += OPENPIC_MAX_TMR; assert(virq <= OPENPIC_MAX_IRQ); opp->irq_msi = 224; msi_nonbroken = true; for (i = 0; i < opp->fsl->max_ext; i++) { opp->src[i].level = false; } /* Internal interrupts, including message and MSI */ for (i = 16; i < OPENPIC_MAX_SRC; i++) { opp->src[i].type = IRQ_TYPE_FSLINT; opp->src[i].level = true; } /* timers and IPIs */ for (i = OPENPIC_MAX_SRC; i < virq; i++) { opp->src[i].type = IRQ_TYPE_FSLSPECIAL; opp->src[i].level = false; } for (i = 0; i < OPENPIC_MAX_TMR; i++) { opp->timers[i].n_IRQ = opp->irq_tim0 + i; opp->timers[i].qemu_timer_active = false; opp->timers[i].qemu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &qemu_timer_cb, &opp->timers[i]); opp->timers[i].opp = opp; } } static void map_list(OpenPICState *opp, const MemReg *list, int *count) { while (list->name) { assert(*count < ARRAY_SIZE(opp->sub_io_mem)); memory_region_init_io(&opp->sub_io_mem[*count], OBJECT(opp), list->ops, opp, list->name, list->size); memory_region_add_subregion(&opp->mem, list->start_addr, &opp->sub_io_mem[*count]); (*count)++; list++; } } static const VMStateDescription vmstate_openpic_irq_queue = { .name = "openpic_irq_queue", .version_id = 0, .minimum_version_id = 0, .fields = (const VMStateField[]) { VMSTATE_BITMAP(queue, IRQQueue, 0, queue_size), VMSTATE_INT32(next, IRQQueue), VMSTATE_INT32(priority, IRQQueue), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_openpic_irqdest = { .name = "openpic_irqdest", .version_id = 0, .minimum_version_id = 0, .fields = (const VMStateField[]) { VMSTATE_INT32(ctpr, IRQDest), VMSTATE_STRUCT(raised, IRQDest, 0, vmstate_openpic_irq_queue, IRQQueue), VMSTATE_STRUCT(servicing, IRQDest, 0, vmstate_openpic_irq_queue, IRQQueue), VMSTATE_UINT32_ARRAY(outputs_active, IRQDest, OPENPIC_OUTPUT_NB), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_openpic_irqsource = { .name = "openpic_irqsource", .version_id = 0, .minimum_version_id = 0, .fields = (const VMStateField[]) { VMSTATE_UINT32(ivpr, IRQSource), VMSTATE_UINT32(idr, IRQSource), VMSTATE_UINT32(destmask, IRQSource), VMSTATE_INT32(last_cpu, IRQSource), VMSTATE_INT32(pending, IRQSource), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_openpic_timer = { .name = "openpic_timer", .version_id = 0, .minimum_version_id = 0, .fields = (const VMStateField[]) { VMSTATE_UINT32(tccr, OpenPICTimer), VMSTATE_UINT32(tbcr, OpenPICTimer), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_openpic_msi = { .name = "openpic_msi", .version_id = 0, .minimum_version_id = 0, .fields = (const VMStateField[]) { VMSTATE_UINT32(msir, OpenPICMSI), VMSTATE_END_OF_LIST() } }; static int openpic_post_load(void *opaque, int version_id) { OpenPICState *opp = (OpenPICState *)opaque; int i; /* Update internal ivpr and idr variables */ for (i = 0; i < opp->max_irq; i++) { write_IRQreg_idr(opp, i, opp->src[i].idr); write_IRQreg_ivpr(opp, i, opp->src[i].ivpr); } return 0; } static const VMStateDescription vmstate_openpic = { .name = "openpic", .version_id = 3, .minimum_version_id = 3, .post_load = openpic_post_load, .fields = (const VMStateField[]) { VMSTATE_UINT32(gcr, OpenPICState), VMSTATE_UINT32(vir, OpenPICState), VMSTATE_UINT32(pir, OpenPICState), VMSTATE_UINT32(spve, OpenPICState), VMSTATE_UINT32(tfrr, OpenPICState), VMSTATE_UINT32(max_irq, OpenPICState), VMSTATE_STRUCT_VARRAY_UINT32(src, OpenPICState, max_irq, 0, vmstate_openpic_irqsource, IRQSource), VMSTATE_UINT32_EQUAL(nb_cpus, OpenPICState, NULL), VMSTATE_STRUCT_VARRAY_UINT32(dst, OpenPICState, nb_cpus, 0, vmstate_openpic_irqdest, IRQDest), VMSTATE_STRUCT_ARRAY(timers, OpenPICState, OPENPIC_MAX_TMR, 0, vmstate_openpic_timer, OpenPICTimer), VMSTATE_STRUCT_ARRAY(msi, OpenPICState, MAX_MSI, 0, vmstate_openpic_msi, OpenPICMSI), VMSTATE_UINT32(irq_ipi0, OpenPICState), VMSTATE_UINT32(irq_tim0, OpenPICState), VMSTATE_UINT32(irq_msi, OpenPICState), VMSTATE_END_OF_LIST() } }; static void openpic_init(Object *obj) { OpenPICState *opp = OPENPIC(obj); memory_region_init(&opp->mem, obj, "openpic", 0x40000); } static void openpic_realize(DeviceState *dev, Error **errp) { SysBusDevice *d = SYS_BUS_DEVICE(dev); OpenPICState *opp = OPENPIC(dev); int i, j; int list_count = 0; static const MemReg list_le[] = { {"glb", &openpic_glb_ops_le, OPENPIC_GLB_REG_START, OPENPIC_GLB_REG_SIZE}, {"tmr", &openpic_tmr_ops_le, OPENPIC_TMR_REG_START, OPENPIC_TMR_REG_SIZE}, {"src", &openpic_src_ops_le, OPENPIC_SRC_REG_START, OPENPIC_SRC_REG_SIZE}, {"cpu", &openpic_cpu_ops_le, OPENPIC_CPU_REG_START, OPENPIC_CPU_REG_SIZE}, {NULL} }; static const MemReg list_be[] = { {"glb", &openpic_glb_ops_be, OPENPIC_GLB_REG_START, OPENPIC_GLB_REG_SIZE}, {"tmr", &openpic_tmr_ops_be, OPENPIC_TMR_REG_START, OPENPIC_TMR_REG_SIZE}, {"src", &openpic_src_ops_be, OPENPIC_SRC_REG_START, OPENPIC_SRC_REG_SIZE}, {"cpu", &openpic_cpu_ops_be, OPENPIC_CPU_REG_START, OPENPIC_CPU_REG_SIZE}, {NULL} }; static const MemReg list_fsl[] = { {"msi", &openpic_msi_ops_be, OPENPIC_MSI_REG_START, OPENPIC_MSI_REG_SIZE}, {"summary", &openpic_summary_ops_be, OPENPIC_SUMMARY_REG_START, OPENPIC_SUMMARY_REG_SIZE}, {NULL} }; if (opp->nb_cpus > MAX_CPU) { error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, TYPE_OPENPIC, "nb_cpus", (uint64_t)opp->nb_cpus, (uint64_t)0, (uint64_t)MAX_CPU); return; } switch (opp->model) { case OPENPIC_MODEL_FSL_MPIC_20: default: opp->fsl = &fsl_mpic_20; opp->brr1 = 0x00400200; opp->flags |= OPENPIC_FLAG_IDR_CRIT; opp->nb_irqs = 80; opp->mpic_mode_mask = GCR_MODE_MIXED; fsl_common_init(opp); map_list(opp, list_be, &list_count); map_list(opp, list_fsl, &list_count); break; case OPENPIC_MODEL_FSL_MPIC_42: opp->fsl = &fsl_mpic_42; opp->brr1 = 0x00400402; opp->flags |= OPENPIC_FLAG_ILR; opp->nb_irqs = 196; opp->mpic_mode_mask = GCR_MODE_PROXY; fsl_common_init(opp); map_list(opp, list_be, &list_count); map_list(opp, list_fsl, &list_count); break; case OPENPIC_MODEL_KEYLARGO: opp->nb_irqs = KEYLARGO_MAX_EXT; opp->vid = VID_REVISION_1_2; opp->vir = VIR_GENERIC; opp->vector_mask = 0xFF; opp->tfrr_reset = 4160000; opp->ivpr_reset = IVPR_MASK_MASK | IVPR_MODE_MASK; opp->idr_reset = 0; opp->max_irq = KEYLARGO_MAX_IRQ; opp->irq_ipi0 = KEYLARGO_IPI_IRQ; opp->irq_tim0 = KEYLARGO_TMR_IRQ; opp->brr1 = -1; opp->mpic_mode_mask = GCR_MODE_MIXED; if (opp->nb_cpus != 1) { error_setg(errp, "Only UP supported today"); return; } map_list(opp, list_le, &list_count); break; } for (i = 0; i < opp->nb_cpus; i++) { opp->dst[i].irqs = g_new0(qemu_irq, OPENPIC_OUTPUT_NB); for (j = 0; j < OPENPIC_OUTPUT_NB; j++) { sysbus_init_irq(d, &opp->dst[i].irqs[j]); } opp->dst[i].raised.queue_size = IRQQUEUE_SIZE_BITS; opp->dst[i].raised.queue = bitmap_new(IRQQUEUE_SIZE_BITS); opp->dst[i].servicing.queue_size = IRQQUEUE_SIZE_BITS; opp->dst[i].servicing.queue = bitmap_new(IRQQUEUE_SIZE_BITS); } sysbus_init_mmio(d, &opp->mem); qdev_init_gpio_in(dev, openpic_set_irq, opp->max_irq); } static Property openpic_properties[] = { DEFINE_PROP_UINT32("model", OpenPICState, model, OPENPIC_MODEL_FSL_MPIC_20), DEFINE_PROP_UINT32("nb_cpus", OpenPICState, nb_cpus, 1), DEFINE_PROP_END_OF_LIST(), }; static void openpic_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); dc->realize = openpic_realize; device_class_set_props(dc, openpic_properties); device_class_set_legacy_reset(dc, openpic_reset); dc->vmsd = &vmstate_openpic; set_bit(DEVICE_CATEGORY_MISC, dc->categories); } static const TypeInfo openpic_info = { .name = TYPE_OPENPIC, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(OpenPICState), .instance_init = openpic_init, .class_init = openpic_class_init, }; static void openpic_register_types(void) { type_register_static(&openpic_info); } type_init(openpic_register_types)