/* * ARM GICv3 support - common bits of emulated and KVM kernel model * * Copyright (c) 2012 Linaro Limited * Copyright (c) 2015 Huawei. * Copyright (c) 2015 Samsung Electronics Co., Ltd. * Written by Peter Maydell * Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see . */ #include "qemu/osdep.h" #include "qapi/error.h" #include "qemu/module.h" #include "qom/cpu.h" #include "hw/intc/arm_gicv3_common.h" #include "hw/qdev-properties.h" #include "migration/vmstate.h" #include "gicv3_internal.h" #include "hw/arm/linux-boot-if.h" #include "sysemu/kvm.h" static void gicv3_gicd_no_migration_shift_bug_post_load(GICv3State *cs) { if (cs->gicd_no_migration_shift_bug) { return; } /* Older versions of QEMU had a bug in the handling of state save/restore * to the KVM GICv3: they got the offset in the bitmap arrays wrong, * so that instead of the data for external interrupts 32 and up * starting at bit position 32 in the bitmap, it started at bit * position 64. If we're receiving data from a QEMU with that bug, * we must move the data down into the right place. */ memmove(cs->group, (uint8_t *)cs->group + GIC_INTERNAL / 8, sizeof(cs->group) - GIC_INTERNAL / 8); memmove(cs->grpmod, (uint8_t *)cs->grpmod + GIC_INTERNAL / 8, sizeof(cs->grpmod) - GIC_INTERNAL / 8); memmove(cs->enabled, (uint8_t *)cs->enabled + GIC_INTERNAL / 8, sizeof(cs->enabled) - GIC_INTERNAL / 8); memmove(cs->pending, (uint8_t *)cs->pending + GIC_INTERNAL / 8, sizeof(cs->pending) - GIC_INTERNAL / 8); memmove(cs->active, (uint8_t *)cs->active + GIC_INTERNAL / 8, sizeof(cs->active) - GIC_INTERNAL / 8); memmove(cs->edge_trigger, (uint8_t *)cs->edge_trigger + GIC_INTERNAL / 8, sizeof(cs->edge_trigger) - GIC_INTERNAL / 8); /* * While this new version QEMU doesn't have this kind of bug as we fix it, * so it needs to set the flag to true to indicate that and it's necessary * for next migration to work from this new version QEMU. */ cs->gicd_no_migration_shift_bug = true; } static int gicv3_pre_save(void *opaque) { GICv3State *s = (GICv3State *)opaque; ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s); if (c->pre_save) { c->pre_save(s); } return 0; } static int gicv3_post_load(void *opaque, int version_id) { GICv3State *s = (GICv3State *)opaque; ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s); gicv3_gicd_no_migration_shift_bug_post_load(s); if (c->post_load) { c->post_load(s); } return 0; } static bool virt_state_needed(void *opaque) { GICv3CPUState *cs = opaque; return cs->num_list_regs != 0; } static const VMStateDescription vmstate_gicv3_cpu_virt = { .name = "arm_gicv3_cpu/virt", .version_id = 1, .minimum_version_id = 1, .needed = virt_state_needed, .fields = (VMStateField[]) { VMSTATE_UINT64_2DARRAY(ich_apr, GICv3CPUState, 3, 4), VMSTATE_UINT64(ich_hcr_el2, GICv3CPUState), VMSTATE_UINT64_ARRAY(ich_lr_el2, GICv3CPUState, GICV3_LR_MAX), VMSTATE_UINT64(ich_vmcr_el2, GICv3CPUState), VMSTATE_END_OF_LIST() } }; static int vmstate_gicv3_cpu_pre_load(void *opaque) { GICv3CPUState *cs = opaque; /* * If the sre_el1 subsection is not transferred this * means SRE_EL1 is 0x7 (which might not be the same as * our reset value). */ cs->icc_sre_el1 = 0x7; return 0; } static bool icc_sre_el1_reg_needed(void *opaque) { GICv3CPUState *cs = opaque; return cs->icc_sre_el1 != 7; } const VMStateDescription vmstate_gicv3_cpu_sre_el1 = { .name = "arm_gicv3_cpu/sre_el1", .version_id = 1, .minimum_version_id = 1, .needed = icc_sre_el1_reg_needed, .fields = (VMStateField[]) { VMSTATE_UINT64(icc_sre_el1, GICv3CPUState), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_gicv3_cpu = { .name = "arm_gicv3_cpu", .version_id = 1, .minimum_version_id = 1, .pre_load = vmstate_gicv3_cpu_pre_load, .fields = (VMStateField[]) { VMSTATE_UINT32(level, GICv3CPUState), VMSTATE_UINT32(gicr_ctlr, GICv3CPUState), VMSTATE_UINT32_ARRAY(gicr_statusr, GICv3CPUState, 2), VMSTATE_UINT32(gicr_waker, GICv3CPUState), VMSTATE_UINT64(gicr_propbaser, GICv3CPUState), VMSTATE_UINT64(gicr_pendbaser, GICv3CPUState), VMSTATE_UINT32(gicr_igroupr0, GICv3CPUState), VMSTATE_UINT32(gicr_ienabler0, GICv3CPUState), VMSTATE_UINT32(gicr_ipendr0, GICv3CPUState), VMSTATE_UINT32(gicr_iactiver0, GICv3CPUState), VMSTATE_UINT32(edge_trigger, GICv3CPUState), VMSTATE_UINT32(gicr_igrpmodr0, GICv3CPUState), VMSTATE_UINT32(gicr_nsacr, GICv3CPUState), VMSTATE_UINT8_ARRAY(gicr_ipriorityr, GICv3CPUState, GIC_INTERNAL), VMSTATE_UINT64_ARRAY(icc_ctlr_el1, GICv3CPUState, 2), VMSTATE_UINT64(icc_pmr_el1, GICv3CPUState), VMSTATE_UINT64_ARRAY(icc_bpr, GICv3CPUState, 3), VMSTATE_UINT64_2DARRAY(icc_apr, GICv3CPUState, 3, 4), VMSTATE_UINT64_ARRAY(icc_igrpen, GICv3CPUState, 3), VMSTATE_UINT64(icc_ctlr_el3, GICv3CPUState), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription * []) { &vmstate_gicv3_cpu_virt, &vmstate_gicv3_cpu_sre_el1, NULL } }; static int gicv3_pre_load(void *opaque) { GICv3State *cs = opaque; /* * The gicd_no_migration_shift_bug flag is used for migration compatibility * for old version QEMU which may have the GICD bmp shift bug under KVM mode. * Strictly, what we want to know is whether the migration source is using * KVM. Since we don't have any way to determine that, we look at whether the * destination is using KVM; this is close enough because for the older QEMU * versions with this bug KVM -> TCG migration didn't work anyway. If the * source is a newer QEMU without this bug it will transmit the migration * subsection which sets the flag to true; otherwise it will remain set to * the value we select here. */ if (kvm_enabled()) { cs->gicd_no_migration_shift_bug = false; } return 0; } static bool needed_always(void *opaque) { return true; } const VMStateDescription vmstate_gicv3_gicd_no_migration_shift_bug = { .name = "arm_gicv3/gicd_no_migration_shift_bug", .version_id = 1, .minimum_version_id = 1, .needed = needed_always, .fields = (VMStateField[]) { VMSTATE_BOOL(gicd_no_migration_shift_bug, GICv3State), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_gicv3 = { .name = "arm_gicv3", .version_id = 1, .minimum_version_id = 1, .pre_load = gicv3_pre_load, .pre_save = gicv3_pre_save, .post_load = gicv3_post_load, .priority = MIG_PRI_GICV3, .fields = (VMStateField[]) { VMSTATE_UINT32(gicd_ctlr, GICv3State), VMSTATE_UINT32_ARRAY(gicd_statusr, GICv3State, 2), VMSTATE_UINT32_ARRAY(group, GICv3State, GICV3_BMP_SIZE), VMSTATE_UINT32_ARRAY(grpmod, GICv3State, GICV3_BMP_SIZE), VMSTATE_UINT32_ARRAY(enabled, GICv3State, GICV3_BMP_SIZE), VMSTATE_UINT32_ARRAY(pending, GICv3State, GICV3_BMP_SIZE), VMSTATE_UINT32_ARRAY(active, GICv3State, GICV3_BMP_SIZE), VMSTATE_UINT32_ARRAY(level, GICv3State, GICV3_BMP_SIZE), VMSTATE_UINT32_ARRAY(edge_trigger, GICv3State, GICV3_BMP_SIZE), VMSTATE_UINT8_ARRAY(gicd_ipriority, GICv3State, GICV3_MAXIRQ), VMSTATE_UINT64_ARRAY(gicd_irouter, GICv3State, GICV3_MAXIRQ), VMSTATE_UINT32_ARRAY(gicd_nsacr, GICv3State, DIV_ROUND_UP(GICV3_MAXIRQ, 16)), VMSTATE_STRUCT_VARRAY_POINTER_UINT32(cpu, GICv3State, num_cpu, vmstate_gicv3_cpu, GICv3CPUState), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription * []) { &vmstate_gicv3_gicd_no_migration_shift_bug, NULL } }; void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler, const MemoryRegionOps *ops, Error **errp) { SysBusDevice *sbd = SYS_BUS_DEVICE(s); int rdist_capacity = 0; int i; for (i = 0; i < s->nb_redist_regions; i++) { rdist_capacity += s->redist_region_count[i]; } if (rdist_capacity < s->num_cpu) { error_setg(errp, "Capacity of the redist regions(%d) " "is less than number of vcpus(%d)", rdist_capacity, s->num_cpu); return; } /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU. * GPIO array layout is thus: * [0..N-1] spi * [N..N+31] PPIs for CPU 0 * [N+32..N+63] PPIs for CPU 1 * ... */ i = s->num_irq - GIC_INTERNAL + GIC_INTERNAL * s->num_cpu; qdev_init_gpio_in(DEVICE(s), handler, i); for (i = 0; i < s->num_cpu; i++) { sysbus_init_irq(sbd, &s->cpu[i].parent_irq); } for (i = 0; i < s->num_cpu; i++) { sysbus_init_irq(sbd, &s->cpu[i].parent_fiq); } for (i = 0; i < s->num_cpu; i++) { sysbus_init_irq(sbd, &s->cpu[i].parent_virq); } for (i = 0; i < s->num_cpu; i++) { sysbus_init_irq(sbd, &s->cpu[i].parent_vfiq); } memory_region_init_io(&s->iomem_dist, OBJECT(s), ops, s, "gicv3_dist", 0x10000); sysbus_init_mmio(sbd, &s->iomem_dist); s->iomem_redist = g_new0(MemoryRegion, s->nb_redist_regions); for (i = 0; i < s->nb_redist_regions; i++) { char *name = g_strdup_printf("gicv3_redist_region[%d]", i); memory_region_init_io(&s->iomem_redist[i], OBJECT(s), ops ? &ops[1] : NULL, s, name, s->redist_region_count[i] * GICV3_REDIST_SIZE); sysbus_init_mmio(sbd, &s->iomem_redist[i]); g_free(name); } } static void arm_gicv3_common_realize(DeviceState *dev, Error **errp) { GICv3State *s = ARM_GICV3_COMMON(dev); int i; /* revision property is actually reserved and currently used only in order * to keep the interface compatible with GICv2 code, avoiding extra * conditions. However, in future it could be used, for example, if we * implement GICv4. */ if (s->revision != 3) { error_setg(errp, "unsupported GIC revision %d", s->revision); return; } if (s->num_irq > GICV3_MAXIRQ) { error_setg(errp, "requested %u interrupt lines exceeds GIC maximum %d", s->num_irq, GICV3_MAXIRQ); return; } if (s->num_irq < GIC_INTERNAL) { error_setg(errp, "requested %u interrupt lines is below GIC minimum %d", s->num_irq, GIC_INTERNAL); return; } /* ITLinesNumber is represented as (N / 32) - 1, so this is an * implementation imposed restriction, not an architectural one, * so we don't have to deal with bitfields where only some of the * bits in a 32-bit word should be valid. */ if (s->num_irq % 32) { error_setg(errp, "%d interrupt lines unsupported: not divisible by 32", s->num_irq); return; } s->cpu = g_new0(GICv3CPUState, s->num_cpu); for (i = 0; i < s->num_cpu; i++) { CPUState *cpu = qemu_get_cpu(i); uint64_t cpu_affid; int last; s->cpu[i].cpu = cpu; s->cpu[i].gic = s; /* Store GICv3CPUState in CPUARMState gicv3state pointer */ gicv3_set_gicv3state(cpu, &s->cpu[i]); /* Pre-construct the GICR_TYPER: * For our implementation: * Top 32 bits are the affinity value of the associated CPU * CommonLPIAff == 01 (redistributors with same Aff3 share LPI table) * Processor_Number == CPU index starting from 0 * DPGS == 0 (GICR_CTLR.DPG* not supported) * Last == 1 if this is the last redistributor in a series of * contiguous redistributor pages * DirectLPI == 0 (direct injection of LPIs not supported) * VLPIS == 0 (virtual LPIs not supported) * PLPIS == 0 (physical LPIs not supported) */ cpu_affid = object_property_get_uint(OBJECT(cpu), "mp-affinity", NULL); last = (i == s->num_cpu - 1); /* The CPU mp-affinity property is in MPIDR register format; squash * the affinity bytes into 32 bits as the GICR_TYPER has them. */ cpu_affid = ((cpu_affid & 0xFF00000000ULL) >> 8) | (cpu_affid & 0xFFFFFF); s->cpu[i].gicr_typer = (cpu_affid << 32) | (1 << 24) | (i << 8) | (last << 4); } } static void arm_gicv3_finalize(Object *obj) { GICv3State *s = ARM_GICV3_COMMON(obj); g_free(s->redist_region_count); } static void arm_gicv3_common_reset(DeviceState *dev) { GICv3State *s = ARM_GICV3_COMMON(dev); int i; for (i = 0; i < s->num_cpu; i++) { GICv3CPUState *cs = &s->cpu[i]; cs->level = 0; cs->gicr_ctlr = 0; cs->gicr_statusr[GICV3_S] = 0; cs->gicr_statusr[GICV3_NS] = 0; cs->gicr_waker = GICR_WAKER_ProcessorSleep | GICR_WAKER_ChildrenAsleep; cs->gicr_propbaser = 0; cs->gicr_pendbaser = 0; /* If we're resetting a TZ-aware GIC as if secure firmware * had set it up ready to start a kernel in non-secure, we * need to set interrupts to group 1 so the kernel can use them. * Otherwise they reset to group 0 like the hardware. */ if (s->irq_reset_nonsecure) { cs->gicr_igroupr0 = 0xffffffff; } else { cs->gicr_igroupr0 = 0; } cs->gicr_ienabler0 = 0; cs->gicr_ipendr0 = 0; cs->gicr_iactiver0 = 0; cs->edge_trigger = 0xffff; cs->gicr_igrpmodr0 = 0; cs->gicr_nsacr = 0; memset(cs->gicr_ipriorityr, 0, sizeof(cs->gicr_ipriorityr)); cs->hppi.prio = 0xff; /* State in the CPU interface must *not* be reset here, because it * is part of the CPU's reset domain, not the GIC device's. */ } /* For our implementation affinity routing is always enabled */ if (s->security_extn) { s->gicd_ctlr = GICD_CTLR_ARE_S | GICD_CTLR_ARE_NS; } else { s->gicd_ctlr = GICD_CTLR_DS | GICD_CTLR_ARE; } s->gicd_statusr[GICV3_S] = 0; s->gicd_statusr[GICV3_NS] = 0; memset(s->group, 0, sizeof(s->group)); memset(s->grpmod, 0, sizeof(s->grpmod)); memset(s->enabled, 0, sizeof(s->enabled)); memset(s->pending, 0, sizeof(s->pending)); memset(s->active, 0, sizeof(s->active)); memset(s->level, 0, sizeof(s->level)); memset(s->edge_trigger, 0, sizeof(s->edge_trigger)); memset(s->gicd_ipriority, 0, sizeof(s->gicd_ipriority)); memset(s->gicd_irouter, 0, sizeof(s->gicd_irouter)); memset(s->gicd_nsacr, 0, sizeof(s->gicd_nsacr)); /* GICD_IROUTER are UNKNOWN at reset so in theory the guest must * write these to get sane behaviour and we need not populate the * pointer cache here; however having the cache be different for * "happened to be 0 from reset" and "guest wrote 0" would be * too confusing. */ gicv3_cache_all_target_cpustates(s); if (s->irq_reset_nonsecure) { /* If we're resetting a TZ-aware GIC as if secure firmware * had set it up ready to start a kernel in non-secure, we * need to set interrupts to group 1 so the kernel can use them. * Otherwise they reset to group 0 like the hardware. */ for (i = GIC_INTERNAL; i < s->num_irq; i++) { gicv3_gicd_group_set(s, i); } } s->gicd_no_migration_shift_bug = true; } static void arm_gic_common_linux_init(ARMLinuxBootIf *obj, bool secure_boot) { GICv3State *s = ARM_GICV3_COMMON(obj); if (s->security_extn && !secure_boot) { /* We're directly booting a kernel into NonSecure. If this GIC * implements the security extensions then we must configure it * to have all the interrupts be NonSecure (this is a job that * is done by the Secure boot firmware in real hardware, and in * this mode QEMU is acting as a minimalist firmware-and-bootloader * equivalent). */ s->irq_reset_nonsecure = true; } } static Property arm_gicv3_common_properties[] = { DEFINE_PROP_UINT32("num-cpu", GICv3State, num_cpu, 1), DEFINE_PROP_UINT32("num-irq", GICv3State, num_irq, 32), DEFINE_PROP_UINT32("revision", GICv3State, revision, 3), DEFINE_PROP_BOOL("has-security-extensions", GICv3State, security_extn, 0), DEFINE_PROP_ARRAY("redist-region-count", GICv3State, nb_redist_regions, redist_region_count, qdev_prop_uint32, uint32_t), DEFINE_PROP_END_OF_LIST(), }; static void arm_gicv3_common_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass); dc->reset = arm_gicv3_common_reset; dc->realize = arm_gicv3_common_realize; dc->props = arm_gicv3_common_properties; dc->vmsd = &vmstate_gicv3; albifc->arm_linux_init = arm_gic_common_linux_init; } static const TypeInfo arm_gicv3_common_type = { .name = TYPE_ARM_GICV3_COMMON, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(GICv3State), .class_size = sizeof(ARMGICv3CommonClass), .class_init = arm_gicv3_common_class_init, .instance_finalize = arm_gicv3_finalize, .abstract = true, .interfaces = (InterfaceInfo []) { { TYPE_ARM_LINUX_BOOT_IF }, { }, }, }; static void register_types(void) { type_register_static(&arm_gicv3_common_type); } type_init(register_types)