/* * ARM Generic Interrupt Controller using KVM in-kernel support * * Copyright (c) 2012 Linaro Limited * Written by Peter Maydell * Save/Restore logic added by Christoffer Dall. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see . */ #include "qemu/osdep.h" #include "qapi/error.h" #include "qemu/module.h" #include "migration/blocker.h" #include "sysemu/kvm.h" #include "kvm_arm.h" #include "gic_internal.h" #include "vgic_common.h" #include "qom/object.h" #define TYPE_KVM_ARM_GIC "kvm-arm-gic" typedef struct KVMARMGICClass KVMARMGICClass; /* This is reusing the GICState typedef from ARM_GIC_COMMON */ DECLARE_OBJ_CHECKERS(GICState, KVMARMGICClass, KVM_ARM_GIC, TYPE_KVM_ARM_GIC) struct KVMARMGICClass { ARMGICCommonClass parent_class; DeviceRealize parent_realize; ResettablePhases parent_phases; }; void kvm_arm_gic_set_irq(uint32_t num_irq, int irq, int level) { /* Meaning of the 'irq' parameter: * [0..N-1] : external interrupts * [N..N+31] : PPI (internal) interrupts for CPU 0 * [N+32..N+63] : PPI (internal interrupts for CPU 1 * ... * Convert this to the kernel's desired encoding, which * has separate fields in the irq number for type, * CPU number and interrupt number. */ int irqtype, cpu; if (irq < (num_irq - GIC_INTERNAL)) { /* External interrupt. The kernel numbers these like the GIC * hardware, with external interrupt IDs starting after the * internal ones. */ irqtype = KVM_ARM_IRQ_TYPE_SPI; cpu = 0; irq += GIC_INTERNAL; } else { /* Internal interrupt: decode into (cpu, interrupt id) */ irqtype = KVM_ARM_IRQ_TYPE_PPI; irq -= (num_irq - GIC_INTERNAL); cpu = irq / GIC_INTERNAL; irq %= GIC_INTERNAL; } kvm_arm_set_irq(cpu, irqtype, irq, !!level); } static void kvm_arm_gicv2_set_irq(void *opaque, int irq, int level) { GICState *s = (GICState *)opaque; kvm_arm_gic_set_irq(s->num_irq, irq, level); } static bool kvm_arm_gic_can_save_restore(GICState *s) { return s->dev_fd >= 0; } #define KVM_VGIC_ATTR(offset, cpu) \ ((((uint64_t)(cpu) << KVM_DEV_ARM_VGIC_CPUID_SHIFT) & \ KVM_DEV_ARM_VGIC_CPUID_MASK) | \ (((uint64_t)(offset) << KVM_DEV_ARM_VGIC_OFFSET_SHIFT) & \ KVM_DEV_ARM_VGIC_OFFSET_MASK)) static void kvm_gicd_access(GICState *s, int offset, int cpu, uint32_t *val, bool write) { kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS, KVM_VGIC_ATTR(offset, cpu), val, write, &error_abort); } static void kvm_gicc_access(GICState *s, int offset, int cpu, uint32_t *val, bool write) { kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_REGS, KVM_VGIC_ATTR(offset, cpu), val, write, &error_abort); } #define for_each_irq_reg(_ctr, _max_irq, _field_width) \ for (_ctr = 0; _ctr < ((_max_irq) / (32 / (_field_width))); _ctr++) /* * Translate from the in-kernel field for an IRQ value to/from the qemu * representation. */ typedef void (*vgic_translate_fn)(GICState *s, int irq, int cpu, uint32_t *field, bool to_kernel); /* synthetic translate function used for clear/set registers to completely * clear a setting using a clear-register before setting the remaining bits * using a set-register */ static void translate_clear(GICState *s, int irq, int cpu, uint32_t *field, bool to_kernel) { if (to_kernel) { *field = ~0; } else { /* does not make sense: qemu model doesn't use set/clear regs */ abort(); } } static void translate_group(GICState *s, int irq, int cpu, uint32_t *field, bool to_kernel) { int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; if (to_kernel) { *field = GIC_DIST_TEST_GROUP(irq, cm); } else { if (*field & 1) { GIC_DIST_SET_GROUP(irq, cm); } } } static void translate_enabled(GICState *s, int irq, int cpu, uint32_t *field, bool to_kernel) { int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; if (to_kernel) { *field = GIC_DIST_TEST_ENABLED(irq, cm); } else { if (*field & 1) { GIC_DIST_SET_ENABLED(irq, cm); } } } static void translate_pending(GICState *s, int irq, int cpu, uint32_t *field, bool to_kernel) { int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; if (to_kernel) { *field = gic_test_pending(s, irq, cm); } else { if (*field & 1) { GIC_DIST_SET_PENDING(irq, cm); /* TODO: Capture is level-line is held high in the kernel */ } } } static void translate_active(GICState *s, int irq, int cpu, uint32_t *field, bool to_kernel) { int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; if (to_kernel) { *field = GIC_DIST_TEST_ACTIVE(irq, cm); } else { if (*field & 1) { GIC_DIST_SET_ACTIVE(irq, cm); } } } static void translate_trigger(GICState *s, int irq, int cpu, uint32_t *field, bool to_kernel) { if (to_kernel) { *field = (GIC_DIST_TEST_EDGE_TRIGGER(irq)) ? 0x2 : 0x0; } else { if (*field & 0x2) { GIC_DIST_SET_EDGE_TRIGGER(irq); } } } static void translate_priority(GICState *s, int irq, int cpu, uint32_t *field, bool to_kernel) { if (to_kernel) { *field = GIC_DIST_GET_PRIORITY(irq, cpu) & 0xff; } else { gic_dist_set_priority(s, cpu, irq, *field & 0xff, MEMTXATTRS_UNSPECIFIED); } } static void translate_targets(GICState *s, int irq, int cpu, uint32_t *field, bool to_kernel) { if (to_kernel) { *field = s->irq_target[irq] & 0xff; } else { s->irq_target[irq] = *field & 0xff; } } static void translate_sgisource(GICState *s, int irq, int cpu, uint32_t *field, bool to_kernel) { if (to_kernel) { *field = s->sgi_pending[irq][cpu] & 0xff; } else { s->sgi_pending[irq][cpu] = *field & 0xff; } } /* Read a register group from the kernel VGIC */ static void kvm_dist_get(GICState *s, uint32_t offset, int width, int maxirq, vgic_translate_fn translate_fn) { uint32_t reg; int i; int j; int irq; int cpu; int regsz = 32 / width; /* irqs per kernel register */ uint32_t field; for_each_irq_reg(i, maxirq, width) { irq = i * regsz; cpu = 0; while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) { kvm_gicd_access(s, offset, cpu, ®, false); for (j = 0; j < regsz; j++) { field = extract32(reg, j * width, width); translate_fn(s, irq + j, cpu, &field, false); } cpu++; } offset += 4; } } /* Write a register group to the kernel VGIC */ static void kvm_dist_put(GICState *s, uint32_t offset, int width, int maxirq, vgic_translate_fn translate_fn) { uint32_t reg; int i; int j; int irq; int cpu; int regsz = 32 / width; /* irqs per kernel register */ uint32_t field; for_each_irq_reg(i, maxirq, width) { irq = i * regsz; cpu = 0; while ((cpu < s->num_cpu && irq < GIC_INTERNAL) || cpu == 0) { reg = 0; for (j = 0; j < regsz; j++) { translate_fn(s, irq + j, cpu, &field, true); reg = deposit32(reg, j * width, width, field); } kvm_gicd_access(s, offset, cpu, ®, true); cpu++; } offset += 4; } } static void kvm_arm_gic_put(GICState *s) { uint32_t reg; int i; int cpu; int num_cpu; int num_irq; /* Note: We do the restore in a slightly different order than the save * (where the order doesn't matter and is simply ordered according to the * register offset values */ /***************************************************************** * Distributor State */ /* s->ctlr -> GICD_CTLR */ reg = s->ctlr; kvm_gicd_access(s, 0x0, 0, ®, true); /* Sanity checking on GICD_TYPER and s->num_irq, s->num_cpu */ kvm_gicd_access(s, 0x4, 0, ®, false); num_irq = ((reg & 0x1f) + 1) * 32; num_cpu = ((reg & 0xe0) >> 5) + 1; if (num_irq < s->num_irq) { fprintf(stderr, "Restoring %u IRQs, but kernel supports max %d\n", s->num_irq, num_irq); abort(); } else if (num_cpu != s->num_cpu) { fprintf(stderr, "Restoring %u CPU interfaces, kernel only has %d\n", s->num_cpu, num_cpu); /* Did we not create the VCPUs in the kernel yet? */ abort(); } /* TODO: Consider checking compatibility with the IIDR ? */ /* irq_state[n].enabled -> GICD_ISENABLERn */ kvm_dist_put(s, 0x180, 1, s->num_irq, translate_clear); kvm_dist_put(s, 0x100, 1, s->num_irq, translate_enabled); /* irq_state[n].group -> GICD_IGROUPRn */ kvm_dist_put(s, 0x80, 1, s->num_irq, translate_group); /* s->irq_target[irq] -> GICD_ITARGETSRn * (restore targets before pending to ensure the pending state is set on * the appropriate CPU interfaces in the kernel) */ kvm_dist_put(s, 0x800, 8, s->num_irq, translate_targets); /* irq_state[n].trigger -> GICD_ICFGRn * (restore configuration registers before pending IRQs so we treat * level/edge correctly) */ kvm_dist_put(s, 0xc00, 2, s->num_irq, translate_trigger); /* irq_state[n].pending + irq_state[n].level -> GICD_ISPENDRn */ kvm_dist_put(s, 0x280, 1, s->num_irq, translate_clear); kvm_dist_put(s, 0x200, 1, s->num_irq, translate_pending); /* irq_state[n].active -> GICD_ISACTIVERn */ kvm_dist_put(s, 0x380, 1, s->num_irq, translate_clear); kvm_dist_put(s, 0x300, 1, s->num_irq, translate_active); /* s->priorityX[irq] -> ICD_IPRIORITYRn */ kvm_dist_put(s, 0x400, 8, s->num_irq, translate_priority); /* s->sgi_pending -> ICD_CPENDSGIRn */ kvm_dist_put(s, 0xf10, 8, GIC_NR_SGIS, translate_clear); kvm_dist_put(s, 0xf20, 8, GIC_NR_SGIS, translate_sgisource); /***************************************************************** * CPU Interface(s) State */ for (cpu = 0; cpu < s->num_cpu; cpu++) { /* s->cpu_ctlr[cpu] -> GICC_CTLR */ reg = s->cpu_ctlr[cpu]; kvm_gicc_access(s, 0x00, cpu, ®, true); /* s->priority_mask[cpu] -> GICC_PMR */ reg = (s->priority_mask[cpu] & 0xff); kvm_gicc_access(s, 0x04, cpu, ®, true); /* s->bpr[cpu] -> GICC_BPR */ reg = (s->bpr[cpu] & 0x7); kvm_gicc_access(s, 0x08, cpu, ®, true); /* s->abpr[cpu] -> GICC_ABPR */ reg = (s->abpr[cpu] & 0x7); kvm_gicc_access(s, 0x1c, cpu, ®, true); /* s->apr[n][cpu] -> GICC_APRn */ for (i = 0; i < 4; i++) { reg = s->apr[i][cpu]; kvm_gicc_access(s, 0xd0 + i * 4, cpu, ®, true); } } } static void kvm_arm_gic_get(GICState *s) { uint32_t reg; int i; int cpu; /***************************************************************** * Distributor State */ /* GICD_CTLR -> s->ctlr */ kvm_gicd_access(s, 0x0, 0, ®, false); s->ctlr = reg; /* Sanity checking on GICD_TYPER -> s->num_irq, s->num_cpu */ kvm_gicd_access(s, 0x4, 0, ®, false); s->num_irq = ((reg & 0x1f) + 1) * 32; s->num_cpu = ((reg & 0xe0) >> 5) + 1; if (s->num_irq > GIC_MAXIRQ) { fprintf(stderr, "Too many IRQs reported from the kernel: %d\n", s->num_irq); abort(); } /* GICD_IIDR -> ? */ kvm_gicd_access(s, 0x8, 0, ®, false); /* Clear all the IRQ settings */ for (i = 0; i < s->num_irq; i++) { memset(&s->irq_state[i], 0, sizeof(s->irq_state[0])); } /* GICD_IGROUPRn -> irq_state[n].group */ kvm_dist_get(s, 0x80, 1, s->num_irq, translate_group); /* GICD_ISENABLERn -> irq_state[n].enabled */ kvm_dist_get(s, 0x100, 1, s->num_irq, translate_enabled); /* GICD_ISPENDRn -> irq_state[n].pending + irq_state[n].level */ kvm_dist_get(s, 0x200, 1, s->num_irq, translate_pending); /* GICD_ISACTIVERn -> irq_state[n].active */ kvm_dist_get(s, 0x300, 1, s->num_irq, translate_active); /* GICD_ICFRn -> irq_state[n].trigger */ kvm_dist_get(s, 0xc00, 2, s->num_irq, translate_trigger); /* GICD_IPRIORITYRn -> s->priorityX[irq] */ kvm_dist_get(s, 0x400, 8, s->num_irq, translate_priority); /* GICD_ITARGETSRn -> s->irq_target[irq] */ kvm_dist_get(s, 0x800, 8, s->num_irq, translate_targets); /* GICD_CPENDSGIRn -> s->sgi_pending */ kvm_dist_get(s, 0xf10, 8, GIC_NR_SGIS, translate_sgisource); /***************************************************************** * CPU Interface(s) State */ for (cpu = 0; cpu < s->num_cpu; cpu++) { /* GICC_CTLR -> s->cpu_ctlr[cpu] */ kvm_gicc_access(s, 0x00, cpu, ®, false); s->cpu_ctlr[cpu] = reg; /* GICC_PMR -> s->priority_mask[cpu] */ kvm_gicc_access(s, 0x04, cpu, ®, false); s->priority_mask[cpu] = (reg & 0xff); /* GICC_BPR -> s->bpr[cpu] */ kvm_gicc_access(s, 0x08, cpu, ®, false); s->bpr[cpu] = (reg & 0x7); /* GICC_ABPR -> s->abpr[cpu] */ kvm_gicc_access(s, 0x1c, cpu, ®, false); s->abpr[cpu] = (reg & 0x7); /* GICC_APRn -> s->apr[n][cpu] */ for (i = 0; i < 4; i++) { kvm_gicc_access(s, 0xd0 + i * 4, cpu, ®, false); s->apr[i][cpu] = reg; } } } static void kvm_arm_gic_reset_hold(Object *obj, ResetType type) { GICState *s = ARM_GIC_COMMON(obj); KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s); if (kgc->parent_phases.hold) { kgc->parent_phases.hold(obj, type); } if (kvm_arm_gic_can_save_restore(s)) { kvm_arm_gic_put(s); } } static void kvm_arm_gic_realize(DeviceState *dev, Error **errp) { int i; GICState *s = KVM_ARM_GIC(dev); KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s); Error *local_err = NULL; int ret; kgc->parent_realize(dev, &local_err); if (local_err) { error_propagate(errp, local_err); return; } if (s->security_extn) { error_setg(errp, "the in-kernel VGIC does not implement the " "security extensions"); return; } if (s->virt_extn) { error_setg(errp, "the in-kernel VGIC does not implement the " "virtualization extensions"); return; } if (!kvm_arm_gic_can_save_restore(s)) { error_setg(&s->migration_blocker, "This operating system kernel does " "not support vGICv2 migration"); if (migrate_add_blocker(&s->migration_blocker, errp) < 0) { return; } } gic_init_irqs_and_mmio(s, kvm_arm_gicv2_set_irq, NULL, NULL); for (i = 0; i < s->num_irq - GIC_INTERNAL; i++) { qemu_irq irq = qdev_get_gpio_in(dev, i); kvm_irqchip_set_qemuirq_gsi(kvm_state, irq, i); } /* Try to create the device via the device control API */ s->dev_fd = -1; ret = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V2, false); if (ret >= 0) { s->dev_fd = ret; /* Newstyle API is used, we may have attributes */ if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0)) { uint32_t numirqs = s->num_irq; kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0, &numirqs, true, &error_abort); } /* Tell the kernel to complete VGIC initialization now */ if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, KVM_DEV_ARM_VGIC_CTRL_INIT)) { kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, &error_abort); } } else { error_setg_errno(errp, -ret, "error creating in-kernel VGIC"); error_append_hint(errp, "Perhaps the host CPU does not support GICv2?\n"); return; } /* Distributor */ kvm_arm_register_device(&s->iomem, (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT) | KVM_VGIC_V2_ADDR_TYPE_DIST, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V2_ADDR_TYPE_DIST, s->dev_fd, 0); /* CPU interface for current core. Unlike arm_gic, we don't * provide the "interface for core #N" memory regions, because * cores with a VGIC don't have those. */ kvm_arm_register_device(&s->cpuiomem[0], (KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT) | KVM_VGIC_V2_ADDR_TYPE_CPU, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V2_ADDR_TYPE_CPU, s->dev_fd, 0); if (kvm_has_gsi_routing()) { /* set up irq routing */ for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) { kvm_irqchip_add_irq_route(kvm_state, i, 0, i); } kvm_gsi_routing_allowed = true; kvm_irqchip_commit_routes(kvm_state); } } static void kvm_arm_gic_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); ResettableClass *rc = RESETTABLE_CLASS(klass); ARMGICCommonClass *agcc = ARM_GIC_COMMON_CLASS(klass); KVMARMGICClass *kgc = KVM_ARM_GIC_CLASS(klass); agcc->pre_save = kvm_arm_gic_get; agcc->post_load = kvm_arm_gic_put; device_class_set_parent_realize(dc, kvm_arm_gic_realize, &kgc->parent_realize); resettable_class_set_parent_phases(rc, NULL, kvm_arm_gic_reset_hold, NULL, &kgc->parent_phases); } static const TypeInfo kvm_arm_gic_info = { .name = TYPE_KVM_ARM_GIC, .parent = TYPE_ARM_GIC_COMMON, .instance_size = sizeof(GICState), .class_init = kvm_arm_gic_class_init, .class_size = sizeof(KVMARMGICClass), }; static void kvm_arm_gic_register_types(void) { type_register_static(&kvm_arm_gic_info); } type_init(kvm_arm_gic_register_types)