/* * Copyright (C) 2010 Citrix Ltd. * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * * Contributions after 2012-01-13 are licensed under the terms of the * GNU GPL, version 2 or (at your option) any later version. */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qapi/error.h" #include "qapi/qapi-commands-migration.h" #include "trace.h" #include "hw/i386/pc.h" #include "hw/irq.h" #include "hw/i386/apic-msidef.h" #include "hw/xen/xen-x86.h" #include "qemu/range.h" #include "hw/xen/xen-hvm-common.h" #include "hw/xen/arch_hvm.h" #include #include "exec/target_page.h" static MemoryRegion ram_640k, ram_lo, ram_hi; static MemoryRegion *framebuffer; static bool xen_in_migration; /* Compatibility with older version */ /* * This allows QEMU to build on a system that has Xen 4.5 or earlier installed. * This is here (not in hw/xen/xen_native.h) because xen/hvm/ioreq.h needs to * be included before this block and hw/xen/xen_native.h needs to be included * before xen/hvm/ioreq.h */ #ifndef IOREQ_TYPE_VMWARE_PORT #define IOREQ_TYPE_VMWARE_PORT 3 struct vmware_regs { uint32_t esi; uint32_t edi; uint32_t ebx; uint32_t ecx; uint32_t edx; }; typedef struct vmware_regs vmware_regs_t; struct shared_vmport_iopage { struct vmware_regs vcpu_vmport_regs[1]; }; typedef struct shared_vmport_iopage shared_vmport_iopage_t; #endif static shared_vmport_iopage_t *shared_vmport_page; static QLIST_HEAD(, XenPhysmap) xen_physmap; static const XenPhysmap *log_for_dirtybit; /* Buffer used by xen_sync_dirty_bitmap */ static unsigned long *dirty_bitmap; static Notifier suspend; static Notifier wakeup; /* Xen specific function for piix pci */ int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num) { return irq_num + (PCI_SLOT(pci_dev->devfn) << 2); } void xen_intx_set_irq(void *opaque, int irq_num, int level) { xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2, irq_num & 3, level); } int xen_set_pci_link_route(uint8_t link, uint8_t irq) { return xendevicemodel_set_pci_link_route(xen_dmod, xen_domid, link, irq); } int xen_is_pirq_msi(uint32_t msi_data) { /* If vector is 0, the msi is remapped into a pirq, passed as * dest_id. */ return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0; } void xen_hvm_inject_msi(uint64_t addr, uint32_t data) { xen_inject_msi(xen_domid, addr, data); } static void xen_suspend_notifier(Notifier *notifier, void *data) { xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3); } /* Xen Interrupt Controller */ static void xen_set_irq(void *opaque, int irq, int level) { xen_set_isa_irq_level(xen_domid, irq, level); } qemu_irq *xen_interrupt_controller_init(void) { return qemu_allocate_irqs(xen_set_irq, NULL, 16); } /* Memory Ops */ static void xen_ram_init(PCMachineState *pcms, ram_addr_t ram_size, MemoryRegion **ram_memory_p) { X86MachineState *x86ms = X86_MACHINE(pcms); MemoryRegion *sysmem = get_system_memory(); ram_addr_t block_len; uint64_t user_lowmem = object_property_get_uint(qdev_get_machine(), PC_MACHINE_MAX_RAM_BELOW_4G, &error_abort); /* Handle the machine opt max-ram-below-4g. It is basically doing * min(xen limit, user limit). */ if (!user_lowmem) { user_lowmem = HVM_BELOW_4G_RAM_END; /* default */ } if (HVM_BELOW_4G_RAM_END <= user_lowmem) { user_lowmem = HVM_BELOW_4G_RAM_END; } if (ram_size >= user_lowmem) { x86ms->above_4g_mem_size = ram_size - user_lowmem; x86ms->below_4g_mem_size = user_lowmem; } else { x86ms->above_4g_mem_size = 0; x86ms->below_4g_mem_size = ram_size; } if (!x86ms->above_4g_mem_size) { block_len = ram_size; } else { /* * Xen does not allocate the memory continuously, it keeps a * hole of the size computed above or passed in. */ block_len = (4 * GiB) + x86ms->above_4g_mem_size; } memory_region_init_ram(&xen_memory, NULL, "xen.ram", block_len, &error_fatal); *ram_memory_p = &xen_memory; memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k", &xen_memory, 0, 0xa0000); memory_region_add_subregion(sysmem, 0, &ram_640k); /* Skip of the VGA IO memory space, it will be registered later by the VGA * emulated device. * * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load * the Options ROM, so it is registered here as RAM. */ memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo", &xen_memory, 0xc0000, x86ms->below_4g_mem_size - 0xc0000); memory_region_add_subregion(sysmem, 0xc0000, &ram_lo); if (x86ms->above_4g_mem_size > 0) { memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi", &xen_memory, 0x100000000ULL, x86ms->above_4g_mem_size); memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi); } } static XenPhysmap *get_physmapping(hwaddr start_addr, ram_addr_t size, int page_mask) { XenPhysmap *physmap = NULL; start_addr &= page_mask; QLIST_FOREACH(physmap, &xen_physmap, list) { if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) { return physmap; } } return NULL; } static hwaddr xen_phys_offset_to_gaddr(hwaddr phys_offset, ram_addr_t size, int page_mask) { hwaddr addr = phys_offset & page_mask; XenPhysmap *physmap = NULL; QLIST_FOREACH(physmap, &xen_physmap, list) { if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) { return physmap->start_addr + (phys_offset - physmap->phys_offset); } } return phys_offset; } #ifdef XEN_COMPAT_PHYSMAP static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap) { char path[80], value[17]; snprintf(path, sizeof(path), "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr", xen_domid, (uint64_t)physmap->phys_offset); snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->start_addr); if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { return -1; } snprintf(path, sizeof(path), "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size", xen_domid, (uint64_t)physmap->phys_offset); snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->size); if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { return -1; } if (physmap->name) { snprintf(path, sizeof(path), "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name", xen_domid, (uint64_t)physmap->phys_offset); if (!xs_write(state->xenstore, 0, path, physmap->name, strlen(physmap->name))) { return -1; } } return 0; } #else static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap) { return 0; } #endif static int xen_add_to_physmap(XenIOState *state, hwaddr start_addr, ram_addr_t size, MemoryRegion *mr, hwaddr offset_within_region) { unsigned target_page_bits = qemu_target_page_bits(); int page_size = qemu_target_page_size(); int page_mask = -page_size; unsigned long nr_pages; int rc = 0; XenPhysmap *physmap = NULL; hwaddr pfn, start_gpfn; hwaddr phys_offset = memory_region_get_ram_addr(mr); const char *mr_name; if (get_physmapping(start_addr, size, page_mask)) { return 0; } if (size <= 0) { return -1; } /* Xen can only handle a single dirty log region for now and we want * the linear framebuffer to be that region. * Avoid tracking any regions that is not videoram and avoid tracking * the legacy vga region. */ if (mr == framebuffer && start_addr > 0xbffff) { goto go_physmap; } return -1; go_physmap: DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n", start_addr, start_addr + size); mr_name = memory_region_name(mr); physmap = g_new(XenPhysmap, 1); physmap->start_addr = start_addr; physmap->size = size; physmap->name = mr_name; physmap->phys_offset = phys_offset; QLIST_INSERT_HEAD(&xen_physmap, physmap, list); if (runstate_check(RUN_STATE_INMIGRATE)) { /* Now when we have a physmap entry we can replace a dummy mapping with * a real one of guest foreign memory. */ uint8_t *p = xen_replace_cache_entry(phys_offset, start_addr, size); assert(p && p == memory_region_get_ram_ptr(mr)); return 0; } pfn = phys_offset >> target_page_bits; start_gpfn = start_addr >> target_page_bits; nr_pages = size >> target_page_bits; rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, nr_pages, pfn, start_gpfn); if (rc) { int saved_errno = errno; error_report("relocate_memory %lu pages from GFN %"HWADDR_PRIx " to GFN %"HWADDR_PRIx" failed: %s", nr_pages, pfn, start_gpfn, strerror(saved_errno)); errno = saved_errno; return -1; } rc = xendevicemodel_pin_memory_cacheattr(xen_dmod, xen_domid, start_addr >> target_page_bits, (start_addr + size - 1) >> target_page_bits, XEN_DOMCTL_MEM_CACHEATTR_WB); if (rc) { error_report("pin_memory_cacheattr failed: %s", strerror(errno)); } return xen_save_physmap(state, physmap); } static int xen_remove_from_physmap(XenIOState *state, hwaddr start_addr, ram_addr_t size) { unsigned target_page_bits = qemu_target_page_bits(); int page_size = qemu_target_page_size(); int page_mask = -page_size; int rc = 0; XenPhysmap *physmap = NULL; hwaddr phys_offset = 0; physmap = get_physmapping(start_addr, size, page_mask); if (physmap == NULL) { return -1; } phys_offset = physmap->phys_offset; size = physmap->size; DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at " "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset); size >>= target_page_bits; start_addr >>= target_page_bits; phys_offset >>= target_page_bits; rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, size, start_addr, phys_offset); if (rc) { int saved_errno = errno; error_report("relocate_memory "RAM_ADDR_FMT" pages" " from GFN %"HWADDR_PRIx " to GFN %"HWADDR_PRIx" failed: %s", size, start_addr, phys_offset, strerror(saved_errno)); errno = saved_errno; return -1; } QLIST_REMOVE(physmap, list); if (log_for_dirtybit == physmap) { log_for_dirtybit = NULL; g_free(dirty_bitmap); dirty_bitmap = NULL; } g_free(physmap); return 0; } static void xen_sync_dirty_bitmap(XenIOState *state, hwaddr start_addr, ram_addr_t size) { unsigned target_page_bits = qemu_target_page_bits(); int page_size = qemu_target_page_size(); int page_mask = -page_size; hwaddr npages = size >> target_page_bits; const int width = sizeof(unsigned long) * 8; size_t bitmap_size = DIV_ROUND_UP(npages, width); int rc, i, j; const XenPhysmap *physmap = NULL; physmap = get_physmapping(start_addr, size, page_mask); if (physmap == NULL) { /* not handled */ return; } if (log_for_dirtybit == NULL) { log_for_dirtybit = physmap; dirty_bitmap = g_new(unsigned long, bitmap_size); } else if (log_for_dirtybit != physmap) { /* Only one range for dirty bitmap can be tracked. */ return; } rc = xen_track_dirty_vram(xen_domid, start_addr >> target_page_bits, npages, dirty_bitmap); if (rc < 0) { #ifndef ENODATA #define ENODATA ENOENT #endif if (errno == ENODATA) { memory_region_set_dirty(framebuffer, 0, size); DPRINTF("xen: track_dirty_vram failed (0x" HWADDR_FMT_plx ", 0x" HWADDR_FMT_plx "): %s\n", start_addr, start_addr + size, strerror(errno)); } return; } for (i = 0; i < bitmap_size; i++) { unsigned long map = dirty_bitmap[i]; while (map != 0) { j = ctzl(map); map &= ~(1ul << j); memory_region_set_dirty(framebuffer, (i * width + j) * page_size, page_size); }; } } static void xen_log_start(MemoryListener *listener, MemoryRegionSection *section, int old, int new) { XenIOState *state = container_of(listener, XenIOState, memory_listener); if (new & ~old & (1 << DIRTY_MEMORY_VGA)) { xen_sync_dirty_bitmap(state, section->offset_within_address_space, int128_get64(section->size)); } } static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section, int old, int new) { if (old & ~new & (1 << DIRTY_MEMORY_VGA)) { log_for_dirtybit = NULL; g_free(dirty_bitmap); dirty_bitmap = NULL; /* Disable dirty bit tracking */ xen_track_dirty_vram(xen_domid, 0, 0, NULL); } } static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section) { XenIOState *state = container_of(listener, XenIOState, memory_listener); xen_sync_dirty_bitmap(state, section->offset_within_address_space, int128_get64(section->size)); } static void xen_log_global_start(MemoryListener *listener) { if (xen_enabled()) { xen_in_migration = true; } } static void xen_log_global_stop(MemoryListener *listener) { xen_in_migration = false; } static const MemoryListener xen_memory_listener = { .name = "xen-memory", .region_add = xen_region_add, .region_del = xen_region_del, .log_start = xen_log_start, .log_stop = xen_log_stop, .log_sync = xen_log_sync, .log_global_start = xen_log_global_start, .log_global_stop = xen_log_global_stop, .priority = MEMORY_LISTENER_PRIORITY_ACCEL, }; static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req) { X86CPU *cpu; CPUX86State *env; cpu = X86_CPU(current_cpu); env = &cpu->env; env->regs[R_EAX] = req->data; env->regs[R_EBX] = vmport_regs->ebx; env->regs[R_ECX] = vmport_regs->ecx; env->regs[R_EDX] = vmport_regs->edx; env->regs[R_ESI] = vmport_regs->esi; env->regs[R_EDI] = vmport_regs->edi; } static void regs_from_cpu(vmware_regs_t *vmport_regs) { X86CPU *cpu = X86_CPU(current_cpu); CPUX86State *env = &cpu->env; vmport_regs->ebx = env->regs[R_EBX]; vmport_regs->ecx = env->regs[R_ECX]; vmport_regs->edx = env->regs[R_EDX]; vmport_regs->esi = env->regs[R_ESI]; vmport_regs->edi = env->regs[R_EDI]; } static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req) { vmware_regs_t *vmport_regs; assert(shared_vmport_page); vmport_regs = &shared_vmport_page->vcpu_vmport_regs[state->send_vcpu]; QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs)); current_cpu = state->cpu_by_vcpu_id[state->send_vcpu]; regs_to_cpu(vmport_regs, req); cpu_ioreq_pio(req); regs_from_cpu(vmport_regs); current_cpu = NULL; } #ifdef XEN_COMPAT_PHYSMAP static void xen_read_physmap(XenIOState *state) { XenPhysmap *physmap = NULL; unsigned int len, num, i; char path[80], *value = NULL; char **entries = NULL; snprintf(path, sizeof(path), "/local/domain/0/device-model/%d/physmap", xen_domid); entries = xs_directory(state->xenstore, 0, path, &num); if (entries == NULL) return; for (i = 0; i < num; i++) { physmap = g_new(XenPhysmap, 1); physmap->phys_offset = strtoull(entries[i], NULL, 16); snprintf(path, sizeof(path), "/local/domain/0/device-model/%d/physmap/%s/start_addr", xen_domid, entries[i]); value = xs_read(state->xenstore, 0, path, &len); if (value == NULL) { g_free(physmap); continue; } physmap->start_addr = strtoull(value, NULL, 16); free(value); snprintf(path, sizeof(path), "/local/domain/0/device-model/%d/physmap/%s/size", xen_domid, entries[i]); value = xs_read(state->xenstore, 0, path, &len); if (value == NULL) { g_free(physmap); continue; } physmap->size = strtoull(value, NULL, 16); free(value); snprintf(path, sizeof(path), "/local/domain/0/device-model/%d/physmap/%s/name", xen_domid, entries[i]); physmap->name = xs_read(state->xenstore, 0, path, &len); QLIST_INSERT_HEAD(&xen_physmap, physmap, list); } free(entries); } #else static void xen_read_physmap(XenIOState *state) { } #endif static void xen_wakeup_notifier(Notifier *notifier, void *data) { xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0); } void xen_hvm_init_pc(PCMachineState *pcms, MemoryRegion **ram_memory) { MachineState *ms = MACHINE(pcms); unsigned int max_cpus = ms->smp.max_cpus; int rc; xen_pfn_t ioreq_pfn; XenIOState *state; state = g_new0(XenIOState, 1); xen_register_ioreq(state, max_cpus, &xen_memory_listener); QLIST_INIT(&xen_physmap); xen_read_physmap(state); suspend.notify = xen_suspend_notifier; qemu_register_suspend_notifier(&suspend); wakeup.notify = xen_wakeup_notifier; qemu_register_wakeup_notifier(&wakeup); rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn); if (!rc) { DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn); shared_vmport_page = xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE, 1, &ioreq_pfn, NULL); if (shared_vmport_page == NULL) { error_report("map shared vmport IO page returned error %d handle=%p", errno, xen_xc); goto err; } } else if (rc != -ENOSYS) { error_report("get vmport regs pfn returned error %d, rc=%d", errno, rc); goto err; } xen_ram_init(pcms, ms->ram_size, ram_memory); /* Disable ACPI build because Xen handles it */ pcms->acpi_build_enabled = false; return; err: error_report("xen hardware virtual machine initialisation failed"); exit(1); } void xen_register_framebuffer(MemoryRegion *mr) { framebuffer = mr; } void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length) { unsigned target_page_bits = qemu_target_page_bits(); int page_size = qemu_target_page_size(); int page_mask = -page_size; if (unlikely(xen_in_migration)) { int rc; ram_addr_t start_pfn, nb_pages; start = xen_phys_offset_to_gaddr(start, length, page_mask); if (length == 0) { length = page_size; } start_pfn = start >> target_page_bits; nb_pages = ((start + length + page_size - 1) >> target_page_bits) - start_pfn; rc = xen_modified_memory(xen_domid, start_pfn, nb_pages); if (rc) { fprintf(stderr, "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n", __func__, start, nb_pages, errno, strerror(errno)); } } } void qmp_xen_set_global_dirty_log(bool enable, Error **errp) { if (enable) { memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); } else { memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); } } void arch_xen_set_memory(XenIOState *state, MemoryRegionSection *section, bool add) { unsigned target_page_bits = qemu_target_page_bits(); int page_size = qemu_target_page_size(); int page_mask = -page_size; hwaddr start_addr = section->offset_within_address_space; ram_addr_t size = int128_get64(section->size); bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA); hvmmem_type_t mem_type; if (!memory_region_is_ram(section->mr)) { return; } if (log_dirty != add) { return; } trace_xen_client_set_memory(start_addr, size, log_dirty); start_addr &= page_mask; size = ROUND_UP(size, page_size); if (add) { if (!memory_region_is_rom(section->mr)) { xen_add_to_physmap(state, start_addr, size, section->mr, section->offset_within_region); } else { mem_type = HVMMEM_ram_ro; if (xen_set_mem_type(xen_domid, mem_type, start_addr >> target_page_bits, size >> target_page_bits)) { DPRINTF("xen_set_mem_type error, addr: "HWADDR_FMT_plx"\n", start_addr); } } } else { if (xen_remove_from_physmap(state, start_addr, size) < 0) { DPRINTF("physmapping does not exist at "HWADDR_FMT_plx"\n", start_addr); } } } void arch_handle_ioreq(XenIOState *state, ioreq_t *req) { switch (req->type) { case IOREQ_TYPE_VMWARE_PORT: handle_vmport_ioreq(state, req); break; default: hw_error("Invalid ioreq type 0x%x\n", req->type); } return; }