/* * QEMU PC System Emulator * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu/option.h" #include "cpu.h" #include "hw/nvram/fw_cfg.h" #include "multiboot.h" #include "hw/loader.h" #include "elf.h" #include "sysemu/sysemu.h" #include "qemu/error-report.h" /* Show multiboot debug output */ //#define DEBUG_MULTIBOOT #ifdef DEBUG_MULTIBOOT #define mb_debug(a...) error_report(a) #else #define mb_debug(a...) #endif #define MULTIBOOT_STRUCT_ADDR 0x9000 #if MULTIBOOT_STRUCT_ADDR > 0xf0000 #error multiboot struct needs to fit in 16 bit real mode #endif enum { /* Multiboot info */ MBI_FLAGS = 0, MBI_MEM_LOWER = 4, MBI_MEM_UPPER = 8, MBI_BOOT_DEVICE = 12, MBI_CMDLINE = 16, MBI_MODS_COUNT = 20, MBI_MODS_ADDR = 24, MBI_MMAP_ADDR = 48, MBI_BOOTLOADER = 64, MBI_SIZE = 88, /* Multiboot modules */ MB_MOD_START = 0, MB_MOD_END = 4, MB_MOD_CMDLINE = 8, MB_MOD_SIZE = 16, /* Region offsets */ ADDR_E820_MAP = MULTIBOOT_STRUCT_ADDR + 0, ADDR_MBI = ADDR_E820_MAP + 0x500, /* Multiboot flags */ MULTIBOOT_FLAGS_MEMORY = 1 << 0, MULTIBOOT_FLAGS_BOOT_DEVICE = 1 << 1, MULTIBOOT_FLAGS_CMDLINE = 1 << 2, MULTIBOOT_FLAGS_MODULES = 1 << 3, MULTIBOOT_FLAGS_MMAP = 1 << 6, MULTIBOOT_FLAGS_BOOTLOADER = 1 << 9, }; typedef struct { /* buffer holding kernel, cmdlines and mb_infos */ void *mb_buf; /* address in target */ hwaddr mb_buf_phys; /* size of mb_buf in bytes */ unsigned mb_buf_size; /* offset of mb-info's in bytes */ hwaddr offset_mbinfo; /* offset in buffer for cmdlines in bytes */ hwaddr offset_cmdlines; /* offset in buffer for bootloader name in bytes */ hwaddr offset_bootloader; /* offset of modules in bytes */ hwaddr offset_mods; /* available slots for mb modules infos */ int mb_mods_avail; /* currently used slots of mb modules */ int mb_mods_count; } MultibootState; const char *bootloader_name = "qemu"; static uint32_t mb_add_cmdline(MultibootState *s, const char *cmdline) { hwaddr p = s->offset_cmdlines; char *b = (char *)s->mb_buf + p; memcpy(b, cmdline, strlen(cmdline) + 1); s->offset_cmdlines += strlen(b) + 1; return s->mb_buf_phys + p; } static uint32_t mb_add_bootloader(MultibootState *s, const char *bootloader) { hwaddr p = s->offset_bootloader; char *b = (char *)s->mb_buf + p; memcpy(b, bootloader, strlen(bootloader) + 1); s->offset_bootloader += strlen(b) + 1; return s->mb_buf_phys + p; } static void mb_add_mod(MultibootState *s, hwaddr start, hwaddr end, hwaddr cmdline_phys) { char *p; assert(s->mb_mods_count < s->mb_mods_avail); p = (char *)s->mb_buf + s->offset_mbinfo + MB_MOD_SIZE * s->mb_mods_count; stl_le_p(p + MB_MOD_START, start); stl_le_p(p + MB_MOD_END, end); stl_le_p(p + MB_MOD_CMDLINE, cmdline_phys); mb_debug("mod%02d: "HWADDR_FMT_plx" - "HWADDR_FMT_plx, s->mb_mods_count, start, end); s->mb_mods_count++; } int load_multiboot(X86MachineState *x86ms, FWCfgState *fw_cfg, FILE *f, const char *kernel_filename, const char *initrd_filename, const char *kernel_cmdline, int kernel_file_size, uint8_t *header) { bool multiboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled; int i, is_multiboot = 0; uint32_t flags = 0; uint32_t mh_entry_addr; uint32_t mh_load_addr; uint32_t mb_kernel_size; MultibootState mbs; uint8_t bootinfo[MBI_SIZE]; uint8_t *mb_bootinfo_data; uint32_t cmdline_len; GList *mods = NULL; g_autofree char *kcmdline = NULL; /* Ok, let's see if it is a multiboot image. The header is 12x32bit long, so the latest entry may be 8192 - 48. */ for (i = 0; i < (8192 - 48); i += 4) { if (ldl_le_p(header + i) == 0x1BADB002) { uint32_t checksum = ldl_le_p(header + i + 8); flags = ldl_le_p(header + i + 4); checksum += flags; checksum += (uint32_t)0x1BADB002; if (!checksum) { is_multiboot = 1; break; } } } if (!is_multiboot) return 0; /* no multiboot */ mb_debug("I believe we found a multiboot image!"); memset(bootinfo, 0, sizeof(bootinfo)); memset(&mbs, 0, sizeof(mbs)); if (flags & 0x00000004) { /* MULTIBOOT_HEADER_HAS_VBE */ error_report("multiboot knows VBE. we don't"); } if (!(flags & 0x00010000)) { /* MULTIBOOT_HEADER_HAS_ADDR */ uint64_t elf_entry; uint64_t elf_low, elf_high; int kernel_size; fclose(f); if (((struct elf64_hdr*)header)->e_machine == EM_X86_64) { error_report("Cannot load x86-64 image, give a 32bit one."); exit(1); } kernel_size = load_elf(kernel_filename, NULL, NULL, NULL, &elf_entry, &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE, 0, 0); if (kernel_size < 0) { error_report("Error while loading elf kernel"); exit(1); } mh_load_addr = elf_low; mb_kernel_size = elf_high - elf_low; mh_entry_addr = elf_entry; mbs.mb_buf = g_malloc(mb_kernel_size); if (rom_copy(mbs.mb_buf, mh_load_addr, mb_kernel_size) != mb_kernel_size) { error_report("Error while fetching elf kernel from rom"); exit(1); } mb_debug("loading multiboot-elf kernel " "(%#x bytes) with entry %#zx", mb_kernel_size, (size_t)mh_entry_addr); } else { /* Valid if mh_flags sets MULTIBOOT_HEADER_HAS_ADDR. */ uint32_t mh_header_addr = ldl_le_p(header + i + 12); uint32_t mh_load_end_addr = ldl_le_p(header + i + 20); uint32_t mh_bss_end_addr = ldl_le_p(header + i + 24); mh_load_addr = ldl_le_p(header + i + 16); if (mh_header_addr < mh_load_addr) { error_report("invalid load_addr address"); exit(1); } if (mh_header_addr - mh_load_addr > i) { error_report("invalid header_addr address"); exit(1); } uint32_t mb_kernel_text_offset = i - (mh_header_addr - mh_load_addr); uint32_t mb_load_size = 0; mh_entry_addr = ldl_le_p(header + i + 28); if (mh_load_end_addr) { if (mh_load_end_addr < mh_load_addr) { error_report("invalid load_end_addr address"); exit(1); } mb_load_size = mh_load_end_addr - mh_load_addr; } else { if (kernel_file_size < mb_kernel_text_offset) { error_report("invalid kernel_file_size"); exit(1); } mb_load_size = kernel_file_size - mb_kernel_text_offset; } if (mb_load_size > UINT32_MAX - mh_load_addr) { error_report("kernel does not fit in address space"); exit(1); } if (mh_bss_end_addr) { if (mh_bss_end_addr < (mh_load_addr + mb_load_size)) { error_report("invalid bss_end_addr address"); exit(1); } mb_kernel_size = mh_bss_end_addr - mh_load_addr; } else { mb_kernel_size = mb_load_size; } mb_debug("multiboot: header_addr = %#x", mh_header_addr); mb_debug("multiboot: load_addr = %#x", mh_load_addr); mb_debug("multiboot: load_end_addr = %#x", mh_load_end_addr); mb_debug("multiboot: bss_end_addr = %#x", mh_bss_end_addr); mb_debug("loading multiboot kernel (%#x bytes) at %#x", mb_load_size, mh_load_addr); mbs.mb_buf = g_malloc(mb_kernel_size); fseek(f, mb_kernel_text_offset, SEEK_SET); if (fread(mbs.mb_buf, 1, mb_load_size, f) != mb_load_size) { error_report("fread() failed"); exit(1); } memset(mbs.mb_buf + mb_load_size, 0, mb_kernel_size - mb_load_size); fclose(f); } mbs.mb_buf_phys = mh_load_addr; mbs.mb_buf_size = TARGET_PAGE_ALIGN(mb_kernel_size); mbs.offset_mbinfo = mbs.mb_buf_size; /* Calculate space for cmdlines, bootloader name, and mb_mods */ cmdline_len = strlen(kernel_filename) + 1; cmdline_len += strlen(kernel_cmdline) + 1; if (initrd_filename) { const char *r = initrd_filename; cmdline_len += strlen(initrd_filename) + 1; while (*r) { char *value; r = get_opt_value(r, &value); mbs.mb_mods_avail++; mods = g_list_append(mods, value); if (*r) { r++; } } } mbs.mb_buf_size += cmdline_len; mbs.mb_buf_size += MB_MOD_SIZE * mbs.mb_mods_avail; mbs.mb_buf_size += strlen(bootloader_name) + 1; mbs.mb_buf_size = TARGET_PAGE_ALIGN(mbs.mb_buf_size); /* enlarge mb_buf to hold cmdlines, bootloader, mb-info structs */ mbs.mb_buf = g_realloc(mbs.mb_buf, mbs.mb_buf_size); mbs.offset_cmdlines = mbs.offset_mbinfo + mbs.mb_mods_avail * MB_MOD_SIZE; mbs.offset_bootloader = mbs.offset_cmdlines + cmdline_len; if (mods) { GList *tmpl = mods; mbs.offset_mods = mbs.mb_buf_size; while (tmpl) { char *next_space; int mb_mod_length; uint32_t offs = mbs.mb_buf_size; char *one_file = tmpl->data; /* if a space comes after the module filename, treat everything after that as parameters */ hwaddr c = mb_add_cmdline(&mbs, one_file); next_space = strchr(one_file, ' '); if (next_space) { *next_space = '\0'; } mb_debug("multiboot loading module: %s", one_file); mb_mod_length = get_image_size(one_file); if (mb_mod_length < 0) { error_report("Failed to open file '%s'", one_file); exit(1); } mbs.mb_buf_size = TARGET_PAGE_ALIGN(mb_mod_length + mbs.mb_buf_size); mbs.mb_buf = g_realloc(mbs.mb_buf, mbs.mb_buf_size); if (load_image_size(one_file, (unsigned char *)mbs.mb_buf + offs, mbs.mb_buf_size - offs) < 0) { error_report("Error loading file '%s'", one_file); exit(1); } mb_add_mod(&mbs, mbs.mb_buf_phys + offs, mbs.mb_buf_phys + offs + mb_mod_length, c); mb_debug("mod_start: %p\nmod_end: %p\n cmdline: "HWADDR_FMT_plx, (char *)mbs.mb_buf + offs, (char *)mbs.mb_buf + offs + mb_mod_length, c); g_free(one_file); tmpl = tmpl->next; } g_list_free(mods); } /* Commandline support */ kcmdline = g_strdup_printf("%s %s", kernel_filename, kernel_cmdline); stl_le_p(bootinfo + MBI_CMDLINE, mb_add_cmdline(&mbs, kcmdline)); stl_le_p(bootinfo + MBI_BOOTLOADER, mb_add_bootloader(&mbs, bootloader_name)); stl_le_p(bootinfo + MBI_MODS_ADDR, mbs.mb_buf_phys + mbs.offset_mbinfo); stl_le_p(bootinfo + MBI_MODS_COUNT, mbs.mb_mods_count); /* mods_count */ /* the kernel is where we want it to be now */ stl_le_p(bootinfo + MBI_FLAGS, MULTIBOOT_FLAGS_MEMORY | MULTIBOOT_FLAGS_BOOT_DEVICE | MULTIBOOT_FLAGS_CMDLINE | MULTIBOOT_FLAGS_MODULES | MULTIBOOT_FLAGS_MMAP | MULTIBOOT_FLAGS_BOOTLOADER); stl_le_p(bootinfo + MBI_BOOT_DEVICE, 0x8000ffff); /* XXX: use the -boot switch? */ stl_le_p(bootinfo + MBI_MMAP_ADDR, ADDR_E820_MAP); mb_debug("multiboot: entry_addr = %#x", mh_entry_addr); mb_debug(" mb_buf_phys = "HWADDR_FMT_plx, mbs.mb_buf_phys); mb_debug(" mod_start = "HWADDR_FMT_plx, mbs.mb_buf_phys + mbs.offset_mods); mb_debug(" mb_mods_count = %d", mbs.mb_mods_count); /* save bootinfo off the stack */ mb_bootinfo_data = g_memdup(bootinfo, sizeof(bootinfo)); /* Pass variables to option rom */ fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, mh_entry_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, mbs.mb_buf_size); fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, mbs.mb_buf, mbs.mb_buf_size); fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, ADDR_MBI); fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, sizeof(bootinfo)); fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, mb_bootinfo_data, sizeof(bootinfo)); if (multiboot_dma_enabled) { option_rom[nb_option_roms].name = "multiboot_dma.bin"; } else { option_rom[nb_option_roms].name = "multiboot.bin"; } option_rom[nb_option_roms].bootindex = 0; nb_option_roms++; return 1; /* yes, we are multiboot */ }