/* * QEMU SMBus EEPROM device * * Copyright (c) 2007 Arastra, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qapi/error.h" #include "hw/boards.h" #include "hw/i2c/i2c.h" #include "hw/i2c/smbus_slave.h" #include "hw/qdev-properties.h" #include "migration/vmstate.h" #include "hw/i2c/smbus_eeprom.h" #include "qom/object.h" //#define DEBUG #define TYPE_SMBUS_EEPROM "smbus-eeprom" OBJECT_DECLARE_SIMPLE_TYPE(SMBusEEPROMDevice, SMBUS_EEPROM) #define SMBUS_EEPROM_SIZE 256 struct SMBusEEPROMDevice { SMBusDevice smbusdev; uint8_t data[SMBUS_EEPROM_SIZE]; uint8_t *init_data; uint8_t offset; bool accessed; }; static uint8_t eeprom_receive_byte(SMBusDevice *dev) { SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev); uint8_t *data = eeprom->data; uint8_t val = data[eeprom->offset++]; eeprom->accessed = true; #ifdef DEBUG printf("eeprom_receive_byte: addr=0x%02x val=0x%02x\n", dev->i2c.address, val); #endif return val; } static int eeprom_write_data(SMBusDevice *dev, uint8_t *buf, uint8_t len) { SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev); uint8_t *data = eeprom->data; eeprom->accessed = true; #ifdef DEBUG printf("eeprom_write_byte: addr=0x%02x cmd=0x%02x val=0x%02x\n", dev->i2c.address, buf[0], buf[1]); #endif /* len is guaranteed to be > 0 */ eeprom->offset = buf[0]; buf++; len--; for (; len > 0; len--) { data[eeprom->offset] = *buf++; eeprom->offset = (eeprom->offset + 1) % SMBUS_EEPROM_SIZE; } return 0; } static bool smbus_eeprom_vmstate_needed(void *opaque) { MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); SMBusEEPROMDevice *eeprom = opaque; return (eeprom->accessed || smbus_vmstate_needed(&eeprom->smbusdev)) && !mc->smbus_no_migration_support; } static const VMStateDescription vmstate_smbus_eeprom = { .name = "smbus-eeprom", .version_id = 1, .minimum_version_id = 1, .needed = smbus_eeprom_vmstate_needed, .fields = (const VMStateField[]) { VMSTATE_SMBUS_DEVICE(smbusdev, SMBusEEPROMDevice), VMSTATE_UINT8_ARRAY(data, SMBusEEPROMDevice, SMBUS_EEPROM_SIZE), VMSTATE_UINT8(offset, SMBusEEPROMDevice), VMSTATE_BOOL(accessed, SMBusEEPROMDevice), VMSTATE_END_OF_LIST() } }; /* * Reset the EEPROM contents to the initial state on a reset. This * isn't really how an EEPROM works, of course, but the general * principle of QEMU is to restore function on reset to what it would * be if QEMU was stopped and started. * * The proper thing to do would be to have a backing blockdev to hold * the contents and restore that on startup, and not do this on reset. * But until that time, act as if we had been stopped and restarted. */ static void smbus_eeprom_reset(DeviceState *dev) { SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev); memcpy(eeprom->data, eeprom->init_data, SMBUS_EEPROM_SIZE); eeprom->offset = 0; } static void smbus_eeprom_realize(DeviceState *dev, Error **errp) { SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev); smbus_eeprom_reset(dev); if (eeprom->init_data == NULL) { error_setg(errp, "init_data cannot be NULL"); } } static void smbus_eeprom_class_initfn(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); SMBusDeviceClass *sc = SMBUS_DEVICE_CLASS(klass); dc->realize = smbus_eeprom_realize; device_class_set_legacy_reset(dc, smbus_eeprom_reset); sc->receive_byte = eeprom_receive_byte; sc->write_data = eeprom_write_data; dc->vmsd = &vmstate_smbus_eeprom; /* Reason: init_data */ dc->user_creatable = false; } static const TypeInfo smbus_eeprom_types[] = { { .name = TYPE_SMBUS_EEPROM, .parent = TYPE_SMBUS_DEVICE, .instance_size = sizeof(SMBusEEPROMDevice), .class_init = smbus_eeprom_class_initfn, }, }; DEFINE_TYPES(smbus_eeprom_types) void smbus_eeprom_init_one(I2CBus *smbus, uint8_t address, uint8_t *eeprom_buf) { DeviceState *dev; dev = qdev_new(TYPE_SMBUS_EEPROM); qdev_prop_set_uint8(dev, "address", address); /* FIXME: use an array of byte or block backend property? */ SMBUS_EEPROM(dev)->init_data = eeprom_buf; qdev_realize_and_unref(dev, (BusState *)smbus, &error_fatal); } void smbus_eeprom_init(I2CBus *smbus, int nb_eeprom, const uint8_t *eeprom_spd, int eeprom_spd_size) { int i; /* XXX: make this persistent */ assert(nb_eeprom <= 8); uint8_t *eeprom_buf = g_malloc0(8 * SMBUS_EEPROM_SIZE); if (eeprom_spd_size > 0) { memcpy(eeprom_buf, eeprom_spd, eeprom_spd_size); } for (i = 0; i < nb_eeprom; i++) { smbus_eeprom_init_one(smbus, 0x50 + i, eeprom_buf + (i * SMBUS_EEPROM_SIZE)); } } /* Generate SDRAM SPD EEPROM data describing a module of type and size */ uint8_t *spd_data_generate(enum sdram_type type, ram_addr_t ram_size) { uint8_t *spd; uint8_t nbanks; uint16_t density; uint32_t size; int min_log2, max_log2, sz_log2; int i; switch (type) { case SDR: min_log2 = 2; max_log2 = 9; break; case DDR: min_log2 = 5; max_log2 = 12; break; case DDR2: min_log2 = 7; max_log2 = 14; break; default: g_assert_not_reached(); } size = ram_size >> 20; /* work in terms of megabytes */ sz_log2 = 31 - clz32(size); size = 1U << sz_log2; assert(ram_size == size * MiB); assert(sz_log2 >= min_log2); nbanks = 1; while (sz_log2 > max_log2 && nbanks < 8) { sz_log2--; nbanks *= 2; } assert(size == (1ULL << sz_log2) * nbanks); /* split to 2 banks if possible to avoid a bug in MIPS Malta firmware */ if (nbanks == 1 && sz_log2 > min_log2) { sz_log2--; nbanks++; } density = 1ULL << (sz_log2 - 2); switch (type) { case DDR2: density = (density & 0xe0) | (density >> 8 & 0x1f); break; case DDR: density = (density & 0xf8) | (density >> 8 & 0x07); break; case SDR: default: density &= 0xff; break; } spd = g_malloc0(256); spd[0] = 128; /* data bytes in EEPROM */ spd[1] = 8; /* log2 size of EEPROM */ spd[2] = type; spd[3] = 13; /* row address bits */ spd[4] = 10; /* column address bits */ spd[5] = (type == DDR2 ? nbanks - 1 : nbanks); spd[6] = 64; /* module data width */ /* reserved / data width high */ spd[8] = 4; /* interface voltage level */ spd[9] = 0x25; /* highest CAS latency */ spd[10] = 1; /* access time */ /* DIMM configuration 0 = non-ECC */ spd[12] = 0x82; /* refresh requirements */ spd[13] = 8; /* primary SDRAM width */ /* ECC SDRAM width */ spd[15] = (type == DDR2 ? 0 : 1); /* reserved / delay for random col rd */ spd[16] = 12; /* burst lengths supported */ spd[17] = 4; /* banks per SDRAM device */ spd[18] = 12; /* ~CAS latencies supported */ spd[19] = (type == DDR2 ? 0 : 1); /* reserved / ~CS latencies supported */ spd[20] = 2; /* DIMM type / ~WE latencies */ spd[21] = (type < DDR2 ? 0x20 : 0); /* module features */ /* memory chip features */ spd[23] = 0x12; /* clock cycle time @ medium CAS latency */ /* data access time */ /* clock cycle time @ short CAS latency */ /* data access time */ spd[27] = 20; /* min. row precharge time */ spd[28] = 15; /* min. row active row delay */ spd[29] = 20; /* min. ~RAS to ~CAS delay */ spd[30] = 45; /* min. active to precharge time */ spd[31] = density; spd[32] = 20; /* addr/cmd setup time */ spd[33] = 8; /* addr/cmd hold time */ spd[34] = 20; /* data input setup time */ spd[35] = 8; /* data input hold time */ /* checksum */ for (i = 0; i < 63; i++) { spd[63] += spd[i]; } return spd; }