/* * QEMU HPPA hardware system emulator. * Copyright 2018 Helge Deller */ #include "qemu/osdep.h" #include "qemu-common.h" #include "cpu.h" #include "hw/hw.h" #include "elf.h" #include "hw/loader.h" #include "hw/boards.h" #include "qemu/error-report.h" #include "sysemu/sysemu.h" #include "hw/timer/mc146818rtc.h" #include "hw/ide.h" #include "hw/timer/i8254.h" #include "hw/char/serial.h" #include "hppa_sys.h" #include "qemu/units.h" #include "qapi/error.h" #include "qemu/log.h" #define MAX_IDE_BUS 2 static ISABus *hppa_isa_bus(void) { ISABus *isa_bus; qemu_irq *isa_irqs; MemoryRegion *isa_region; isa_region = g_new(MemoryRegion, 1); memory_region_init_io(isa_region, NULL, &hppa_pci_ignore_ops, NULL, "isa-io", 0x800); memory_region_add_subregion(get_system_memory(), IDE_HPA, isa_region); isa_bus = isa_bus_new(NULL, get_system_memory(), isa_region, &error_abort); isa_irqs = i8259_init(isa_bus, /* qemu_allocate_irq(dino_set_isa_irq, s, 0)); */ NULL); isa_bus_irqs(isa_bus, isa_irqs); return isa_bus; } static uint64_t cpu_hppa_to_phys(void *opaque, uint64_t addr) { addr &= (0x10000000 - 1); return addr; } static HPPACPU *cpu[HPPA_MAX_CPUS]; static uint64_t firmware_entry; static void machine_hppa_init(MachineState *machine) { const char *kernel_filename = machine->kernel_filename; const char *kernel_cmdline = machine->kernel_cmdline; const char *initrd_filename = machine->initrd_filename; DeviceState *dev; PCIBus *pci_bus; ISABus *isa_bus; qemu_irq rtc_irq, serial_irq; char *firmware_filename; uint64_t firmware_low, firmware_high; long size; uint64_t kernel_entry = 0, kernel_low, kernel_high; MemoryRegion *addr_space = get_system_memory(); MemoryRegion *rom_region; MemoryRegion *ram_region; MemoryRegion *cpu_region; long i; unsigned int smp_cpus = machine->smp.cpus; ram_size = machine->ram_size; /* Create CPUs. */ for (i = 0; i < smp_cpus; i++) { cpu[i] = HPPA_CPU(cpu_create(machine->cpu_type)); cpu_region = g_new(MemoryRegion, 1); memory_region_init_io(cpu_region, OBJECT(cpu[i]), &hppa_io_eir_ops, cpu[i], g_strdup_printf("cpu%ld-io-eir", i), 4); memory_region_add_subregion(addr_space, CPU_HPA + i * 0x1000, cpu_region); } /* Limit main memory. */ if (ram_size > FIRMWARE_START) { machine->ram_size = ram_size = FIRMWARE_START; } /* Main memory region. */ ram_region = g_new(MemoryRegion, 1); memory_region_allocate_system_memory(ram_region, OBJECT(machine), "ram", ram_size); memory_region_add_subregion(addr_space, 0, ram_region); /* Init Dino (PCI host bus chip). */ pci_bus = dino_init(addr_space, &rtc_irq, &serial_irq); assert(pci_bus); /* Create ISA bus. */ isa_bus = hppa_isa_bus(); assert(isa_bus); /* Realtime clock, used by firmware for PDC_TOD call. */ mc146818_rtc_init(isa_bus, 2000, rtc_irq); /* Serial code setup. */ if (serial_hd(0)) { uint32_t addr = DINO_UART_HPA + 0x800; serial_mm_init(addr_space, addr, 0, serial_irq, 115200, serial_hd(0), DEVICE_BIG_ENDIAN); } /* SCSI disk setup. */ dev = DEVICE(pci_create_simple(pci_bus, -1, "lsi53c895a")); lsi53c8xx_handle_legacy_cmdline(dev); /* Network setup. e1000 is good enough, failing Tulip support. */ for (i = 0; i < nb_nics; i++) { pci_nic_init_nofail(&nd_table[i], pci_bus, "e1000", NULL); } /* Load firmware. Given that this is not "real" firmware, but one explicitly written for the emulation, we might as well load it directly from an ELF image. */ firmware_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name ? bios_name : "hppa-firmware.img"); if (firmware_filename == NULL) { error_report("no firmware provided"); exit(1); } size = load_elf(firmware_filename, NULL, NULL, NULL, &firmware_entry, &firmware_low, &firmware_high, true, EM_PARISC, 0, 0); /* Unfortunately, load_elf sign-extends reading elf32. */ firmware_entry = (target_ureg)firmware_entry; firmware_low = (target_ureg)firmware_low; firmware_high = (target_ureg)firmware_high; if (size < 0) { error_report("could not load firmware '%s'", firmware_filename); exit(1); } qemu_log_mask(CPU_LOG_PAGE, "Firmware loaded at 0x%08" PRIx64 "-0x%08" PRIx64 ", entry at 0x%08" PRIx64 ".\n", firmware_low, firmware_high, firmware_entry); if (firmware_low < ram_size || firmware_high >= FIRMWARE_END) { error_report("Firmware overlaps with memory or IO space"); exit(1); } g_free(firmware_filename); rom_region = g_new(MemoryRegion, 1); memory_region_allocate_system_memory(rom_region, OBJECT(machine), "firmware", (FIRMWARE_END - FIRMWARE_START)); memory_region_add_subregion(addr_space, FIRMWARE_START, rom_region); /* Load kernel */ if (kernel_filename) { size = load_elf(kernel_filename, NULL, &cpu_hppa_to_phys, NULL, &kernel_entry, &kernel_low, &kernel_high, true, EM_PARISC, 0, 0); /* Unfortunately, load_elf sign-extends reading elf32. */ kernel_entry = (target_ureg) cpu_hppa_to_phys(NULL, kernel_entry); kernel_low = (target_ureg)kernel_low; kernel_high = (target_ureg)kernel_high; if (size < 0) { error_report("could not load kernel '%s'", kernel_filename); exit(1); } qemu_log_mask(CPU_LOG_PAGE, "Kernel loaded at 0x%08" PRIx64 "-0x%08" PRIx64 ", entry at 0x%08" PRIx64 ", size %" PRIu64 " kB\n", kernel_low, kernel_high, kernel_entry, size / KiB); if (kernel_cmdline) { cpu[0]->env.gr[24] = 0x4000; pstrcpy_targphys("cmdline", cpu[0]->env.gr[24], TARGET_PAGE_SIZE, kernel_cmdline); } if (initrd_filename) { ram_addr_t initrd_base; int64_t initrd_size; initrd_size = get_image_size(initrd_filename); if (initrd_size < 0) { error_report("could not load initial ram disk '%s'", initrd_filename); exit(1); } /* Load the initrd image high in memory. Mirror the algorithm used by palo: (1) Due to sign-extension problems and PDC, put the initrd no higher than 1G. (2) Reserve 64k for stack. */ initrd_base = MIN(ram_size, 1 * GiB); initrd_base = initrd_base - 64 * KiB; initrd_base = (initrd_base - initrd_size) & TARGET_PAGE_MASK; if (initrd_base < kernel_high) { error_report("kernel and initial ram disk too large!"); exit(1); } load_image_targphys(initrd_filename, initrd_base, initrd_size); cpu[0]->env.gr[23] = initrd_base; cpu[0]->env.gr[22] = initrd_base + initrd_size; } } if (!kernel_entry) { /* When booting via firmware, tell firmware if we want interactive * mode (kernel_entry=1), and to boot from CD (gr[24]='d') * or hard disc * (gr[24]='c'). */ kernel_entry = boot_menu ? 1 : 0; cpu[0]->env.gr[24] = machine->boot_order[0]; } /* We jump to the firmware entry routine and pass the * various parameters in registers. After firmware initialization, * firmware will start the Linux kernel with ramdisk and cmdline. */ cpu[0]->env.gr[26] = ram_size; cpu[0]->env.gr[25] = kernel_entry; /* tell firmware how many SMP CPUs to present in inventory table */ cpu[0]->env.gr[21] = smp_cpus; } static void hppa_machine_reset(MachineState *ms) { unsigned int smp_cpus = ms->smp.cpus; int i; qemu_devices_reset(); /* Start all CPUs at the firmware entry point. * Monarch CPU will initialize firmware, secondary CPUs * will enter a small idle look and wait for rendevouz. */ for (i = 0; i < smp_cpus; i++) { cpu_set_pc(CPU(cpu[i]), firmware_entry); cpu[i]->env.gr[5] = CPU_HPA + i * 0x1000; } /* already initialized by machine_hppa_init()? */ if (cpu[0]->env.gr[26] == ram_size) { return; } cpu[0]->env.gr[26] = ram_size; cpu[0]->env.gr[25] = 0; /* no firmware boot menu */ cpu[0]->env.gr[24] = 'c'; /* gr22/gr23 unused, no initrd while reboot. */ cpu[0]->env.gr[21] = smp_cpus; } static void machine_hppa_machine_init(MachineClass *mc) { mc->desc = "HPPA generic machine"; mc->default_cpu_type = TYPE_HPPA_CPU; mc->init = machine_hppa_init; mc->reset = hppa_machine_reset; mc->block_default_type = IF_SCSI; mc->max_cpus = HPPA_MAX_CPUS; mc->default_cpus = 1; mc->is_default = 1; mc->default_ram_size = 512 * MiB; mc->default_boot_order = "cd"; } DEFINE_MACHINE("hppa", machine_hppa_machine_init)