/* * Xilinx Platform CSU Stream DMA emulation * * This implementation is based on * https://github.com/Xilinx/qemu/blob/master/hw/dma/csu_stream_dma.c * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 or * (at your option) version 3 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see . */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qapi/error.h" #include "hw/irq.h" #include "hw/qdev-properties.h" #include "hw/sysbus.h" #include "migration/vmstate.h" #include "sysemu/dma.h" #include "hw/ptimer.h" #include "hw/stream.h" #include "hw/register.h" #include "hw/dma/xlnx_csu_dma.h" /* * Ref: UG1087 (v1.7) February 8, 2019 * https://www.xilinx.com/html_docs/registers/ug1087/ug1087-zynq-ultrascale-registers * CSUDMA Module section */ REG32(ADDR, 0x0) FIELD(ADDR, ADDR, 2, 30) /* wo */ REG32(SIZE, 0x4) FIELD(SIZE, SIZE, 2, 27) FIELD(SIZE, LAST_WORD, 0, 1) /* rw, only exists in SRC */ REG32(STATUS, 0x8) FIELD(STATUS, DONE_CNT, 13, 3) /* wtc */ FIELD(STATUS, FIFO_LEVEL, 5, 8) /* ro */ FIELD(STATUS, OUTSTANDING, 1, 4) /* ro */ FIELD(STATUS, BUSY, 0, 1) /* ro */ REG32(CTRL, 0xc) FIELD(CTRL, FIFOTHRESH, 25, 7) /* rw, only exists in DST, reset 0x40 */ FIELD(CTRL, APB_ERR_RESP, 24, 1) /* rw */ FIELD(CTRL, ENDIANNESS, 23, 1) /* rw */ FIELD(CTRL, AXI_BRST_TYPE, 22, 1) /* rw */ FIELD(CTRL, TIMEOUT_VAL, 10, 12) /* rw, reset: 0xFFE */ FIELD(CTRL, FIFO_THRESH, 2, 8) /* rw, reset: 0x80 */ FIELD(CTRL, PAUSE_STRM, 1, 1) /* rw */ FIELD(CTRL, PAUSE_MEM, 0, 1) /* rw */ REG32(CRC, 0x10) REG32(INT_STATUS, 0x14) FIELD(INT_STATUS, FIFO_OVERFLOW, 7, 1) /* wtc */ FIELD(INT_STATUS, INVALID_APB, 6, 1) /* wtc */ FIELD(INT_STATUS, THRESH_HIT, 5, 1) /* wtc */ FIELD(INT_STATUS, TIMEOUT_MEM, 4, 1) /* wtc */ FIELD(INT_STATUS, TIMEOUT_STRM, 3, 1) /* wtc */ FIELD(INT_STATUS, AXI_BRESP_ERR, 2, 1) /* wtc, SRC: AXI_RDERR */ FIELD(INT_STATUS, DONE, 1, 1) /* wtc */ FIELD(INT_STATUS, MEM_DONE, 0, 1) /* wtc */ REG32(INT_ENABLE, 0x18) FIELD(INT_ENABLE, FIFO_OVERFLOW, 7, 1) /* wtc */ FIELD(INT_ENABLE, INVALID_APB, 6, 1) /* wtc */ FIELD(INT_ENABLE, THRESH_HIT, 5, 1) /* wtc */ FIELD(INT_ENABLE, TIMEOUT_MEM, 4, 1) /* wtc */ FIELD(INT_ENABLE, TIMEOUT_STRM, 3, 1) /* wtc */ FIELD(INT_ENABLE, AXI_BRESP_ERR, 2, 1) /* wtc, SRC: AXI_RDERR */ FIELD(INT_ENABLE, DONE, 1, 1) /* wtc */ FIELD(INT_ENABLE, MEM_DONE, 0, 1) /* wtc */ REG32(INT_DISABLE, 0x1c) FIELD(INT_DISABLE, FIFO_OVERFLOW, 7, 1) /* wtc */ FIELD(INT_DISABLE, INVALID_APB, 6, 1) /* wtc */ FIELD(INT_DISABLE, THRESH_HIT, 5, 1) /* wtc */ FIELD(INT_DISABLE, TIMEOUT_MEM, 4, 1) /* wtc */ FIELD(INT_DISABLE, TIMEOUT_STRM, 3, 1) /* wtc */ FIELD(INT_DISABLE, AXI_BRESP_ERR, 2, 1) /* wtc, SRC: AXI_RDERR */ FIELD(INT_DISABLE, DONE, 1, 1) /* wtc */ FIELD(INT_DISABLE, MEM_DONE, 0, 1) /* wtc */ REG32(INT_MASK, 0x20) FIELD(INT_MASK, FIFO_OVERFLOW, 7, 1) /* ro, reset: 0x1 */ FIELD(INT_MASK, INVALID_APB, 6, 1) /* ro, reset: 0x1 */ FIELD(INT_MASK, THRESH_HIT, 5, 1) /* ro, reset: 0x1 */ FIELD(INT_MASK, TIMEOUT_MEM, 4, 1) /* ro, reset: 0x1 */ FIELD(INT_MASK, TIMEOUT_STRM, 3, 1) /* ro, reset: 0x1 */ FIELD(INT_MASK, AXI_BRESP_ERR, 2, 1) /* ro, reset: 0x1, SRC: AXI_RDERR */ FIELD(INT_MASK, DONE, 1, 1) /* ro, reset: 0x1 */ FIELD(INT_MASK, MEM_DONE, 0, 1) /* ro, reset: 0x1 */ REG32(CTRL2, 0x24) FIELD(CTRL2, ARCACHE, 24, 3) /* rw */ FIELD(CTRL2, ROUTE_BIT, 23, 1) /* rw */ FIELD(CTRL2, TIMEOUT_EN, 22, 1) /* rw */ FIELD(CTRL2, TIMEOUT_PRE, 4, 12) /* rw, reset: 0xFFF */ FIELD(CTRL2, MAX_OUTS_CMDS, 0, 4) /* rw, reset: 0x8 */ REG32(ADDR_MSB, 0x28) FIELD(ADDR_MSB, ADDR_MSB, 0, 17) /* wo */ #define R_CTRL_TIMEOUT_VAL_RESET (0xFFE) #define R_CTRL_FIFO_THRESH_RESET (0x80) #define R_CTRL_FIFOTHRESH_RESET (0x40) #define R_CTRL2_TIMEOUT_PRE_RESET (0xFFF) #define R_CTRL2_MAX_OUTS_CMDS_RESET (0x8) #define XLNX_CSU_DMA_ERR_DEBUG (0) #define XLNX_CSU_DMA_INT_R_MASK (0xff) /* UG1807: Set the prescaler value for the timeout in clk (~2.5ns) cycles */ #define XLNX_CSU_DMA_TIMER_FREQ (400 * 1000 * 1000) static bool xlnx_csu_dma_is_paused(XlnxCSUDMA *s) { bool paused; paused = !!(s->regs[R_CTRL] & R_CTRL_PAUSE_STRM_MASK); paused |= !!(s->regs[R_CTRL] & R_CTRL_PAUSE_MEM_MASK); return paused; } static bool xlnx_csu_dma_get_eop(XlnxCSUDMA *s) { return s->r_size_last_word; } static bool xlnx_csu_dma_burst_is_fixed(XlnxCSUDMA *s) { return !!(s->regs[R_CTRL] & R_CTRL_AXI_BRST_TYPE_MASK); } static bool xlnx_csu_dma_timeout_enabled(XlnxCSUDMA *s) { return !!(s->regs[R_CTRL2] & R_CTRL2_TIMEOUT_EN_MASK); } static void xlnx_csu_dma_update_done_cnt(XlnxCSUDMA *s, int a) { int cnt; /* Increase DONE_CNT */ cnt = ARRAY_FIELD_EX32(s->regs, STATUS, DONE_CNT) + a; ARRAY_FIELD_DP32(s->regs, STATUS, DONE_CNT, cnt); } static void xlnx_csu_dma_data_process(XlnxCSUDMA *s, uint8_t *buf, uint32_t len) { uint32_t bswap; uint32_t i; bswap = s->regs[R_CTRL] & R_CTRL_ENDIANNESS_MASK; if (s->is_dst && !bswap) { /* Fast when ENDIANNESS cleared */ return; } for (i = 0; i < len; i += 4) { uint8_t *b = &buf[i]; union { uint8_t u8[4]; uint32_t u32; } v = { .u8 = { b[0], b[1], b[2], b[3] } }; if (!s->is_dst) { s->regs[R_CRC] += v.u32; } if (bswap) { /* * No point using bswap, we need to writeback * into a potentially unaligned pointer. */ b[0] = v.u8[3]; b[1] = v.u8[2]; b[2] = v.u8[1]; b[3] = v.u8[0]; } } } static void xlnx_csu_dma_update_irq(XlnxCSUDMA *s) { qemu_set_irq(s->irq, !!(s->regs[R_INT_STATUS] & ~s->regs[R_INT_MASK])); } /* len is in bytes */ static uint32_t xlnx_csu_dma_read(XlnxCSUDMA *s, uint8_t *buf, uint32_t len) { hwaddr addr = (hwaddr)s->regs[R_ADDR_MSB] << 32 | s->regs[R_ADDR]; MemTxResult result = MEMTX_OK; if (xlnx_csu_dma_burst_is_fixed(s)) { uint32_t i; for (i = 0; i < len && (result == MEMTX_OK); i += s->width) { uint32_t mlen = MIN(len - i, s->width); result = address_space_rw(&s->dma_as, addr, s->attr, buf + i, mlen, false); } } else { result = address_space_rw(&s->dma_as, addr, s->attr, buf, len, false); } if (result == MEMTX_OK) { xlnx_csu_dma_data_process(s, buf, len); } else { qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address " HWADDR_FMT_plx " for mem read", __func__, addr); s->regs[R_INT_STATUS] |= R_INT_STATUS_AXI_BRESP_ERR_MASK; xlnx_csu_dma_update_irq(s); } return len; } /* len is in bytes */ static uint32_t xlnx_csu_dma_write(XlnxCSUDMA *s, uint8_t *buf, uint32_t len) { hwaddr addr = (hwaddr)s->regs[R_ADDR_MSB] << 32 | s->regs[R_ADDR]; MemTxResult result = MEMTX_OK; xlnx_csu_dma_data_process(s, buf, len); if (xlnx_csu_dma_burst_is_fixed(s)) { uint32_t i; for (i = 0; i < len && (result == MEMTX_OK); i += s->width) { uint32_t mlen = MIN(len - i, s->width); result = address_space_rw(&s->dma_as, addr, s->attr, buf, mlen, true); buf += mlen; } } else { result = address_space_rw(&s->dma_as, addr, s->attr, buf, len, true); } if (result != MEMTX_OK) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address " HWADDR_FMT_plx " for mem write", __func__, addr); s->regs[R_INT_STATUS] |= R_INT_STATUS_AXI_BRESP_ERR_MASK; xlnx_csu_dma_update_irq(s); } return len; } static void xlnx_csu_dma_done(XlnxCSUDMA *s) { s->regs[R_STATUS] &= ~R_STATUS_BUSY_MASK; s->regs[R_INT_STATUS] |= R_INT_STATUS_DONE_MASK; if (!s->is_dst) { s->regs[R_INT_STATUS] |= R_INT_STATUS_MEM_DONE_MASK; } xlnx_csu_dma_update_done_cnt(s, 1); } static uint32_t xlnx_csu_dma_advance(XlnxCSUDMA *s, uint32_t len) { uint32_t size = s->regs[R_SIZE]; hwaddr dst = (hwaddr)s->regs[R_ADDR_MSB] << 32 | s->regs[R_ADDR]; assert(len <= size); size -= len; s->regs[R_SIZE] = size; if (!xlnx_csu_dma_burst_is_fixed(s)) { dst += len; s->regs[R_ADDR] = (uint32_t) dst; s->regs[R_ADDR_MSB] = dst >> 32; } if (size == 0) { xlnx_csu_dma_done(s); } return size; } static void xlnx_csu_dma_src_notify(void *opaque) { XlnxCSUDMA *s = XLNX_CSU_DMA(opaque); unsigned char buf[4 * 1024]; size_t rlen = 0; ptimer_transaction_begin(s->src_timer); /* Stop the backpreassure timer */ ptimer_stop(s->src_timer); while (s->regs[R_SIZE] && !xlnx_csu_dma_is_paused(s) && stream_can_push(s->tx_dev, xlnx_csu_dma_src_notify, s)) { uint32_t plen = MIN(s->regs[R_SIZE], sizeof buf); bool eop = false; /* Did we fit it all? */ if (s->regs[R_SIZE] == plen && xlnx_csu_dma_get_eop(s)) { eop = true; } /* DMA transfer */ xlnx_csu_dma_read(s, buf, plen); rlen = stream_push(s->tx_dev, buf, plen, eop); xlnx_csu_dma_advance(s, rlen); } if (xlnx_csu_dma_timeout_enabled(s) && s->regs[R_SIZE] && !stream_can_push(s->tx_dev, xlnx_csu_dma_src_notify, s)) { uint32_t timeout = ARRAY_FIELD_EX32(s->regs, CTRL, TIMEOUT_VAL); uint32_t div = ARRAY_FIELD_EX32(s->regs, CTRL2, TIMEOUT_PRE) + 1; uint32_t freq = XLNX_CSU_DMA_TIMER_FREQ; freq /= div; ptimer_set_freq(s->src_timer, freq); ptimer_set_count(s->src_timer, timeout); ptimer_run(s->src_timer, 1); } ptimer_transaction_commit(s->src_timer); xlnx_csu_dma_update_irq(s); } static uint64_t addr_pre_write(RegisterInfo *reg, uint64_t val) { /* Address is word aligned */ return val & R_ADDR_ADDR_MASK; } static uint64_t size_pre_write(RegisterInfo *reg, uint64_t val) { XlnxCSUDMA *s = XLNX_CSU_DMA(reg->opaque); uint64_t size = val & R_SIZE_SIZE_MASK; if (s->regs[R_SIZE] != 0) { if (size || s->is_dst) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Starting DMA while already running.\n", __func__); } } if (!s->is_dst) { s->r_size_last_word = !!(val & R_SIZE_LAST_WORD_MASK); } /* Size is word aligned */ return size; } static uint64_t size_post_read(RegisterInfo *reg, uint64_t val) { XlnxCSUDMA *s = XLNX_CSU_DMA(reg->opaque); return val | s->r_size_last_word; } static void size_post_write(RegisterInfo *reg, uint64_t val) { XlnxCSUDMA *s = XLNX_CSU_DMA(reg->opaque); s->regs[R_STATUS] |= R_STATUS_BUSY_MASK; /* * Note that if SIZE is programmed to 0, and the DMA is started, * the interrupts DONE and MEM_DONE will be asserted. */ if (s->regs[R_SIZE] == 0) { xlnx_csu_dma_done(s); xlnx_csu_dma_update_irq(s); return; } /* Set SIZE is considered the last step in transfer configuration */ if (!s->is_dst) { xlnx_csu_dma_src_notify(s); } else { if (s->notify) { s->notify(s->notify_opaque); } } } static uint64_t status_pre_write(RegisterInfo *reg, uint64_t val) { return val & (R_STATUS_DONE_CNT_MASK | R_STATUS_BUSY_MASK); } static void ctrl_post_write(RegisterInfo *reg, uint64_t val) { XlnxCSUDMA *s = XLNX_CSU_DMA(reg->opaque); if (!s->is_dst) { if (!xlnx_csu_dma_is_paused(s)) { xlnx_csu_dma_src_notify(s); } } else { if (!xlnx_csu_dma_is_paused(s) && s->notify) { s->notify(s->notify_opaque); } } } static uint64_t int_status_pre_write(RegisterInfo *reg, uint64_t val) { XlnxCSUDMA *s = XLNX_CSU_DMA(reg->opaque); /* DMA counter decrements when flag 'DONE' is cleared */ if ((val & s->regs[R_INT_STATUS] & R_INT_STATUS_DONE_MASK)) { xlnx_csu_dma_update_done_cnt(s, -1); } return s->regs[R_INT_STATUS] & ~val; } static void int_status_post_write(RegisterInfo *reg, uint64_t val) { XlnxCSUDMA *s = XLNX_CSU_DMA(reg->opaque); xlnx_csu_dma_update_irq(s); } static uint64_t int_enable_pre_write(RegisterInfo *reg, uint64_t val) { XlnxCSUDMA *s = XLNX_CSU_DMA(reg->opaque); uint32_t v32 = val; /* * R_INT_ENABLE doesn't have its own state. * It is used to indirectly modify R_INT_MASK. * * 1: Enable this interrupt field (the mask bit will be cleared to 0) * 0: No effect */ s->regs[R_INT_MASK] &= ~v32; return 0; } static void int_enable_post_write(RegisterInfo *reg, uint64_t val) { XlnxCSUDMA *s = XLNX_CSU_DMA(reg->opaque); xlnx_csu_dma_update_irq(s); } static uint64_t int_disable_pre_write(RegisterInfo *reg, uint64_t val) { XlnxCSUDMA *s = XLNX_CSU_DMA(reg->opaque); uint32_t v32 = val; /* * R_INT_DISABLE doesn't have its own state. * It is used to indirectly modify R_INT_MASK. * * 1: Disable this interrupt field (the mask bit will be set to 1) * 0: No effect */ s->regs[R_INT_MASK] |= v32; return 0; } static void int_disable_post_write(RegisterInfo *reg, uint64_t val) { XlnxCSUDMA *s = XLNX_CSU_DMA(reg->opaque); xlnx_csu_dma_update_irq(s); } static uint64_t addr_msb_pre_write(RegisterInfo *reg, uint64_t val) { return val & R_ADDR_MSB_ADDR_MSB_MASK; } static MemTxResult xlnx_csu_dma_class_read(XlnxCSUDMA *s, hwaddr addr, uint32_t len) { RegisterInfo *reg = &s->regs_info[R_SIZE]; uint64_t we = MAKE_64BIT_MASK(0, 4 * 8); s->regs[R_ADDR] = addr; s->regs[R_ADDR_MSB] = (uint64_t)addr >> 32; register_write(reg, len, we, object_get_typename(OBJECT(s)), false); return (s->regs[R_SIZE] == 0) ? MEMTX_OK : MEMTX_ERROR; } static const RegisterAccessInfo *xlnx_csu_dma_regs_info[] = { #define DMACH_REGINFO(NAME, snd) \ (const RegisterAccessInfo []) { \ { \ .name = #NAME "_ADDR", \ .addr = A_ADDR, \ .pre_write = addr_pre_write \ }, { \ .name = #NAME "_SIZE", \ .addr = A_SIZE, \ .pre_write = size_pre_write, \ .post_write = size_post_write, \ .post_read = size_post_read \ }, { \ .name = #NAME "_STATUS", \ .addr = A_STATUS, \ .pre_write = status_pre_write, \ .w1c = R_STATUS_DONE_CNT_MASK, \ .ro = (R_STATUS_BUSY_MASK \ | R_STATUS_FIFO_LEVEL_MASK \ | R_STATUS_OUTSTANDING_MASK) \ }, { \ .name = #NAME "_CTRL", \ .addr = A_CTRL, \ .post_write = ctrl_post_write, \ .reset = ((R_CTRL_TIMEOUT_VAL_RESET << R_CTRL_TIMEOUT_VAL_SHIFT) \ | (R_CTRL_FIFO_THRESH_RESET << R_CTRL_FIFO_THRESH_SHIFT)\ | (snd ? 0 : R_CTRL_FIFOTHRESH_RESET \ << R_CTRL_FIFOTHRESH_SHIFT)) \ }, { \ .name = #NAME "_CRC", \ .addr = A_CRC, \ }, { \ .name = #NAME "_INT_STATUS", \ .addr = A_INT_STATUS, \ .pre_write = int_status_pre_write, \ .post_write = int_status_post_write \ }, { \ .name = #NAME "_INT_ENABLE", \ .addr = A_INT_ENABLE, \ .pre_write = int_enable_pre_write, \ .post_write = int_enable_post_write \ }, { \ .name = #NAME "_INT_DISABLE", \ .addr = A_INT_DISABLE, \ .pre_write = int_disable_pre_write, \ .post_write = int_disable_post_write \ }, { \ .name = #NAME "_INT_MASK", \ .addr = A_INT_MASK, \ .ro = ~0, \ .reset = XLNX_CSU_DMA_INT_R_MASK \ }, { \ .name = #NAME "_CTRL2", \ .addr = A_CTRL2, \ .reset = ((R_CTRL2_TIMEOUT_PRE_RESET \ << R_CTRL2_TIMEOUT_PRE_SHIFT) \ | (R_CTRL2_MAX_OUTS_CMDS_RESET \ << R_CTRL2_MAX_OUTS_CMDS_SHIFT)) \ }, { \ .name = #NAME "_ADDR_MSB", \ .addr = A_ADDR_MSB, \ .pre_write = addr_msb_pre_write \ } \ } DMACH_REGINFO(DMA_SRC, true), DMACH_REGINFO(DMA_DST, false) }; static const MemoryRegionOps xlnx_csu_dma_ops = { .read = register_read_memory, .write = register_write_memory, .endianness = DEVICE_LITTLE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, } }; static void xlnx_csu_dma_src_timeout_hit(void *opaque) { XlnxCSUDMA *s = XLNX_CSU_DMA(opaque); /* Ignore if the timeout is masked */ if (!xlnx_csu_dma_timeout_enabled(s)) { return; } s->regs[R_INT_STATUS] |= R_INT_STATUS_TIMEOUT_STRM_MASK; xlnx_csu_dma_update_irq(s); } static size_t xlnx_csu_dma_stream_push(StreamSink *obj, uint8_t *buf, size_t len, bool eop) { XlnxCSUDMA *s = XLNX_CSU_DMA(obj); uint32_t size = s->regs[R_SIZE]; uint32_t mlen = MIN(size, len) & (~3); /* Size is word aligned */ /* Be called when it's DST */ assert(s->is_dst); if (size == 0 || len <= 0) { return 0; } if (len && (xlnx_csu_dma_is_paused(s) || mlen == 0)) { qemu_log_mask(LOG_GUEST_ERROR, "csu-dma: DST channel dropping %zd b of data.\n", len); s->regs[R_INT_STATUS] |= R_INT_STATUS_FIFO_OVERFLOW_MASK; return len; } if (xlnx_csu_dma_write(s, buf, mlen) != mlen) { return 0; } xlnx_csu_dma_advance(s, mlen); xlnx_csu_dma_update_irq(s); return mlen; } static bool xlnx_csu_dma_stream_can_push(StreamSink *obj, StreamCanPushNotifyFn notify, void *notify_opaque) { XlnxCSUDMA *s = XLNX_CSU_DMA(obj); if (s->regs[R_SIZE] != 0) { return true; } else { s->notify = notify; s->notify_opaque = notify_opaque; return false; } } static void xlnx_csu_dma_reset(DeviceState *dev) { XlnxCSUDMA *s = XLNX_CSU_DMA(dev); unsigned int i; for (i = 0; i < ARRAY_SIZE(s->regs_info); ++i) { register_reset(&s->regs_info[i]); } } static void xlnx_csu_dma_realize(DeviceState *dev, Error **errp) { XlnxCSUDMA *s = XLNX_CSU_DMA(dev); RegisterInfoArray *reg_array; if (!s->is_dst && !s->tx_dev) { error_setg(errp, "zynqmp.csu-dma: Stream not connected"); return; } if (!s->dma_mr) { error_setg(errp, TYPE_XLNX_CSU_DMA " 'dma' link not set"); return; } address_space_init(&s->dma_as, s->dma_mr, "csu-dma"); reg_array = register_init_block32(dev, xlnx_csu_dma_regs_info[!!s->is_dst], XLNX_CSU_DMA_R_MAX, s->regs_info, s->regs, &xlnx_csu_dma_ops, XLNX_CSU_DMA_ERR_DEBUG, XLNX_CSU_DMA_R_MAX * 4); memory_region_add_subregion(&s->iomem, 0x0, ®_array->mem); sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem); sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq); s->src_timer = ptimer_init(xlnx_csu_dma_src_timeout_hit, s, PTIMER_POLICY_LEGACY); s->attr = MEMTXATTRS_UNSPECIFIED; s->r_size_last_word = 0; } static const VMStateDescription vmstate_xlnx_csu_dma = { .name = TYPE_XLNX_CSU_DMA, .version_id = 0, .minimum_version_id = 0, .fields = (const VMStateField[]) { VMSTATE_PTIMER(src_timer, XlnxCSUDMA), VMSTATE_UINT16(width, XlnxCSUDMA), VMSTATE_BOOL(is_dst, XlnxCSUDMA), VMSTATE_BOOL(r_size_last_word, XlnxCSUDMA), VMSTATE_UINT32_ARRAY(regs, XlnxCSUDMA, XLNX_CSU_DMA_R_MAX), VMSTATE_END_OF_LIST(), } }; static Property xlnx_csu_dma_properties[] = { /* * Ref PG021, Stream Data Width: * Data width in bits of the AXI S2MM AXI4-Stream Data bus. * This value must be equal or less than the Memory Map Data Width. * Valid values are 8, 16, 32, 64, 128, 512 and 1024. * "dma-width" is the byte value of the "Stream Data Width". */ DEFINE_PROP_UINT16("dma-width", XlnxCSUDMA, width, 4), /* * The CSU DMA is a two-channel, simple DMA, allowing separate control of * the SRC (read) channel and DST (write) channel. "is-dst" is used to mark * which channel the device is connected to. */ DEFINE_PROP_BOOL("is-dst", XlnxCSUDMA, is_dst, true), DEFINE_PROP_LINK("stream-connected-dma", XlnxCSUDMA, tx_dev, TYPE_STREAM_SINK, StreamSink *), DEFINE_PROP_LINK("dma", XlnxCSUDMA, dma_mr, TYPE_MEMORY_REGION, MemoryRegion *), DEFINE_PROP_END_OF_LIST(), }; static void xlnx_csu_dma_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); StreamSinkClass *ssc = STREAM_SINK_CLASS(klass); XlnxCSUDMAClass *xcdc = XLNX_CSU_DMA_CLASS(klass); device_class_set_legacy_reset(dc, xlnx_csu_dma_reset); dc->realize = xlnx_csu_dma_realize; dc->vmsd = &vmstate_xlnx_csu_dma; device_class_set_props(dc, xlnx_csu_dma_properties); ssc->push = xlnx_csu_dma_stream_push; ssc->can_push = xlnx_csu_dma_stream_can_push; xcdc->read = xlnx_csu_dma_class_read; } static void xlnx_csu_dma_init(Object *obj) { XlnxCSUDMA *s = XLNX_CSU_DMA(obj); memory_region_init(&s->iomem, obj, TYPE_XLNX_CSU_DMA, XLNX_CSU_DMA_R_MAX * 4); } static const TypeInfo xlnx_csu_dma_info = { .name = TYPE_XLNX_CSU_DMA, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(XlnxCSUDMA), .class_init = xlnx_csu_dma_class_init, .class_size = sizeof(XlnxCSUDMAClass), .instance_init = xlnx_csu_dma_init, .interfaces = (InterfaceInfo[]) { { TYPE_STREAM_SINK }, { } } }; static void xlnx_csu_dma_register_types(void) { type_register_static(&xlnx_csu_dma_info); } type_init(xlnx_csu_dma_register_types)