/* * QEMU SM501 Device * * Copyright (c) 2008 Shin-ichiro KAWASAKI * Copyright (c) 2016-2020 BALATON Zoltan * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qapi/error.h" #include "qemu/log.h" #include "qemu/module.h" #include "hw/usb/hcd-ohci.h" #include "hw/char/serial-mm.h" #include "ui/console.h" #include "hw/sysbus.h" #include "migration/vmstate.h" #include "hw/pci/pci_device.h" #include "hw/qdev-properties.h" #include "hw/i2c/i2c.h" #include "hw/display/i2c-ddc.h" #include "qemu/range.h" #include "ui/pixel_ops.h" #include "qemu/bswap.h" #include "trace.h" #include "qom/object.h" #define MMIO_BASE_OFFSET 0x3e00000 #define MMIO_SIZE 0x200000 #define DC_PALETTE_ENTRIES (0x400 * 3) /* SM501 register definitions taken from "linux/include/linux/sm501-regs.h" */ /* System Configuration area */ /* System config base */ #define SM501_SYS_CONFIG 0x000000 /* config 1 */ #define SM501_SYSTEM_CONTROL 0x000000 #define SM501_SYSCTRL_PANEL_TRISTATE (1 << 0) #define SM501_SYSCTRL_MEM_TRISTATE (1 << 1) #define SM501_SYSCTRL_CRT_TRISTATE (1 << 2) #define SM501_SYSCTRL_PCI_SLAVE_BURST_MASK (3 << 4) #define SM501_SYSCTRL_PCI_SLAVE_BURST_1 (0 << 4) #define SM501_SYSCTRL_PCI_SLAVE_BURST_2 (1 << 4) #define SM501_SYSCTRL_PCI_SLAVE_BURST_4 (2 << 4) #define SM501_SYSCTRL_PCI_SLAVE_BURST_8 (3 << 4) #define SM501_SYSCTRL_PCI_CLOCK_RUN_EN (1 << 6) #define SM501_SYSCTRL_PCI_RETRY_DISABLE (1 << 7) #define SM501_SYSCTRL_PCI_SUBSYS_LOCK (1 << 11) #define SM501_SYSCTRL_PCI_BURST_READ_EN (1 << 15) /* miscellaneous control */ #define SM501_MISC_CONTROL 0x000004 #define SM501_MISC_BUS_SH 0x0 #define SM501_MISC_BUS_PCI 0x1 #define SM501_MISC_BUS_XSCALE 0x2 #define SM501_MISC_BUS_NEC 0x6 #define SM501_MISC_BUS_MASK 0x7 #define SM501_MISC_VR_62MB (1 << 3) #define SM501_MISC_CDR_RESET (1 << 7) #define SM501_MISC_USB_LB (1 << 8) #define SM501_MISC_USB_SLAVE (1 << 9) #define SM501_MISC_BL_1 (1 << 10) #define SM501_MISC_MC (1 << 11) #define SM501_MISC_DAC_POWER (1 << 12) #define SM501_MISC_IRQ_INVERT (1 << 16) #define SM501_MISC_SH (1 << 17) #define SM501_MISC_HOLD_EMPTY (0 << 18) #define SM501_MISC_HOLD_8 (1 << 18) #define SM501_MISC_HOLD_16 (2 << 18) #define SM501_MISC_HOLD_24 (3 << 18) #define SM501_MISC_HOLD_32 (4 << 18) #define SM501_MISC_HOLD_MASK (7 << 18) #define SM501_MISC_FREQ_12 (1 << 24) #define SM501_MISC_PNL_24BIT (1 << 25) #define SM501_MISC_8051_LE (1 << 26) #define SM501_GPIO31_0_CONTROL 0x000008 #define SM501_GPIO63_32_CONTROL 0x00000C #define SM501_DRAM_CONTROL 0x000010 /* command list */ #define SM501_ARBTRTN_CONTROL 0x000014 /* command list */ #define SM501_COMMAND_LIST_STATUS 0x000024 /* interrupt debug */ #define SM501_RAW_IRQ_STATUS 0x000028 #define SM501_RAW_IRQ_CLEAR 0x000028 #define SM501_IRQ_STATUS 0x00002C #define SM501_IRQ_MASK 0x000030 #define SM501_DEBUG_CONTROL 0x000034 /* power management */ #define SM501_POWERMODE_P2X_SRC (1 << 29) #define SM501_POWERMODE_V2X_SRC (1 << 20) #define SM501_POWERMODE_M_SRC (1 << 12) #define SM501_POWERMODE_M1_SRC (1 << 4) #define SM501_CURRENT_GATE 0x000038 #define SM501_CURRENT_CLOCK 0x00003C #define SM501_POWER_MODE_0_GATE 0x000040 #define SM501_POWER_MODE_0_CLOCK 0x000044 #define SM501_POWER_MODE_1_GATE 0x000048 #define SM501_POWER_MODE_1_CLOCK 0x00004C #define SM501_SLEEP_MODE_GATE 0x000050 #define SM501_POWER_MODE_CONTROL 0x000054 /* power gates for units within the 501 */ #define SM501_GATE_HOST 0 #define SM501_GATE_MEMORY 1 #define SM501_GATE_DISPLAY 2 #define SM501_GATE_2D_ENGINE 3 #define SM501_GATE_CSC 4 #define SM501_GATE_ZVPORT 5 #define SM501_GATE_GPIO 6 #define SM501_GATE_UART0 7 #define SM501_GATE_UART1 8 #define SM501_GATE_SSP 10 #define SM501_GATE_USB_HOST 11 #define SM501_GATE_USB_GADGET 12 #define SM501_GATE_UCONTROLLER 17 #define SM501_GATE_AC97 18 /* panel clock */ #define SM501_CLOCK_P2XCLK 24 /* crt clock */ #define SM501_CLOCK_V2XCLK 16 /* main clock */ #define SM501_CLOCK_MCLK 8 /* SDRAM controller clock */ #define SM501_CLOCK_M1XCLK 0 /* config 2 */ #define SM501_PCI_MASTER_BASE 0x000058 #define SM501_ENDIAN_CONTROL 0x00005C #define SM501_DEVICEID 0x000060 /* 0x050100A0 */ #define SM501_DEVICEID_SM501 0x05010000 #define SM501_DEVICEID_IDMASK 0xffff0000 #define SM501_DEVICEID_REVMASK 0x000000ff #define SM501_PLLCLOCK_COUNT 0x000064 #define SM501_MISC_TIMING 0x000068 #define SM501_CURRENT_SDRAM_CLOCK 0x00006C #define SM501_PROGRAMMABLE_PLL_CONTROL 0x000074 /* GPIO base */ #define SM501_GPIO 0x010000 #define SM501_GPIO_DATA_LOW 0x00 #define SM501_GPIO_DATA_HIGH 0x04 #define SM501_GPIO_DDR_LOW 0x08 #define SM501_GPIO_DDR_HIGH 0x0C #define SM501_GPIO_IRQ_SETUP 0x10 #define SM501_GPIO_IRQ_STATUS 0x14 #define SM501_GPIO_IRQ_RESET 0x14 /* I2C controller base */ #define SM501_I2C 0x010040 #define SM501_I2C_BYTE_COUNT 0x00 #define SM501_I2C_CONTROL 0x01 #define SM501_I2C_STATUS 0x02 #define SM501_I2C_RESET 0x02 #define SM501_I2C_SLAVE_ADDRESS 0x03 #define SM501_I2C_DATA 0x04 #define SM501_I2C_CONTROL_START (1 << 2) #define SM501_I2C_CONTROL_ENABLE (1 << 0) #define SM501_I2C_STATUS_COMPLETE (1 << 3) #define SM501_I2C_STATUS_ERROR (1 << 2) #define SM501_I2C_RESET_ERROR (1 << 2) /* SSP base */ #define SM501_SSP 0x020000 /* Uart 0 base */ #define SM501_UART0 0x030000 /* Uart 1 base */ #define SM501_UART1 0x030020 /* USB host port base */ #define SM501_USB_HOST 0x040000 /* USB slave/gadget base */ #define SM501_USB_GADGET 0x060000 /* USB slave/gadget data port base */ #define SM501_USB_GADGET_DATA 0x070000 /* Display controller/video engine base */ #define SM501_DC 0x080000 /* common defines for the SM501 address registers */ #define SM501_ADDR_FLIP (1 << 31) #define SM501_ADDR_EXT (1 << 27) #define SM501_ADDR_CS1 (1 << 26) #define SM501_ADDR_MASK (0x3f << 26) #define SM501_FIFO_MASK (0x3 << 16) #define SM501_FIFO_1 (0x0 << 16) #define SM501_FIFO_3 (0x1 << 16) #define SM501_FIFO_7 (0x2 << 16) #define SM501_FIFO_11 (0x3 << 16) /* common registers for panel and the crt */ #define SM501_OFF_DC_H_TOT 0x000 #define SM501_OFF_DC_V_TOT 0x008 #define SM501_OFF_DC_H_SYNC 0x004 #define SM501_OFF_DC_V_SYNC 0x00C #define SM501_DC_PANEL_CONTROL 0x000 #define SM501_DC_PANEL_CONTROL_FPEN (1 << 27) #define SM501_DC_PANEL_CONTROL_BIAS (1 << 26) #define SM501_DC_PANEL_CONTROL_DATA (1 << 25) #define SM501_DC_PANEL_CONTROL_VDD (1 << 24) #define SM501_DC_PANEL_CONTROL_DP (1 << 23) #define SM501_DC_PANEL_CONTROL_TFT_888 (0 << 21) #define SM501_DC_PANEL_CONTROL_TFT_333 (1 << 21) #define SM501_DC_PANEL_CONTROL_TFT_444 (2 << 21) #define SM501_DC_PANEL_CONTROL_DE (1 << 20) #define SM501_DC_PANEL_CONTROL_LCD_TFT (0 << 18) #define SM501_DC_PANEL_CONTROL_LCD_STN8 (1 << 18) #define SM501_DC_PANEL_CONTROL_LCD_STN12 (2 << 18) #define SM501_DC_PANEL_CONTROL_CP (1 << 14) #define SM501_DC_PANEL_CONTROL_VSP (1 << 13) #define SM501_DC_PANEL_CONTROL_HSP (1 << 12) #define SM501_DC_PANEL_CONTROL_CK (1 << 9) #define SM501_DC_PANEL_CONTROL_TE (1 << 8) #define SM501_DC_PANEL_CONTROL_VPD (1 << 7) #define SM501_DC_PANEL_CONTROL_VP (1 << 6) #define SM501_DC_PANEL_CONTROL_HPD (1 << 5) #define SM501_DC_PANEL_CONTROL_HP (1 << 4) #define SM501_DC_PANEL_CONTROL_GAMMA (1 << 3) #define SM501_DC_PANEL_CONTROL_EN (1 << 2) #define SM501_DC_PANEL_CONTROL_8BPP (0 << 0) #define SM501_DC_PANEL_CONTROL_16BPP (1 << 0) #define SM501_DC_PANEL_CONTROL_32BPP (2 << 0) #define SM501_DC_PANEL_PANNING_CONTROL 0x004 #define SM501_DC_PANEL_COLOR_KEY 0x008 #define SM501_DC_PANEL_FB_ADDR 0x00C #define SM501_DC_PANEL_FB_OFFSET 0x010 #define SM501_DC_PANEL_FB_WIDTH 0x014 #define SM501_DC_PANEL_FB_HEIGHT 0x018 #define SM501_DC_PANEL_TL_LOC 0x01C #define SM501_DC_PANEL_BR_LOC 0x020 #define SM501_DC_PANEL_H_TOT 0x024 #define SM501_DC_PANEL_H_SYNC 0x028 #define SM501_DC_PANEL_V_TOT 0x02C #define SM501_DC_PANEL_V_SYNC 0x030 #define SM501_DC_PANEL_CUR_LINE 0x034 #define SM501_DC_VIDEO_CONTROL 0x040 #define SM501_DC_VIDEO_FB0_ADDR 0x044 #define SM501_DC_VIDEO_FB_WIDTH 0x048 #define SM501_DC_VIDEO_FB0_LAST_ADDR 0x04C #define SM501_DC_VIDEO_TL_LOC 0x050 #define SM501_DC_VIDEO_BR_LOC 0x054 #define SM501_DC_VIDEO_SCALE 0x058 #define SM501_DC_VIDEO_INIT_SCALE 0x05C #define SM501_DC_VIDEO_YUV_CONSTANTS 0x060 #define SM501_DC_VIDEO_FB1_ADDR 0x064 #define SM501_DC_VIDEO_FB1_LAST_ADDR 0x068 #define SM501_DC_VIDEO_ALPHA_CONTROL 0x080 #define SM501_DC_VIDEO_ALPHA_FB_ADDR 0x084 #define SM501_DC_VIDEO_ALPHA_FB_OFFSET 0x088 #define SM501_DC_VIDEO_ALPHA_FB_LAST_ADDR 0x08C #define SM501_DC_VIDEO_ALPHA_TL_LOC 0x090 #define SM501_DC_VIDEO_ALPHA_BR_LOC 0x094 #define SM501_DC_VIDEO_ALPHA_SCALE 0x098 #define SM501_DC_VIDEO_ALPHA_INIT_SCALE 0x09C #define SM501_DC_VIDEO_ALPHA_CHROMA_KEY 0x0A0 #define SM501_DC_VIDEO_ALPHA_COLOR_LOOKUP 0x0A4 #define SM501_DC_PANEL_HWC_BASE 0x0F0 #define SM501_DC_PANEL_HWC_ADDR 0x0F0 #define SM501_DC_PANEL_HWC_LOC 0x0F4 #define SM501_DC_PANEL_HWC_COLOR_1_2 0x0F8 #define SM501_DC_PANEL_HWC_COLOR_3 0x0FC #define SM501_HWC_EN (1 << 31) #define SM501_OFF_HWC_ADDR 0x00 #define SM501_OFF_HWC_LOC 0x04 #define SM501_OFF_HWC_COLOR_1_2 0x08 #define SM501_OFF_HWC_COLOR_3 0x0C #define SM501_DC_ALPHA_CONTROL 0x100 #define SM501_DC_ALPHA_FB_ADDR 0x104 #define SM501_DC_ALPHA_FB_OFFSET 0x108 #define SM501_DC_ALPHA_TL_LOC 0x10C #define SM501_DC_ALPHA_BR_LOC 0x110 #define SM501_DC_ALPHA_CHROMA_KEY 0x114 #define SM501_DC_ALPHA_COLOR_LOOKUP 0x118 #define SM501_DC_CRT_CONTROL 0x200 #define SM501_DC_CRT_CONTROL_TVP (1 << 15) #define SM501_DC_CRT_CONTROL_CP (1 << 14) #define SM501_DC_CRT_CONTROL_VSP (1 << 13) #define SM501_DC_CRT_CONTROL_HSP (1 << 12) #define SM501_DC_CRT_CONTROL_VS (1 << 11) #define SM501_DC_CRT_CONTROL_BLANK (1 << 10) #define SM501_DC_CRT_CONTROL_SEL (1 << 9) #define SM501_DC_CRT_CONTROL_TE (1 << 8) #define SM501_DC_CRT_CONTROL_PIXEL_MASK (0xF << 4) #define SM501_DC_CRT_CONTROL_GAMMA (1 << 3) #define SM501_DC_CRT_CONTROL_ENABLE (1 << 2) #define SM501_DC_CRT_CONTROL_8BPP (0 << 0) #define SM501_DC_CRT_CONTROL_16BPP (1 << 0) #define SM501_DC_CRT_CONTROL_32BPP (2 << 0) #define SM501_DC_CRT_FB_ADDR 0x204 #define SM501_DC_CRT_FB_OFFSET 0x208 #define SM501_DC_CRT_H_TOT 0x20C #define SM501_DC_CRT_H_SYNC 0x210 #define SM501_DC_CRT_V_TOT 0x214 #define SM501_DC_CRT_V_SYNC 0x218 #define SM501_DC_CRT_SIGNATURE_ANALYZER 0x21C #define SM501_DC_CRT_CUR_LINE 0x220 #define SM501_DC_CRT_MONITOR_DETECT 0x224 #define SM501_DC_CRT_HWC_BASE 0x230 #define SM501_DC_CRT_HWC_ADDR 0x230 #define SM501_DC_CRT_HWC_LOC 0x234 #define SM501_DC_CRT_HWC_COLOR_1_2 0x238 #define SM501_DC_CRT_HWC_COLOR_3 0x23C #define SM501_DC_PANEL_PALETTE 0x400 #define SM501_DC_VIDEO_PALETTE 0x800 #define SM501_DC_CRT_PALETTE 0xC00 /* Zoom Video port base */ #define SM501_ZVPORT 0x090000 /* AC97/I2S base */ #define SM501_AC97 0x0A0000 /* 8051 micro controller base */ #define SM501_UCONTROLLER 0x0B0000 /* 8051 micro controller SRAM base */ #define SM501_UCONTROLLER_SRAM 0x0C0000 /* DMA base */ #define SM501_DMA 0x0D0000 /* 2d engine base */ #define SM501_2D_ENGINE 0x100000 #define SM501_2D_SOURCE 0x00 #define SM501_2D_DESTINATION 0x04 #define SM501_2D_DIMENSION 0x08 #define SM501_2D_CONTROL 0x0C #define SM501_2D_PITCH 0x10 #define SM501_2D_FOREGROUND 0x14 #define SM501_2D_BACKGROUND 0x18 #define SM501_2D_STRETCH 0x1C #define SM501_2D_COLOR_COMPARE 0x20 #define SM501_2D_COLOR_COMPARE_MASK 0x24 #define SM501_2D_MASK 0x28 #define SM501_2D_CLIP_TL 0x2C #define SM501_2D_CLIP_BR 0x30 #define SM501_2D_MONO_PATTERN_LOW 0x34 #define SM501_2D_MONO_PATTERN_HIGH 0x38 #define SM501_2D_WINDOW_WIDTH 0x3C #define SM501_2D_SOURCE_BASE 0x40 #define SM501_2D_DESTINATION_BASE 0x44 #define SM501_2D_ALPHA 0x48 #define SM501_2D_WRAP 0x4C #define SM501_2D_STATUS 0x50 #define SM501_CSC_Y_SOURCE_BASE 0xC8 #define SM501_CSC_CONSTANTS 0xCC #define SM501_CSC_Y_SOURCE_X 0xD0 #define SM501_CSC_Y_SOURCE_Y 0xD4 #define SM501_CSC_U_SOURCE_BASE 0xD8 #define SM501_CSC_V_SOURCE_BASE 0xDC #define SM501_CSC_SOURCE_DIMENSION 0xE0 #define SM501_CSC_SOURCE_PITCH 0xE4 #define SM501_CSC_DESTINATION 0xE8 #define SM501_CSC_DESTINATION_DIMENSION 0xEC #define SM501_CSC_DESTINATION_PITCH 0xF0 #define SM501_CSC_SCALE_FACTOR 0xF4 #define SM501_CSC_DESTINATION_BASE 0xF8 #define SM501_CSC_CONTROL 0xFC /* 2d engine data port base */ #define SM501_2D_ENGINE_DATA 0x110000 /* end of register definitions */ #define SM501_HWC_WIDTH 64 #define SM501_HWC_HEIGHT 64 #ifdef CONFIG_PIXMAN #define DEFAULT_X_PIXMAN 7 #else #define DEFAULT_X_PIXMAN 0 #endif /* SM501 local memory size taken from "linux/drivers/mfd/sm501.c" */ static const uint32_t sm501_mem_local_size[] = { [0] = 4 * MiB, [1] = 8 * MiB, [2] = 16 * MiB, [3] = 32 * MiB, [4] = 64 * MiB, [5] = 2 * MiB, }; #define get_local_mem_size(s) sm501_mem_local_size[(s)->local_mem_size_index] typedef struct SM501State { /* graphic console status */ QemuConsole *con; /* status & internal resources */ uint32_t local_mem_size_index; uint8_t *local_mem; MemoryRegion local_mem_region; MemoryRegion mmio_region; MemoryRegion system_config_region; MemoryRegion i2c_region; MemoryRegion disp_ctrl_region; MemoryRegion twoD_engine_region; uint32_t last_width; uint32_t last_height; bool do_full_update; /* perform a full update next time */ uint8_t use_pixman; I2CBus *i2c_bus; /* mmio registers */ uint32_t system_control; uint32_t misc_control; uint32_t gpio_31_0_control; uint32_t gpio_63_32_control; uint32_t dram_control; uint32_t arbitration_control; uint32_t irq_mask; uint32_t misc_timing; uint32_t power_mode_control; uint8_t i2c_byte_count; uint8_t i2c_status; uint8_t i2c_addr; uint8_t i2c_data[16]; uint32_t uart0_ier; uint32_t uart0_lcr; uint32_t uart0_mcr; uint32_t uart0_scr; uint8_t dc_palette[DC_PALETTE_ENTRIES]; uint32_t dc_panel_control; uint32_t dc_panel_panning_control; uint32_t dc_panel_fb_addr; uint32_t dc_panel_fb_offset; uint32_t dc_panel_fb_width; uint32_t dc_panel_fb_height; uint32_t dc_panel_tl_location; uint32_t dc_panel_br_location; uint32_t dc_panel_h_total; uint32_t dc_panel_h_sync; uint32_t dc_panel_v_total; uint32_t dc_panel_v_sync; uint32_t dc_panel_hwc_addr; uint32_t dc_panel_hwc_location; uint32_t dc_panel_hwc_color_1_2; uint32_t dc_panel_hwc_color_3; uint32_t dc_video_control; uint32_t dc_crt_control; uint32_t dc_crt_fb_addr; uint32_t dc_crt_fb_offset; uint32_t dc_crt_h_total; uint32_t dc_crt_h_sync; uint32_t dc_crt_v_total; uint32_t dc_crt_v_sync; uint32_t dc_crt_hwc_addr; uint32_t dc_crt_hwc_location; uint32_t dc_crt_hwc_color_1_2; uint32_t dc_crt_hwc_color_3; uint32_t twoD_source; uint32_t twoD_destination; uint32_t twoD_dimension; uint32_t twoD_control; uint32_t twoD_pitch; uint32_t twoD_foreground; uint32_t twoD_background; uint32_t twoD_stretch; uint32_t twoD_color_compare; uint32_t twoD_color_compare_mask; uint32_t twoD_mask; uint32_t twoD_clip_tl; uint32_t twoD_clip_br; uint32_t twoD_mono_pattern_low; uint32_t twoD_mono_pattern_high; uint32_t twoD_window_width; uint32_t twoD_source_base; uint32_t twoD_destination_base; uint32_t twoD_alpha; uint32_t twoD_wrap; } SM501State; static uint32_t get_local_mem_size_index(uint32_t size) { uint32_t norm_size = 0; int i, index = 0; for (i = 0; i < ARRAY_SIZE(sm501_mem_local_size); i++) { uint32_t new_size = sm501_mem_local_size[i]; if (new_size >= size) { if (norm_size == 0 || norm_size > new_size) { norm_size = new_size; index = i; } } } return index; } static ram_addr_t get_fb_addr(SM501State *s, int crt) { return (crt ? s->dc_crt_fb_addr : s->dc_panel_fb_addr) & 0x3FFFFF0; } static inline int get_width(SM501State *s, int crt) { int width = crt ? s->dc_crt_h_total : s->dc_panel_h_total; return (width & 0x00000FFF) + 1; } static inline int get_height(SM501State *s, int crt) { int height = crt ? s->dc_crt_v_total : s->dc_panel_v_total; return (height & 0x00000FFF) + 1; } static inline int get_bpp(SM501State *s, int crt) { int bpp = crt ? s->dc_crt_control : s->dc_panel_control; return 1 << (bpp & 3); } /** * Check the availability of hardware cursor. * @param crt 0 for PANEL, 1 for CRT. */ static inline int is_hwc_enabled(SM501State *state, int crt) { uint32_t addr = crt ? state->dc_crt_hwc_addr : state->dc_panel_hwc_addr; return addr & SM501_HWC_EN; } /** * Get the address which holds cursor pattern data. * @param crt 0 for PANEL, 1 for CRT. */ static inline uint8_t *get_hwc_address(SM501State *state, int crt) { uint32_t addr = crt ? state->dc_crt_hwc_addr : state->dc_panel_hwc_addr; return state->local_mem + (addr & 0x03FFFFF0); } /** * Get the cursor position in y coordinate. * @param crt 0 for PANEL, 1 for CRT. */ static inline uint32_t get_hwc_y(SM501State *state, int crt) { uint32_t location = crt ? state->dc_crt_hwc_location : state->dc_panel_hwc_location; return (location & 0x07FF0000) >> 16; } /** * Get the cursor position in x coordinate. * @param crt 0 for PANEL, 1 for CRT. */ static inline uint32_t get_hwc_x(SM501State *state, int crt) { uint32_t location = crt ? state->dc_crt_hwc_location : state->dc_panel_hwc_location; return location & 0x000007FF; } /** * Get the hardware cursor palette. * @param crt 0 for PANEL, 1 for CRT. * @param palette pointer to a [3 * 3] array to store color values in */ static inline void get_hwc_palette(SM501State *state, int crt, uint8_t *palette) { int i; uint32_t color_reg; uint16_t rgb565; for (i = 0; i < 3; i++) { if (i + 1 == 3) { color_reg = crt ? state->dc_crt_hwc_color_3 : state->dc_panel_hwc_color_3; } else { color_reg = crt ? state->dc_crt_hwc_color_1_2 : state->dc_panel_hwc_color_1_2; } if (i + 1 == 2) { rgb565 = (color_reg >> 16) & 0xFFFF; } else { rgb565 = color_reg & 0xFFFF; } palette[i * 3 + 0] = ((rgb565 >> 11) * 527 + 23) >> 6; /* r */ palette[i * 3 + 1] = (((rgb565 >> 5) & 0x3f) * 259 + 33) >> 6; /* g */ palette[i * 3 + 2] = ((rgb565 & 0x1f) * 527 + 23) >> 6; /* b */ } } static inline void hwc_invalidate(SM501State *s, int crt) { int w = get_width(s, crt); int h = get_height(s, crt); int bpp = get_bpp(s, crt); int start = get_hwc_y(s, crt); int end = MIN(h, start + SM501_HWC_HEIGHT) + 1; start *= w * bpp; end *= w * bpp; memory_region_set_dirty(&s->local_mem_region, get_fb_addr(s, crt) + start, end - start); } static void sm501_2d_operation(SM501State *s) { int cmd = (s->twoD_control >> 16) & 0x1F; int rtl = s->twoD_control & BIT(27); int format = (s->twoD_stretch >> 20) & 3; int bypp = 1 << format; /* bytes per pixel */ int rop_mode = (s->twoD_control >> 15) & 1; /* 1 for rop2, else rop3 */ /* 1 if rop2 source is the pattern, otherwise the source is the bitmap */ int rop2_source_is_pattern = (s->twoD_control >> 14) & 1; int rop = s->twoD_control & 0xFF; unsigned int dst_x = (s->twoD_destination >> 16) & 0x01FFF; unsigned int dst_y = s->twoD_destination & 0xFFFF; unsigned int width = (s->twoD_dimension >> 16) & 0x1FFF; unsigned int height = s->twoD_dimension & 0xFFFF; uint32_t dst_base = s->twoD_destination_base & 0x03FFFFFF; unsigned int dst_pitch = (s->twoD_pitch >> 16) & 0x1FFF; int crt = (s->dc_crt_control & SM501_DC_CRT_CONTROL_SEL) ? 1 : 0; int fb_len = get_width(s, crt) * get_height(s, crt) * get_bpp(s, crt); bool overlap = false, fallback = false; if ((s->twoD_stretch >> 16) & 0xF) { qemu_log_mask(LOG_UNIMP, "sm501: only XY addressing is supported.\n"); return; } if (s->twoD_source_base & BIT(27) || s->twoD_destination_base & BIT(27)) { qemu_log_mask(LOG_UNIMP, "sm501: only local memory is supported.\n"); return; } if (!dst_pitch) { qemu_log_mask(LOG_GUEST_ERROR, "sm501: Zero dest pitch.\n"); return; } if (!width || !height) { qemu_log_mask(LOG_GUEST_ERROR, "sm501: Zero size 2D op.\n"); return; } if (rtl) { dst_x -= width - 1; dst_y -= height - 1; } if (dst_base >= get_local_mem_size(s) || dst_base + (dst_x + width + (dst_y + height) * dst_pitch) * bypp >= get_local_mem_size(s)) { qemu_log_mask(LOG_GUEST_ERROR, "sm501: 2D op dest is outside vram.\n"); return; } switch (cmd) { case 0: /* BitBlt */ { unsigned int src_x = (s->twoD_source >> 16) & 0x01FFF; unsigned int src_y = s->twoD_source & 0xFFFF; uint32_t src_base = s->twoD_source_base & 0x03FFFFFF; unsigned int src_pitch = s->twoD_pitch & 0x1FFF; if (!src_pitch) { qemu_log_mask(LOG_GUEST_ERROR, "sm501: Zero src pitch.\n"); return; } if (rtl) { src_x -= width - 1; src_y -= height - 1; } if (src_base >= get_local_mem_size(s) || src_base + (src_x + width + (src_y + height) * src_pitch) * bypp >= get_local_mem_size(s)) { qemu_log_mask(LOG_GUEST_ERROR, "sm501: 2D op src is outside vram.\n"); return; } if ((rop_mode && rop == 0x5) || (!rop_mode && rop == 0x55)) { /* DSTINVERT, is there a way to do this with pixman? */ unsigned int x, y, i; uint8_t *d = s->local_mem + dst_base; for (y = 0; y < height; y++) { i = (dst_x + (dst_y + y) * dst_pitch) * bypp; for (x = 0; x < width; x++, i += bypp) { stn_he_p(&d[i], bypp, ~ldn_he_p(&d[i], bypp)); } } } else if (!rop_mode && rop == 0x99) { /* DSxn, is there a way to do this with pixman? */ unsigned int x, y, i, j; uint8_t *sp = s->local_mem + src_base; uint8_t *d = s->local_mem + dst_base; for (y = 0; y < height; y++) { i = (dst_x + (dst_y + y) * dst_pitch) * bypp; j = (src_x + (src_y + y) * src_pitch) * bypp; for (x = 0; x < width; x++, i += bypp, j += bypp) { stn_he_p(&d[i], bypp, ~(ldn_he_p(&sp[j], bypp) ^ ldn_he_p(&d[i], bypp))); } } } else if (!rop_mode && rop == 0xee) { /* SRCPAINT, is there a way to do this with pixman? */ unsigned int x, y, i, j; uint8_t *sp = s->local_mem + src_base; uint8_t *d = s->local_mem + dst_base; for (y = 0; y < height; y++) { i = (dst_x + (dst_y + y) * dst_pitch) * bypp; j = (src_x + (src_y + y) * src_pitch) * bypp; for (x = 0; x < width; x++, i += bypp, j += bypp) { stn_he_p(&d[i], bypp, ldn_he_p(&sp[j], bypp) | ldn_he_p(&d[i], bypp)); } } } else { /* Do copy src for unimplemented ops, better than unpainted area */ if ((rop_mode && (rop != 0xc || rop2_source_is_pattern)) || (!rop_mode && rop != 0xcc)) { qemu_log_mask(LOG_UNIMP, "sm501: rop%d op %x%s not implemented\n", (rop_mode ? 2 : 3), rop, (rop2_source_is_pattern ? " with pattern source" : "")); } /* Ignore no-op blits, some guests seem to do this */ if (src_base == dst_base && src_pitch == dst_pitch && src_x == dst_x && src_y == dst_y) { break; } /* Some clients also do 1 pixel blits, avoid overhead for these */ if (width == 1 && height == 1) { unsigned int si = (src_x + src_y * src_pitch) * bypp; unsigned int di = (dst_x + dst_y * dst_pitch) * bypp; stn_he_p(&s->local_mem[dst_base + di], bypp, ldn_he_p(&s->local_mem[src_base + si], bypp)); break; } /* If reverse blit do simple check for overlaps */ if (rtl && src_base == dst_base && src_pitch == dst_pitch) { overlap = (src_x < dst_x + width && src_x + width > dst_x && src_y < dst_y + height && src_y + height > dst_y); } else if (rtl) { unsigned int sb, se, db, de; sb = src_base + (src_x + src_y * src_pitch) * bypp; se = sb + (width + (height - 1) * src_pitch) * bypp; db = dst_base + (dst_x + dst_y * dst_pitch) * bypp; de = db + (width + (height - 1) * dst_pitch) * bypp; overlap = (db < se && sb < de); } #ifdef CONFIG_PIXMAN if (overlap && (s->use_pixman & BIT(2))) { /* pixman can't do reverse blit: copy via temporary */ int tmp_stride = DIV_ROUND_UP(width * bypp, sizeof(uint32_t)); static uint32_t tmp_buf[16384]; uint32_t *tmp = tmp_buf; if (tmp_stride * sizeof(uint32_t) * height > sizeof(tmp_buf)) { tmp = g_malloc(tmp_stride * sizeof(uint32_t) * height); } fallback = !pixman_blt((uint32_t *)&s->local_mem[src_base], tmp, src_pitch * bypp / sizeof(uint32_t), tmp_stride, 8 * bypp, 8 * bypp, src_x, src_y, 0, 0, width, height); if (!fallback) { fallback = !pixman_blt(tmp, (uint32_t *)&s->local_mem[dst_base], tmp_stride, dst_pitch * bypp / sizeof(uint32_t), 8 * bypp, 8 * bypp, 0, 0, dst_x, dst_y, width, height); } if (tmp != tmp_buf) { g_free(tmp); } } else if (!overlap && (s->use_pixman & BIT(1))) { fallback = !pixman_blt((uint32_t *)&s->local_mem[src_base], (uint32_t *)&s->local_mem[dst_base], src_pitch * bypp / sizeof(uint32_t), dst_pitch * bypp / sizeof(uint32_t), 8 * bypp, 8 * bypp, src_x, src_y, dst_x, dst_y, width, height); } else #endif { fallback = true; } if (fallback) { uint8_t *sp = s->local_mem + src_base; uint8_t *d = s->local_mem + dst_base; unsigned int y, i, j; for (y = 0; y < height; y++) { if (overlap) { /* overlap also means rtl */ i = (dst_y + height - 1 - y) * dst_pitch; i = (dst_x + i) * bypp; j = (src_y + height - 1 - y) * src_pitch; j = (src_x + j) * bypp; memmove(&d[i], &sp[j], width * bypp); } else { i = (dst_x + (dst_y + y) * dst_pitch) * bypp; j = (src_x + (src_y + y) * src_pitch) * bypp; memcpy(&d[i], &sp[j], width * bypp); } } } } break; } case 1: /* Rectangle Fill */ { uint32_t color = s->twoD_foreground; if (format == 2) { color = cpu_to_le32(color); } else if (format == 1) { color = cpu_to_le16(color); } #ifdef CONFIG_PIXMAN if (!(s->use_pixman & BIT(0)) || (width == 1 && height == 1) || !pixman_fill((uint32_t *)&s->local_mem[dst_base], dst_pitch * bypp / sizeof(uint32_t), 8 * bypp, dst_x, dst_y, width, height, color)) #endif { /* fallback when pixman failed or we don't want to call it */ uint8_t *d = s->local_mem + dst_base; unsigned int x, y, i; for (y = 0; y < height; y++) { i = (dst_x + (dst_y + y) * dst_pitch) * bypp; for (x = 0; x < width; x++, i += bypp) { stn_he_p(&d[i], bypp, color); } } } break; } default: qemu_log_mask(LOG_UNIMP, "sm501: not implemented 2D operation: %d\n", cmd); return; } if (dst_base >= get_fb_addr(s, crt) && dst_base <= get_fb_addr(s, crt) + fb_len) { int dst_len = MIN(fb_len, ((dst_y + height - 1) * dst_pitch + dst_x + width) * bypp); if (dst_len) { memory_region_set_dirty(&s->local_mem_region, dst_base, dst_len); } } } static uint64_t sm501_system_config_read(void *opaque, hwaddr addr, unsigned size) { SM501State *s = opaque; uint32_t ret = 0; switch (addr) { case SM501_SYSTEM_CONTROL: ret = s->system_control; break; case SM501_MISC_CONTROL: ret = s->misc_control; break; case SM501_GPIO31_0_CONTROL: ret = s->gpio_31_0_control; break; case SM501_GPIO63_32_CONTROL: ret = s->gpio_63_32_control; break; case SM501_DEVICEID: ret = 0x050100A0; break; case SM501_DRAM_CONTROL: ret = (s->dram_control & 0x07F107C0) | s->local_mem_size_index << 13; break; case SM501_ARBTRTN_CONTROL: ret = s->arbitration_control; break; case SM501_COMMAND_LIST_STATUS: ret = 0x00180002; /* FIFOs are empty, everything idle */ break; case SM501_IRQ_MASK: ret = s->irq_mask; break; case SM501_MISC_TIMING: /* TODO : simulate gate control */ ret = s->misc_timing; break; case SM501_CURRENT_GATE: /* TODO : simulate gate control */ ret = 0x00021807; break; case SM501_CURRENT_CLOCK: ret = 0x2A1A0A09; break; case SM501_POWER_MODE_CONTROL: ret = s->power_mode_control; break; case SM501_ENDIAN_CONTROL: ret = 0; /* Only default little endian mode is supported */ break; default: qemu_log_mask(LOG_UNIMP, "sm501: not implemented system config" "register read. addr=%" HWADDR_PRIx "\n", addr); } trace_sm501_system_config_read(addr, ret); return ret; } static void sm501_system_config_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { SM501State *s = opaque; trace_sm501_system_config_write((uint32_t)addr, (uint32_t)value); switch (addr) { case SM501_SYSTEM_CONTROL: s->system_control &= 0x10DB0000; s->system_control |= value & 0xEF00B8F7; break; case SM501_MISC_CONTROL: s->misc_control &= 0xEF; s->misc_control |= value & 0xFF7FFF10; break; case SM501_GPIO31_0_CONTROL: s->gpio_31_0_control = value; break; case SM501_GPIO63_32_CONTROL: s->gpio_63_32_control = value & 0xFF80FFFF; break; case SM501_DRAM_CONTROL: s->local_mem_size_index = (value >> 13) & 0x7; /* TODO : check validity of size change */ s->dram_control &= 0x80000000; s->dram_control |= value & 0x7FFFFFC3; break; case SM501_ARBTRTN_CONTROL: s->arbitration_control = value & 0x37777777; break; case SM501_IRQ_MASK: s->irq_mask = value & 0xFFDF3F5F; break; case SM501_MISC_TIMING: s->misc_timing = value & 0xF31F1FFF; break; case SM501_POWER_MODE_0_GATE: case SM501_POWER_MODE_1_GATE: case SM501_POWER_MODE_0_CLOCK: case SM501_POWER_MODE_1_CLOCK: /* TODO : simulate gate & clock control */ break; case SM501_POWER_MODE_CONTROL: s->power_mode_control = value & 0x00000003; break; case SM501_ENDIAN_CONTROL: if (value & 0x00000001) { qemu_log_mask(LOG_UNIMP, "sm501: system config big endian mode not" " implemented.\n"); } break; default: qemu_log_mask(LOG_UNIMP, "sm501: not implemented system config" "register write. addr=%" HWADDR_PRIx ", val=%" PRIx64 "\n", addr, value); } } static const MemoryRegionOps sm501_system_config_ops = { .read = sm501_system_config_read, .write = sm501_system_config_write, .valid = { .min_access_size = 4, .max_access_size = 4, }, .endianness = DEVICE_LITTLE_ENDIAN, }; static uint64_t sm501_i2c_read(void *opaque, hwaddr addr, unsigned size) { SM501State *s = opaque; uint8_t ret = 0; switch (addr) { case SM501_I2C_BYTE_COUNT: ret = s->i2c_byte_count; break; case SM501_I2C_STATUS: ret = s->i2c_status; break; case SM501_I2C_SLAVE_ADDRESS: ret = s->i2c_addr; break; case SM501_I2C_DATA ... SM501_I2C_DATA + 15: ret = s->i2c_data[addr - SM501_I2C_DATA]; break; default: qemu_log_mask(LOG_UNIMP, "sm501 i2c : not implemented register read." " addr=0x%" HWADDR_PRIx "\n", addr); } trace_sm501_i2c_read((uint32_t)addr, ret); return ret; } static void sm501_i2c_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { SM501State *s = opaque; trace_sm501_i2c_write((uint32_t)addr, (uint32_t)value); switch (addr) { case SM501_I2C_BYTE_COUNT: s->i2c_byte_count = value & 0xf; break; case SM501_I2C_CONTROL: if (value & SM501_I2C_CONTROL_ENABLE) { if (value & SM501_I2C_CONTROL_START) { bool is_recv = s->i2c_addr & 1; int res = i2c_start_transfer(s->i2c_bus, s->i2c_addr >> 1, is_recv); if (res) { s->i2c_status |= SM501_I2C_STATUS_ERROR; } else { int i; for (i = 0; i <= s->i2c_byte_count; i++) { if (is_recv) { s->i2c_data[i] = i2c_recv(s->i2c_bus); } else if (i2c_send(s->i2c_bus, s->i2c_data[i]) < 0) { s->i2c_status |= SM501_I2C_STATUS_ERROR; return; } } if (i) { s->i2c_status = SM501_I2C_STATUS_COMPLETE; } } } else { i2c_end_transfer(s->i2c_bus); s->i2c_status &= ~SM501_I2C_STATUS_ERROR; } } break; case SM501_I2C_RESET: if ((value & SM501_I2C_RESET_ERROR) == 0) { s->i2c_status &= ~SM501_I2C_STATUS_ERROR; } break; case SM501_I2C_SLAVE_ADDRESS: s->i2c_addr = value & 0xff; break; case SM501_I2C_DATA ... SM501_I2C_DATA + 15: s->i2c_data[addr - SM501_I2C_DATA] = value & 0xff; break; default: qemu_log_mask(LOG_UNIMP, "sm501 i2c : not implemented register write. " "addr=0x%" HWADDR_PRIx " val=%" PRIx64 "\n", addr, value); } } static const MemoryRegionOps sm501_i2c_ops = { .read = sm501_i2c_read, .write = sm501_i2c_write, .valid = { .min_access_size = 1, .max_access_size = 1, }, .impl = { .min_access_size = 1, .max_access_size = 1, }, .endianness = DEVICE_LITTLE_ENDIAN, }; static uint32_t sm501_palette_read(void *opaque, hwaddr addr) { SM501State *s = opaque; trace_sm501_palette_read((uint32_t)addr); /* TODO : consider BYTE/WORD access */ /* TODO : consider endian */ assert(range_covers_byte(0, 0x400 * 3, addr)); return *(uint32_t *)&s->dc_palette[addr]; } static void sm501_palette_write(void *opaque, hwaddr addr, uint32_t value) { SM501State *s = opaque; trace_sm501_palette_write((uint32_t)addr, value); /* TODO : consider BYTE/WORD access */ /* TODO : consider endian */ assert(range_covers_byte(0, 0x400 * 3, addr)); *(uint32_t *)&s->dc_palette[addr] = value; s->do_full_update = true; } static uint64_t sm501_disp_ctrl_read(void *opaque, hwaddr addr, unsigned size) { SM501State *s = opaque; uint32_t ret = 0; switch (addr) { case SM501_DC_PANEL_CONTROL: ret = s->dc_panel_control; break; case SM501_DC_PANEL_PANNING_CONTROL: ret = s->dc_panel_panning_control; break; case SM501_DC_PANEL_COLOR_KEY: /* Not implemented yet */ break; case SM501_DC_PANEL_FB_ADDR: ret = s->dc_panel_fb_addr; break; case SM501_DC_PANEL_FB_OFFSET: ret = s->dc_panel_fb_offset; break; case SM501_DC_PANEL_FB_WIDTH: ret = s->dc_panel_fb_width; break; case SM501_DC_PANEL_FB_HEIGHT: ret = s->dc_panel_fb_height; break; case SM501_DC_PANEL_TL_LOC: ret = s->dc_panel_tl_location; break; case SM501_DC_PANEL_BR_LOC: ret = s->dc_panel_br_location; break; case SM501_DC_PANEL_H_TOT: ret = s->dc_panel_h_total; break; case SM501_DC_PANEL_H_SYNC: ret = s->dc_panel_h_sync; break; case SM501_DC_PANEL_V_TOT: ret = s->dc_panel_v_total; break; case SM501_DC_PANEL_V_SYNC: ret = s->dc_panel_v_sync; break; case SM501_DC_PANEL_HWC_ADDR: ret = s->dc_panel_hwc_addr; break; case SM501_DC_PANEL_HWC_LOC: ret = s->dc_panel_hwc_location; break; case SM501_DC_PANEL_HWC_COLOR_1_2: ret = s->dc_panel_hwc_color_1_2; break; case SM501_DC_PANEL_HWC_COLOR_3: ret = s->dc_panel_hwc_color_3; break; case SM501_DC_VIDEO_CONTROL: ret = s->dc_video_control; break; case SM501_DC_CRT_CONTROL: ret = s->dc_crt_control; break; case SM501_DC_CRT_FB_ADDR: ret = s->dc_crt_fb_addr; break; case SM501_DC_CRT_FB_OFFSET: ret = s->dc_crt_fb_offset; break; case SM501_DC_CRT_H_TOT: ret = s->dc_crt_h_total; break; case SM501_DC_CRT_H_SYNC: ret = s->dc_crt_h_sync; break; case SM501_DC_CRT_V_TOT: ret = s->dc_crt_v_total; break; case SM501_DC_CRT_V_SYNC: ret = s->dc_crt_v_sync; break; case SM501_DC_CRT_HWC_ADDR: ret = s->dc_crt_hwc_addr; break; case SM501_DC_CRT_HWC_LOC: ret = s->dc_crt_hwc_location; break; case SM501_DC_CRT_HWC_COLOR_1_2: ret = s->dc_crt_hwc_color_1_2; break; case SM501_DC_CRT_HWC_COLOR_3: ret = s->dc_crt_hwc_color_3; break; case SM501_DC_PANEL_PALETTE ... SM501_DC_PANEL_PALETTE + 0x400 * 3 - 4: ret = sm501_palette_read(opaque, addr - SM501_DC_PANEL_PALETTE); break; default: qemu_log_mask(LOG_UNIMP, "sm501: not implemented disp ctrl register " "read. addr=%" HWADDR_PRIx "\n", addr); } trace_sm501_disp_ctrl_read((uint32_t)addr, ret); return ret; } static void sm501_disp_ctrl_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { SM501State *s = opaque; trace_sm501_disp_ctrl_write((uint32_t)addr, (uint32_t)value); switch (addr) { case SM501_DC_PANEL_CONTROL: s->dc_panel_control = value & 0x0FFF73FF; break; case SM501_DC_PANEL_PANNING_CONTROL: s->dc_panel_panning_control = value & 0xFF3FFF3F; break; case SM501_DC_PANEL_COLOR_KEY: /* Not implemented yet */ break; case SM501_DC_PANEL_FB_ADDR: s->dc_panel_fb_addr = value & 0x8FFFFFF0; if (value & 0x8000000) { qemu_log_mask(LOG_UNIMP, "Panel external memory not supported\n"); } s->do_full_update = true; break; case SM501_DC_PANEL_FB_OFFSET: s->dc_panel_fb_offset = value & 0x3FF03FF0; break; case SM501_DC_PANEL_FB_WIDTH: s->dc_panel_fb_width = value & 0x0FFF0FFF; break; case SM501_DC_PANEL_FB_HEIGHT: s->dc_panel_fb_height = value & 0x0FFF0FFF; break; case SM501_DC_PANEL_TL_LOC: s->dc_panel_tl_location = value & 0x07FF07FF; break; case SM501_DC_PANEL_BR_LOC: s->dc_panel_br_location = value & 0x07FF07FF; break; case SM501_DC_PANEL_H_TOT: s->dc_panel_h_total = value & 0x0FFF0FFF; break; case SM501_DC_PANEL_H_SYNC: s->dc_panel_h_sync = value & 0x00FF0FFF; break; case SM501_DC_PANEL_V_TOT: s->dc_panel_v_total = value & 0x0FFF0FFF; break; case SM501_DC_PANEL_V_SYNC: s->dc_panel_v_sync = value & 0x003F0FFF; break; case SM501_DC_PANEL_HWC_ADDR: value &= 0x8FFFFFF0; if (value != s->dc_panel_hwc_addr) { hwc_invalidate(s, 0); s->dc_panel_hwc_addr = value; } break; case SM501_DC_PANEL_HWC_LOC: value &= 0x0FFF0FFF; if (value != s->dc_panel_hwc_location) { hwc_invalidate(s, 0); s->dc_panel_hwc_location = value; } break; case SM501_DC_PANEL_HWC_COLOR_1_2: s->dc_panel_hwc_color_1_2 = value; break; case SM501_DC_PANEL_HWC_COLOR_3: s->dc_panel_hwc_color_3 = value & 0x0000FFFF; break; case SM501_DC_VIDEO_CONTROL: s->dc_video_control = value & 0x00037FFF; break; case SM501_DC_CRT_CONTROL: s->dc_crt_control = value & 0x0003FFFF; break; case SM501_DC_CRT_FB_ADDR: s->dc_crt_fb_addr = value & 0x8FFFFFF0; if (value & 0x8000000) { qemu_log_mask(LOG_UNIMP, "CRT external memory not supported\n"); } s->do_full_update = true; break; case SM501_DC_CRT_FB_OFFSET: s->dc_crt_fb_offset = value & 0x3FF03FF0; break; case SM501_DC_CRT_H_TOT: s->dc_crt_h_total = value & 0x0FFF0FFF; break; case SM501_DC_CRT_H_SYNC: s->dc_crt_h_sync = value & 0x00FF0FFF; break; case SM501_DC_CRT_V_TOT: s->dc_crt_v_total = value & 0x0FFF0FFF; break; case SM501_DC_CRT_V_SYNC: s->dc_crt_v_sync = value & 0x003F0FFF; break; case SM501_DC_CRT_HWC_ADDR: value &= 0x8FFFFFF0; if (value != s->dc_crt_hwc_addr) { hwc_invalidate(s, 1); s->dc_crt_hwc_addr = value; } break; case SM501_DC_CRT_HWC_LOC: value &= 0x0FFF0FFF; if (value != s->dc_crt_hwc_location) { hwc_invalidate(s, 1); s->dc_crt_hwc_location = value; } break; case SM501_DC_CRT_HWC_COLOR_1_2: s->dc_crt_hwc_color_1_2 = value; break; case SM501_DC_CRT_HWC_COLOR_3: s->dc_crt_hwc_color_3 = value & 0x0000FFFF; break; case SM501_DC_PANEL_PALETTE ... SM501_DC_PANEL_PALETTE + 0x400 * 3 - 4: sm501_palette_write(opaque, addr - SM501_DC_PANEL_PALETTE, value); break; default: qemu_log_mask(LOG_UNIMP, "sm501: not implemented disp ctrl register " "write. addr=%" HWADDR_PRIx ", val=%" PRIx64 "\n", addr, value); } } static const MemoryRegionOps sm501_disp_ctrl_ops = { .read = sm501_disp_ctrl_read, .write = sm501_disp_ctrl_write, .valid = { .min_access_size = 4, .max_access_size = 4, }, .endianness = DEVICE_LITTLE_ENDIAN, }; static uint64_t sm501_2d_engine_read(void *opaque, hwaddr addr, unsigned size) { SM501State *s = opaque; uint32_t ret = 0; switch (addr) { case SM501_2D_SOURCE: ret = s->twoD_source; break; case SM501_2D_DESTINATION: ret = s->twoD_destination; break; case SM501_2D_DIMENSION: ret = s->twoD_dimension; break; case SM501_2D_CONTROL: ret = s->twoD_control; break; case SM501_2D_PITCH: ret = s->twoD_pitch; break; case SM501_2D_FOREGROUND: ret = s->twoD_foreground; break; case SM501_2D_BACKGROUND: ret = s->twoD_background; break; case SM501_2D_STRETCH: ret = s->twoD_stretch; break; case SM501_2D_COLOR_COMPARE: ret = s->twoD_color_compare; break; case SM501_2D_COLOR_COMPARE_MASK: ret = s->twoD_color_compare_mask; break; case SM501_2D_MASK: ret = s->twoD_mask; break; case SM501_2D_CLIP_TL: ret = s->twoD_clip_tl; break; case SM501_2D_CLIP_BR: ret = s->twoD_clip_br; break; case SM501_2D_MONO_PATTERN_LOW: ret = s->twoD_mono_pattern_low; break; case SM501_2D_MONO_PATTERN_HIGH: ret = s->twoD_mono_pattern_high; break; case SM501_2D_WINDOW_WIDTH: ret = s->twoD_window_width; break; case SM501_2D_SOURCE_BASE: ret = s->twoD_source_base; break; case SM501_2D_DESTINATION_BASE: ret = s->twoD_destination_base; break; case SM501_2D_ALPHA: ret = s->twoD_alpha; break; case SM501_2D_WRAP: ret = s->twoD_wrap; break; case SM501_2D_STATUS: ret = 0; /* Should return interrupt status */ break; default: qemu_log_mask(LOG_UNIMP, "sm501: not implemented disp ctrl register " "read. addr=%" HWADDR_PRIx "\n", addr); } trace_sm501_2d_engine_read((uint32_t)addr, ret); return ret; } static void sm501_2d_engine_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { SM501State *s = opaque; trace_sm501_2d_engine_write((uint32_t)addr, (uint32_t)value); switch (addr) { case SM501_2D_SOURCE: s->twoD_source = value; break; case SM501_2D_DESTINATION: s->twoD_destination = value; break; case SM501_2D_DIMENSION: s->twoD_dimension = value; break; case SM501_2D_CONTROL: s->twoD_control = value; /* do 2d operation if start flag is set. */ if (value & 0x80000000) { sm501_2d_operation(s); s->twoD_control &= ~0x80000000; /* start flag down */ } break; case SM501_2D_PITCH: s->twoD_pitch = value; break; case SM501_2D_FOREGROUND: s->twoD_foreground = value; break; case SM501_2D_BACKGROUND: s->twoD_background = value; break; case SM501_2D_STRETCH: if (((value >> 20) & 3) == 3) { value &= ~BIT(20); } s->twoD_stretch = value; break; case SM501_2D_COLOR_COMPARE: s->twoD_color_compare = value; break; case SM501_2D_COLOR_COMPARE_MASK: s->twoD_color_compare_mask = value; break; case SM501_2D_MASK: s->twoD_mask = value; break; case SM501_2D_CLIP_TL: s->twoD_clip_tl = value; break; case SM501_2D_CLIP_BR: s->twoD_clip_br = value; break; case SM501_2D_MONO_PATTERN_LOW: s->twoD_mono_pattern_low = value; break; case SM501_2D_MONO_PATTERN_HIGH: s->twoD_mono_pattern_high = value; break; case SM501_2D_WINDOW_WIDTH: s->twoD_window_width = value; break; case SM501_2D_SOURCE_BASE: s->twoD_source_base = value; break; case SM501_2D_DESTINATION_BASE: s->twoD_destination_base = value; break; case SM501_2D_ALPHA: s->twoD_alpha = value; break; case SM501_2D_WRAP: s->twoD_wrap = value; break; case SM501_2D_STATUS: /* ignored, writing 0 should clear interrupt status */ break; default: qemu_log_mask(LOG_UNIMP, "sm501: not implemented 2d engine register " "write. addr=%" HWADDR_PRIx ", val=%" PRIx64 "\n", addr, value); } } static const MemoryRegionOps sm501_2d_engine_ops = { .read = sm501_2d_engine_read, .write = sm501_2d_engine_write, .valid = { .min_access_size = 4, .max_access_size = 4, }, .endianness = DEVICE_LITTLE_ENDIAN, }; /* draw line functions for all console modes */ typedef void draw_line_func(uint8_t *d, const uint8_t *s, int width, const uint32_t *pal); typedef void draw_hwc_line_func(uint8_t *d, const uint8_t *s, int width, const uint8_t *palette, int c_x, int c_y); static void draw_line8_32(uint8_t *d, const uint8_t *s, int width, const uint32_t *pal) { uint8_t v, r, g, b; do { v = ldub_p(s); r = (pal[v] >> 16) & 0xff; g = (pal[v] >> 8) & 0xff; b = (pal[v] >> 0) & 0xff; *(uint32_t *)d = rgb_to_pixel32(r, g, b); s++; d += 4; } while (--width != 0); } static void draw_line16_32(uint8_t *d, const uint8_t *s, int width, const uint32_t *pal) { uint16_t rgb565; uint8_t r, g, b; do { rgb565 = lduw_le_p(s); r = (rgb565 >> 8) & 0xf8; g = (rgb565 >> 3) & 0xfc; b = (rgb565 << 3) & 0xf8; *(uint32_t *)d = rgb_to_pixel32(r, g, b); s += 2; d += 4; } while (--width != 0); } static void draw_line32_32(uint8_t *d, const uint8_t *s, int width, const uint32_t *pal) { uint8_t r, g, b; do { r = s[2]; g = s[1]; b = s[0]; *(uint32_t *)d = rgb_to_pixel32(r, g, b); s += 4; d += 4; } while (--width != 0); } /** * Draw hardware cursor image on the given line. */ static void draw_hwc_line_32(uint8_t *d, const uint8_t *s, int width, const uint8_t *palette, int c_x, int c_y) { int i; uint8_t r, g, b, v, bitset = 0; /* get cursor position */ assert(0 <= c_y && c_y < SM501_HWC_HEIGHT); s += SM501_HWC_WIDTH * c_y / 4; /* 4 pixels per byte */ d += c_x * 4; for (i = 0; i < SM501_HWC_WIDTH && c_x + i < width; i++) { /* get pixel value */ if (i % 4 == 0) { bitset = ldub_p(s); s++; } v = bitset & 3; bitset >>= 2; /* write pixel */ if (v) { v--; r = palette[v * 3 + 0]; g = palette[v * 3 + 1]; b = palette[v * 3 + 2]; *(uint32_t *)d = rgb_to_pixel32(r, g, b); } d += 4; } } static void sm501_update_display(void *opaque) { SM501State *s = opaque; DisplaySurface *surface = qemu_console_surface(s->con); DirtyBitmapSnapshot *snap; int y, c_x = 0, c_y = 0; int crt = (s->dc_crt_control & SM501_DC_CRT_CONTROL_SEL) ? 1 : 0; int width = get_width(s, crt); int height = get_height(s, crt); int src_bpp = get_bpp(s, crt); int dst_bpp = surface_bytes_per_pixel(surface); draw_line_func *draw_line = NULL; draw_hwc_line_func *draw_hwc_line = NULL; int full_update = 0; int y_start = -1; ram_addr_t offset; uint32_t *palette; uint8_t hwc_palette[3 * 3]; uint8_t *hwc_src = NULL; assert(dst_bpp == 4); /* Output is always 32-bit RGB */ if (!((crt ? s->dc_crt_control : s->dc_panel_control) & SM501_DC_CRT_CONTROL_ENABLE)) { return; } palette = (uint32_t *)(crt ? &s->dc_palette[SM501_DC_CRT_PALETTE - SM501_DC_PANEL_PALETTE] : &s->dc_palette[0]); /* choose draw_line function */ switch (src_bpp) { case 1: draw_line = draw_line8_32; break; case 2: draw_line = draw_line16_32; break; case 4: draw_line = draw_line32_32; break; default: qemu_log_mask(LOG_GUEST_ERROR, "sm501: update display" "invalid control register value.\n"); return; } /* set up to draw hardware cursor */ if (is_hwc_enabled(s, crt)) { /* choose cursor draw line function */ draw_hwc_line = draw_hwc_line_32; hwc_src = get_hwc_address(s, crt); c_x = get_hwc_x(s, crt); c_y = get_hwc_y(s, crt); get_hwc_palette(s, crt, hwc_palette); } /* adjust console size */ if (s->last_width != width || s->last_height != height) { qemu_console_resize(s->con, width, height); surface = qemu_console_surface(s->con); s->last_width = width; s->last_height = height; full_update = 1; } /* someone else requested a full update */ if (s->do_full_update) { s->do_full_update = false; full_update = 1; } /* draw each line according to conditions */ offset = get_fb_addr(s, crt); snap = memory_region_snapshot_and_clear_dirty(&s->local_mem_region, offset, width * height * src_bpp, DIRTY_MEMORY_VGA); for (y = 0; y < height; y++, offset += width * src_bpp) { int update, update_hwc; /* check if hardware cursor is enabled and we're within its range */ update_hwc = draw_hwc_line && c_y <= y && y < c_y + SM501_HWC_HEIGHT; update = full_update || update_hwc; /* check dirty flags for each line */ update |= memory_region_snapshot_get_dirty(&s->local_mem_region, snap, offset, width * src_bpp); /* draw line and change status */ if (update) { uint8_t *d = surface_data(surface); d += y * width * dst_bpp; /* draw graphics layer */ draw_line(d, s->local_mem + offset, width, palette); /* draw hardware cursor */ if (update_hwc) { draw_hwc_line(d, hwc_src, width, hwc_palette, c_x, y - c_y); } if (y_start < 0) { y_start = y; } } else { if (y_start >= 0) { /* flush to display */ dpy_gfx_update(s->con, 0, y_start, width, y - y_start); y_start = -1; } } } g_free(snap); /* complete flush to display */ if (y_start >= 0) { dpy_gfx_update(s->con, 0, y_start, width, y - y_start); } } static const GraphicHwOps sm501_ops = { .gfx_update = sm501_update_display, }; static void sm501_reset(SM501State *s) { s->system_control = 0x00100000; /* 2D engine FIFO empty */ /* * Bits 17 (SH), 7 (CDR), 6:5 (Test), 2:0 (Bus) are all supposed * to be determined at reset by GPIO lines which set config bits. * We hardwire them: * SH = 0 : Hitachi Ready Polarity == Active Low * CDR = 0 : do not reset clock divider * TEST = 0 : Normal mode (not testing the silicon) * BUS = 0 : Hitachi SH3/SH4 */ s->misc_control = SM501_MISC_DAC_POWER; s->gpio_31_0_control = 0; s->gpio_63_32_control = 0; s->dram_control = 0; s->arbitration_control = 0x05146732; s->irq_mask = 0; s->misc_timing = 0; s->power_mode_control = 0; s->i2c_byte_count = 0; s->i2c_status = 0; s->i2c_addr = 0; memset(s->i2c_data, 0, 16); s->dc_panel_control = 0x00010000; /* FIFO level 3 */ s->dc_video_control = 0; s->dc_crt_control = 0x00010000; s->twoD_source = 0; s->twoD_destination = 0; s->twoD_dimension = 0; s->twoD_control = 0; s->twoD_pitch = 0; s->twoD_foreground = 0; s->twoD_background = 0; s->twoD_stretch = 0; s->twoD_color_compare = 0; s->twoD_color_compare_mask = 0; s->twoD_mask = 0; s->twoD_clip_tl = 0; s->twoD_clip_br = 0; s->twoD_mono_pattern_low = 0; s->twoD_mono_pattern_high = 0; s->twoD_window_width = 0; s->twoD_source_base = 0; s->twoD_destination_base = 0; s->twoD_alpha = 0; s->twoD_wrap = 0; } static void sm501_init(SM501State *s, DeviceState *dev, uint32_t local_mem_bytes) { #ifndef CONFIG_PIXMAN if (s->use_pixman != 0) { warn_report("x-pixman != 0, not effective without PIXMAN"); } #endif s->local_mem_size_index = get_local_mem_size_index(local_mem_bytes); /* local memory */ memory_region_init_ram(&s->local_mem_region, OBJECT(dev), "sm501.local", get_local_mem_size(s), &error_fatal); memory_region_set_log(&s->local_mem_region, true, DIRTY_MEMORY_VGA); s->local_mem = memory_region_get_ram_ptr(&s->local_mem_region); /* i2c */ s->i2c_bus = i2c_init_bus(dev, "sm501.i2c"); /* ddc */ I2CDDCState *ddc = I2CDDC(qdev_new(TYPE_I2CDDC)); i2c_slave_set_address(I2C_SLAVE(ddc), 0x50); qdev_realize_and_unref(DEVICE(ddc), BUS(s->i2c_bus), &error_abort); /* mmio */ memory_region_init(&s->mmio_region, OBJECT(dev), "sm501.mmio", MMIO_SIZE); memory_region_init_io(&s->system_config_region, OBJECT(dev), &sm501_system_config_ops, s, "sm501-system-config", 0x6c); memory_region_add_subregion(&s->mmio_region, SM501_SYS_CONFIG, &s->system_config_region); memory_region_init_io(&s->i2c_region, OBJECT(dev), &sm501_i2c_ops, s, "sm501-i2c", 0x14); memory_region_add_subregion(&s->mmio_region, SM501_I2C, &s->i2c_region); memory_region_init_io(&s->disp_ctrl_region, OBJECT(dev), &sm501_disp_ctrl_ops, s, "sm501-disp-ctrl", 0x1000); memory_region_add_subregion(&s->mmio_region, SM501_DC, &s->disp_ctrl_region); memory_region_init_io(&s->twoD_engine_region, OBJECT(dev), &sm501_2d_engine_ops, s, "sm501-2d-engine", 0x54); memory_region_add_subregion(&s->mmio_region, SM501_2D_ENGINE, &s->twoD_engine_region); /* create qemu graphic console */ s->con = graphic_console_init(dev, 0, &sm501_ops, s); } static const VMStateDescription vmstate_sm501_state = { .name = "sm501-state", .version_id = 1, .minimum_version_id = 1, .fields = (const VMStateField[]) { VMSTATE_UINT32(local_mem_size_index, SM501State), VMSTATE_UINT32(system_control, SM501State), VMSTATE_UINT32(misc_control, SM501State), VMSTATE_UINT32(gpio_31_0_control, SM501State), VMSTATE_UINT32(gpio_63_32_control, SM501State), VMSTATE_UINT32(dram_control, SM501State), VMSTATE_UINT32(arbitration_control, SM501State), VMSTATE_UINT32(irq_mask, SM501State), VMSTATE_UINT32(misc_timing, SM501State), VMSTATE_UINT32(power_mode_control, SM501State), VMSTATE_UINT32(uart0_ier, SM501State), VMSTATE_UINT32(uart0_lcr, SM501State), VMSTATE_UINT32(uart0_mcr, SM501State), VMSTATE_UINT32(uart0_scr, SM501State), VMSTATE_UINT8_ARRAY(dc_palette, SM501State, DC_PALETTE_ENTRIES), VMSTATE_UINT32(dc_panel_control, SM501State), VMSTATE_UINT32(dc_panel_panning_control, SM501State), VMSTATE_UINT32(dc_panel_fb_addr, SM501State), VMSTATE_UINT32(dc_panel_fb_offset, SM501State), VMSTATE_UINT32(dc_panel_fb_width, SM501State), VMSTATE_UINT32(dc_panel_fb_height, SM501State), VMSTATE_UINT32(dc_panel_tl_location, SM501State), VMSTATE_UINT32(dc_panel_br_location, SM501State), VMSTATE_UINT32(dc_panel_h_total, SM501State), VMSTATE_UINT32(dc_panel_h_sync, SM501State), VMSTATE_UINT32(dc_panel_v_total, SM501State), VMSTATE_UINT32(dc_panel_v_sync, SM501State), VMSTATE_UINT32(dc_panel_hwc_addr, SM501State), VMSTATE_UINT32(dc_panel_hwc_location, SM501State), VMSTATE_UINT32(dc_panel_hwc_color_1_2, SM501State), VMSTATE_UINT32(dc_panel_hwc_color_3, SM501State), VMSTATE_UINT32(dc_video_control, SM501State), VMSTATE_UINT32(dc_crt_control, SM501State), VMSTATE_UINT32(dc_crt_fb_addr, SM501State), VMSTATE_UINT32(dc_crt_fb_offset, SM501State), VMSTATE_UINT32(dc_crt_h_total, SM501State), VMSTATE_UINT32(dc_crt_h_sync, SM501State), VMSTATE_UINT32(dc_crt_v_total, SM501State), VMSTATE_UINT32(dc_crt_v_sync, SM501State), VMSTATE_UINT32(dc_crt_hwc_addr, SM501State), VMSTATE_UINT32(dc_crt_hwc_location, SM501State), VMSTATE_UINT32(dc_crt_hwc_color_1_2, SM501State), VMSTATE_UINT32(dc_crt_hwc_color_3, SM501State), VMSTATE_UINT32(twoD_source, SM501State), VMSTATE_UINT32(twoD_destination, SM501State), VMSTATE_UINT32(twoD_dimension, SM501State), VMSTATE_UINT32(twoD_control, SM501State), VMSTATE_UINT32(twoD_pitch, SM501State), VMSTATE_UINT32(twoD_foreground, SM501State), VMSTATE_UINT32(twoD_background, SM501State), VMSTATE_UINT32(twoD_stretch, SM501State), VMSTATE_UINT32(twoD_color_compare, SM501State), VMSTATE_UINT32(twoD_color_compare_mask, SM501State), VMSTATE_UINT32(twoD_mask, SM501State), VMSTATE_UINT32(twoD_clip_tl, SM501State), VMSTATE_UINT32(twoD_clip_br, SM501State), VMSTATE_UINT32(twoD_mono_pattern_low, SM501State), VMSTATE_UINT32(twoD_mono_pattern_high, SM501State), VMSTATE_UINT32(twoD_window_width, SM501State), VMSTATE_UINT32(twoD_source_base, SM501State), VMSTATE_UINT32(twoD_destination_base, SM501State), VMSTATE_UINT32(twoD_alpha, SM501State), VMSTATE_UINT32(twoD_wrap, SM501State), /* Added in version 2 */ VMSTATE_UINT8(i2c_byte_count, SM501State), VMSTATE_UINT8(i2c_status, SM501State), VMSTATE_UINT8(i2c_addr, SM501State), VMSTATE_UINT8_ARRAY(i2c_data, SM501State, 16), VMSTATE_END_OF_LIST() } }; #define TYPE_SYSBUS_SM501 "sysbus-sm501" OBJECT_DECLARE_SIMPLE_TYPE(SM501SysBusState, SYSBUS_SM501) struct SM501SysBusState { /*< private >*/ SysBusDevice parent_obj; /*< public >*/ SM501State state; uint32_t vram_size; SerialMM serial; OHCISysBusState ohci; }; static void sm501_realize_sysbus(DeviceState *dev, Error **errp) { SM501SysBusState *s = SYSBUS_SM501(dev); SysBusDevice *sbd = SYS_BUS_DEVICE(dev); MemoryRegion *mr; sm501_init(&s->state, dev, s->vram_size); if (get_local_mem_size(&s->state) != s->vram_size) { error_setg(errp, "Invalid VRAM size, nearest valid size is %" PRIu32, get_local_mem_size(&s->state)); return; } sysbus_init_mmio(sbd, &s->state.local_mem_region); sysbus_init_mmio(sbd, &s->state.mmio_region); /* bridge to usb host emulation module */ sysbus_realize_and_unref(SYS_BUS_DEVICE(&s->ohci), &error_fatal); memory_region_add_subregion(&s->state.mmio_region, SM501_USB_HOST, sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->ohci), 0)); sysbus_pass_irq(sbd, SYS_BUS_DEVICE(&s->ohci)); /* bridge to serial emulation module */ sysbus_realize(SYS_BUS_DEVICE(&s->serial), &error_fatal); mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->serial), 0); memory_region_add_subregion(&s->state.mmio_region, SM501_UART0, mr); /* TODO : chain irq to IRL */ } static Property sm501_sysbus_properties[] = { DEFINE_PROP_UINT32("vram-size", SM501SysBusState, vram_size, 0), /* this a debug option, prefer PROP_UINT over PROP_BIT for simplicity */ DEFINE_PROP_UINT8("x-pixman", SM501SysBusState, state.use_pixman, DEFAULT_X_PIXMAN), DEFINE_PROP_END_OF_LIST(), }; static void sm501_reset_sysbus(DeviceState *dev) { SM501SysBusState *s = SYSBUS_SM501(dev); sm501_reset(&s->state); } static const VMStateDescription vmstate_sm501_sysbus = { .name = TYPE_SYSBUS_SM501, .version_id = 2, .minimum_version_id = 2, .fields = (const VMStateField[]) { VMSTATE_STRUCT(state, SM501SysBusState, 1, vmstate_sm501_state, SM501State), VMSTATE_END_OF_LIST() } }; static void sm501_sysbus_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = sm501_realize_sysbus; set_bit(DEVICE_CATEGORY_DISPLAY, dc->categories); dc->desc = "SM501 Multimedia Companion"; device_class_set_props(dc, sm501_sysbus_properties); device_class_set_legacy_reset(dc, sm501_reset_sysbus); dc->vmsd = &vmstate_sm501_sysbus; } static void sm501_sysbus_init(Object *o) { SM501SysBusState *sm501 = SYSBUS_SM501(o); OHCISysBusState *ohci = &sm501->ohci; SerialMM *smm = &sm501->serial; object_initialize_child(o, "ohci", ohci, TYPE_SYSBUS_OHCI); object_property_add_alias(o, "dma-offset", OBJECT(ohci), "dma-offset"); qdev_prop_set_uint32(DEVICE(ohci), "num-ports", 2); object_initialize_child(o, "serial", smm, TYPE_SERIAL_MM); qdev_set_legacy_instance_id(DEVICE(smm), SM501_UART0, 2); qdev_prop_set_uint8(DEVICE(smm), "regshift", 2); qdev_prop_set_uint8(DEVICE(smm), "endianness", DEVICE_LITTLE_ENDIAN); object_property_add_alias(o, "chardev", OBJECT(smm), "chardev"); } static const TypeInfo sm501_sysbus_info = { .name = TYPE_SYSBUS_SM501, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(SM501SysBusState), .class_init = sm501_sysbus_class_init, .instance_init = sm501_sysbus_init, }; #define TYPE_PCI_SM501 "sm501" OBJECT_DECLARE_SIMPLE_TYPE(SM501PCIState, PCI_SM501) struct SM501PCIState { /*< private >*/ PCIDevice parent_obj; /*< public >*/ SM501State state; uint32_t vram_size; }; static void sm501_realize_pci(PCIDevice *dev, Error **errp) { SM501PCIState *s = PCI_SM501(dev); sm501_init(&s->state, DEVICE(dev), s->vram_size); if (get_local_mem_size(&s->state) != s->vram_size) { error_setg(errp, "Invalid VRAM size, nearest valid size is %" PRIu32, get_local_mem_size(&s->state)); return; } pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->state.local_mem_region); pci_register_bar(dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->state.mmio_region); } static Property sm501_pci_properties[] = { DEFINE_PROP_UINT32("vram-size", SM501PCIState, vram_size, 64 * MiB), DEFINE_PROP_UINT8("x-pixman", SM501PCIState, state.use_pixman, DEFAULT_X_PIXMAN), DEFINE_PROP_END_OF_LIST(), }; static void sm501_reset_pci(DeviceState *dev) { SM501PCIState *s = PCI_SM501(dev); sm501_reset(&s->state); /* Bits 2:0 of misc_control register is 001 for PCI */ s->state.misc_control |= 1; } static const VMStateDescription vmstate_sm501_pci = { .name = TYPE_PCI_SM501, .version_id = 2, .minimum_version_id = 2, .fields = (const VMStateField[]) { VMSTATE_PCI_DEVICE(parent_obj, SM501PCIState), VMSTATE_STRUCT(state, SM501PCIState, 1, vmstate_sm501_state, SM501State), VMSTATE_END_OF_LIST() } }; static void sm501_pci_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); k->realize = sm501_realize_pci; k->vendor_id = PCI_VENDOR_ID_SILICON_MOTION; k->device_id = PCI_DEVICE_ID_SM501; k->class_id = PCI_CLASS_DISPLAY_OTHER; set_bit(DEVICE_CATEGORY_DISPLAY, dc->categories); dc->desc = "SM501 Display Controller"; device_class_set_props(dc, sm501_pci_properties); device_class_set_legacy_reset(dc, sm501_reset_pci); dc->hotpluggable = false; dc->vmsd = &vmstate_sm501_pci; } static void sm501_pci_init(Object *o) { object_property_set_description(o, "x-pixman", "Use pixman for: " "1: fill, 2: blit, 4: overlap blit"); } static const TypeInfo sm501_pci_info = { .name = TYPE_PCI_SM501, .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(SM501PCIState), .class_init = sm501_pci_class_init, .instance_init = sm501_pci_init, .interfaces = (InterfaceInfo[]) { { INTERFACE_CONVENTIONAL_PCI_DEVICE }, { }, }, }; static void sm501_register_types(void) { type_register_static(&sm501_sysbus_info); type_register_static(&sm501_pci_info); } type_init(sm501_register_types)