/* * QEMU model for the AXIS devboard 88. * * Copyright (c) 2009 Edgar E. Iglesias, Axis Communications AB. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qapi/error.h" #include "cpu.h" #include "hw/sysbus.h" #include "net/net.h" #include "hw/block/flash.h" #include "hw/boards.h" #include "hw/cris/etraxfs.h" #include "hw/loader.h" #include "elf.h" #include "boot.h" #include "exec/address-spaces.h" #include "sysemu/qtest.h" #include "sysemu/sysemu.h" #define D(x) #define DNAND(x) struct nand_state_t { DeviceState *nand; MemoryRegion iomem; unsigned int rdy:1; unsigned int ale:1; unsigned int cle:1; unsigned int ce:1; }; static struct nand_state_t nand_state; static uint64_t nand_read(void *opaque, hwaddr addr, unsigned size) { struct nand_state_t *s = opaque; uint32_t r; int rdy; r = nand_getio(s->nand); nand_getpins(s->nand, &rdy); s->rdy = rdy; DNAND(printf("%s addr=%x r=%x\n", __func__, addr, r)); return r; } static void nand_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { struct nand_state_t *s = opaque; int rdy; DNAND(printf("%s addr=%x v=%x\n", __func__, addr, (unsigned)value)); nand_setpins(s->nand, s->cle, s->ale, s->ce, 1, 0); nand_setio(s->nand, value); nand_getpins(s->nand, &rdy); s->rdy = rdy; } static const MemoryRegionOps nand_ops = { .read = nand_read, .write = nand_write, .endianness = DEVICE_NATIVE_ENDIAN, }; struct tempsensor_t { unsigned int shiftreg; unsigned int count; enum { ST_OUT, ST_IN, ST_Z } state; uint16_t regs[3]; }; static void tempsensor_clkedge(struct tempsensor_t *s, unsigned int clk, unsigned int data_in) { D(printf("%s clk=%d state=%d sr=%x\n", __func__, clk, s->state, s->shiftreg)); if (s->count == 0) { s->count = 16; s->state = ST_OUT; } switch (s->state) { case ST_OUT: /* Output reg is clocked at negedge. */ if (!clk) { s->count--; s->shiftreg <<= 1; if (s->count == 0) { s->shiftreg = 0; s->state = ST_IN; s->count = 16; } } break; case ST_Z: if (clk) { s->count--; if (s->count == 0) { s->shiftreg = 0; s->state = ST_OUT; s->count = 16; } } break; case ST_IN: /* Indata is sampled at posedge. */ if (clk) { s->count--; s->shiftreg <<= 1; s->shiftreg |= data_in & 1; if (s->count == 0) { D(printf("%s cfgreg=%x\n", __func__, s->shiftreg)); s->regs[0] = s->shiftreg; s->state = ST_OUT; s->count = 16; if ((s->regs[0] & 0xff) == 0) { /* 25 degrees celsius. */ s->shiftreg = 0x0b9f; } else if ((s->regs[0] & 0xff) == 0xff) { /* Sensor ID, 0x8100 LM70. */ s->shiftreg = 0x8100; } else printf("Invalid tempsens state %x\n", s->regs[0]); } } break; } } #define RW_PA_DOUT 0x00 #define R_PA_DIN 0x01 #define RW_PA_OE 0x02 #define RW_PD_DOUT 0x10 #define R_PD_DIN 0x11 #define RW_PD_OE 0x12 static struct gpio_state_t { MemoryRegion iomem; struct nand_state_t *nand; struct tempsensor_t tempsensor; uint32_t regs[0x5c / 4]; } gpio_state; static uint64_t gpio_read(void *opaque, hwaddr addr, unsigned size) { struct gpio_state_t *s = opaque; uint32_t r = 0; addr >>= 2; switch (addr) { case R_PA_DIN: r = s->regs[RW_PA_DOUT] & s->regs[RW_PA_OE]; /* Encode pins from the nand. */ r |= s->nand->rdy << 7; break; case R_PD_DIN: r = s->regs[RW_PD_DOUT] & s->regs[RW_PD_OE]; /* Encode temp sensor pins. */ r |= (!!(s->tempsensor.shiftreg & 0x10000)) << 4; break; default: r = s->regs[addr]; break; } return r; D(printf("%s %x=%x\n", __func__, addr, r)); } static void gpio_write(void *opaque, hwaddr addr, uint64_t value, unsigned size) { struct gpio_state_t *s = opaque; D(printf("%s %x=%x\n", __func__, addr, (unsigned)value)); addr >>= 2; switch (addr) { case RW_PA_DOUT: /* Decode nand pins. */ s->nand->ale = !!(value & (1 << 6)); s->nand->cle = !!(value & (1 << 5)); s->nand->ce = !!(value & (1 << 4)); s->regs[addr] = value; break; case RW_PD_DOUT: /* Temp sensor clk. */ if ((s->regs[addr] ^ value) & 2) tempsensor_clkedge(&s->tempsensor, !!(value & 2), !!(value & 16)); s->regs[addr] = value; break; default: s->regs[addr] = value; break; } } static const MemoryRegionOps gpio_ops = { .read = gpio_read, .write = gpio_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, }; #define INTMEM_SIZE (128 * KiB) static struct cris_load_info li; static void axisdev88_init(MachineState *machine) { const char *kernel_filename = machine->kernel_filename; const char *kernel_cmdline = machine->kernel_cmdline; CRISCPU *cpu; DeviceState *dev; SysBusDevice *s; DriveInfo *nand; qemu_irq irq[30], nmi[2]; void *etraxfs_dmac; struct etraxfs_dma_client *dma_eth; int i; MemoryRegion *address_space_mem = get_system_memory(); MemoryRegion *phys_intmem = g_new(MemoryRegion, 1); /* init CPUs */ cpu = CRIS_CPU(cpu_create(machine->cpu_type)); memory_region_add_subregion(address_space_mem, 0x40000000, machine->ram); /* The ETRAX-FS has 128Kb on chip ram, the docs refer to it as the internal memory. */ memory_region_init_ram(phys_intmem, NULL, "axisdev88.chipram", INTMEM_SIZE, &error_fatal); memory_region_add_subregion(address_space_mem, 0x38000000, phys_intmem); /* Attach a NAND flash to CS1. */ nand = drive_get(IF_MTD, 0, 0); nand_state.nand = nand_init(nand ? blk_by_legacy_dinfo(nand) : NULL, NAND_MFR_STMICRO, 0x39); memory_region_init_io(&nand_state.iomem, NULL, &nand_ops, &nand_state, "nand", 0x05000000); memory_region_add_subregion(address_space_mem, 0x10000000, &nand_state.iomem); gpio_state.nand = &nand_state; memory_region_init_io(&gpio_state.iomem, NULL, &gpio_ops, &gpio_state, "gpio", 0x5c); memory_region_add_subregion(address_space_mem, 0x3001a000, &gpio_state.iomem); dev = qdev_new("etraxfs-pic"); s = SYS_BUS_DEVICE(dev); sysbus_realize_and_unref(s, &error_fatal); sysbus_mmio_map(s, 0, 0x3001c000); sysbus_connect_irq(s, 0, qdev_get_gpio_in(DEVICE(cpu), CRIS_CPU_IRQ)); sysbus_connect_irq(s, 1, qdev_get_gpio_in(DEVICE(cpu), CRIS_CPU_NMI)); for (i = 0; i < 30; i++) { irq[i] = qdev_get_gpio_in(dev, i); } nmi[0] = qdev_get_gpio_in(dev, 30); nmi[1] = qdev_get_gpio_in(dev, 31); etraxfs_dmac = etraxfs_dmac_init(0x30000000, 10); for (i = 0; i < 10; i++) { /* On ETRAX, odd numbered channels are inputs. */ etraxfs_dmac_connect(etraxfs_dmac, i, irq + 7 + i, i & 1); } /* Add the two ethernet blocks. */ dma_eth = g_malloc0(sizeof dma_eth[0] * 4); /* Allocate 4 channels. */ etraxfs_eth_init(&nd_table[0], 0x30034000, 1, &dma_eth[0], &dma_eth[1]); if (nb_nics > 1) { etraxfs_eth_init(&nd_table[1], 0x30036000, 2, &dma_eth[2], &dma_eth[3]); } /* The DMA Connector block is missing, hardwire things for now. */ etraxfs_dmac_connect_client(etraxfs_dmac, 0, &dma_eth[0]); etraxfs_dmac_connect_client(etraxfs_dmac, 1, &dma_eth[1]); if (nb_nics > 1) { etraxfs_dmac_connect_client(etraxfs_dmac, 6, &dma_eth[2]); etraxfs_dmac_connect_client(etraxfs_dmac, 7, &dma_eth[3]); } /* 2 timers. */ sysbus_create_varargs("etraxfs-timer", 0x3001e000, irq[0x1b], nmi[1], NULL); sysbus_create_varargs("etraxfs-timer", 0x3005e000, irq[0x1b], nmi[1], NULL); for (i = 0; i < 4; i++) { etraxfs_ser_create(0x30026000 + i * 0x2000, irq[0x14 + i], serial_hd(i)); } if (kernel_filename) { li.image_filename = kernel_filename; li.cmdline = kernel_cmdline; li.ram_size = machine->ram_size; cris_load_image(cpu, &li); } else if (!qtest_enabled()) { fprintf(stderr, "Kernel image must be specified\n"); exit(1); } } static void axisdev88_machine_init(MachineClass *mc) { mc->desc = "AXIS devboard 88"; mc->init = axisdev88_init; mc->is_default = true; mc->default_cpu_type = CRIS_CPU_TYPE_NAME("crisv32"); mc->default_ram_id = "axisdev88.ram"; } DEFINE_MACHINE("axis-dev88", axisdev88_machine_init)