/* * QEMU Machine * * Copyright (C) 2014 Red Hat Inc * * Authors: * Marcel Apfelbaum * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "qemu/option.h" #include "qemu/accel.h" #include "qapi/qmp/qerror.h" #include "sysemu/replay.h" #include "qemu/units.h" #include "hw/boards.h" #include "hw/loader.h" #include "qapi/error.h" #include "qapi/qapi-visit-common.h" #include "qapi/qapi-visit-machine.h" #include "qapi/visitor.h" #include "qom/object_interfaces.h" #include "hw/sysbus.h" #include "sysemu/cpus.h" #include "sysemu/sysemu.h" #include "sysemu/reset.h" #include "sysemu/runstate.h" #include "sysemu/numa.h" #include "sysemu/xen.h" #include "qemu/error-report.h" #include "sysemu/qtest.h" #include "hw/pci/pci.h" #include "hw/mem/nvdimm.h" #include "migration/global_state.h" #include "migration/vmstate.h" #include "exec/confidential-guest-support.h" #include "hw/virtio/virtio.h" #include "hw/virtio/virtio-pci.h" #include "qom/object_interfaces.h" GlobalProperty hw_compat_7_2[] = {}; const size_t hw_compat_7_2_len = G_N_ELEMENTS(hw_compat_7_2); GlobalProperty hw_compat_7_1[] = { { "virtio-device", "queue_reset", "false" }, { "virtio-rng-pci", "vectors", "0" }, }; const size_t hw_compat_7_1_len = G_N_ELEMENTS(hw_compat_7_1); GlobalProperty hw_compat_7_0[] = { { "arm-gicv3-common", "force-8-bit-prio", "on" }, { "nvme-ns", "eui64-default", "on"}, }; const size_t hw_compat_7_0_len = G_N_ELEMENTS(hw_compat_7_0); GlobalProperty hw_compat_6_2[] = { { "PIIX4_PM", "x-not-migrate-acpi-index", "on"}, }; const size_t hw_compat_6_2_len = G_N_ELEMENTS(hw_compat_6_2); GlobalProperty hw_compat_6_1[] = { { "vhost-user-vsock-device", "seqpacket", "off" }, { "nvme-ns", "shared", "off" }, }; const size_t hw_compat_6_1_len = G_N_ELEMENTS(hw_compat_6_1); GlobalProperty hw_compat_6_0[] = { { "gpex-pcihost", "allow-unmapped-accesses", "false" }, { "i8042", "extended-state", "false"}, { "nvme-ns", "eui64-default", "off"}, { "e1000", "init-vet", "off" }, { "e1000e", "init-vet", "off" }, { "vhost-vsock-device", "seqpacket", "off" }, }; const size_t hw_compat_6_0_len = G_N_ELEMENTS(hw_compat_6_0); GlobalProperty hw_compat_5_2[] = { { "ICH9-LPC", "smm-compat", "on"}, { "PIIX4_PM", "smm-compat", "on"}, { "virtio-blk-device", "report-discard-granularity", "off" }, { "virtio-net-pci-base", "vectors", "3"}, }; const size_t hw_compat_5_2_len = G_N_ELEMENTS(hw_compat_5_2); GlobalProperty hw_compat_5_1[] = { { "vhost-scsi", "num_queues", "1"}, { "vhost-user-blk", "num-queues", "1"}, { "vhost-user-scsi", "num_queues", "1"}, { "virtio-blk-device", "num-queues", "1"}, { "virtio-scsi-device", "num_queues", "1"}, { "nvme", "use-intel-id", "on"}, { "pvpanic", "events", "1"}, /* PVPANIC_PANICKED */ { "pl011", "migrate-clk", "off" }, { "virtio-pci", "x-ats-page-aligned", "off"}, }; const size_t hw_compat_5_1_len = G_N_ELEMENTS(hw_compat_5_1); GlobalProperty hw_compat_5_0[] = { { "pci-host-bridge", "x-config-reg-migration-enabled", "off" }, { "virtio-balloon-device", "page-poison", "false" }, { "vmport", "x-read-set-eax", "off" }, { "vmport", "x-signal-unsupported-cmd", "off" }, { "vmport", "x-report-vmx-type", "off" }, { "vmport", "x-cmds-v2", "off" }, { "virtio-device", "x-disable-legacy-check", "true" }, }; const size_t hw_compat_5_0_len = G_N_ELEMENTS(hw_compat_5_0); GlobalProperty hw_compat_4_2[] = { { "virtio-blk-device", "queue-size", "128"}, { "virtio-scsi-device", "virtqueue_size", "128"}, { "virtio-blk-device", "x-enable-wce-if-config-wce", "off" }, { "virtio-blk-device", "seg-max-adjust", "off"}, { "virtio-scsi-device", "seg_max_adjust", "off"}, { "vhost-blk-device", "seg_max_adjust", "off"}, { "usb-host", "suppress-remote-wake", "off" }, { "usb-redir", "suppress-remote-wake", "off" }, { "qxl", "revision", "4" }, { "qxl-vga", "revision", "4" }, { "fw_cfg", "acpi-mr-restore", "false" }, { "virtio-device", "use-disabled-flag", "false" }, }; const size_t hw_compat_4_2_len = G_N_ELEMENTS(hw_compat_4_2); GlobalProperty hw_compat_4_1[] = { { "virtio-pci", "x-pcie-flr-init", "off" }, }; const size_t hw_compat_4_1_len = G_N_ELEMENTS(hw_compat_4_1); GlobalProperty hw_compat_4_0[] = { { "VGA", "edid", "false" }, { "secondary-vga", "edid", "false" }, { "bochs-display", "edid", "false" }, { "virtio-vga", "edid", "false" }, { "virtio-gpu-device", "edid", "false" }, { "virtio-device", "use-started", "false" }, { "virtio-balloon-device", "qemu-4-0-config-size", "true" }, { "pl031", "migrate-tick-offset", "false" }, }; const size_t hw_compat_4_0_len = G_N_ELEMENTS(hw_compat_4_0); GlobalProperty hw_compat_3_1[] = { { "pcie-root-port", "x-speed", "2_5" }, { "pcie-root-port", "x-width", "1" }, { "memory-backend-file", "x-use-canonical-path-for-ramblock-id", "true" }, { "memory-backend-memfd", "x-use-canonical-path-for-ramblock-id", "true" }, { "tpm-crb", "ppi", "false" }, { "tpm-tis", "ppi", "false" }, { "usb-kbd", "serial", "42" }, { "usb-mouse", "serial", "42" }, { "usb-tablet", "serial", "42" }, { "virtio-blk-device", "discard", "false" }, { "virtio-blk-device", "write-zeroes", "false" }, { "virtio-balloon-device", "qemu-4-0-config-size", "false" }, { "pcie-root-port-base", "disable-acs", "true" }, /* Added in 4.1 */ }; const size_t hw_compat_3_1_len = G_N_ELEMENTS(hw_compat_3_1); GlobalProperty hw_compat_3_0[] = {}; const size_t hw_compat_3_0_len = G_N_ELEMENTS(hw_compat_3_0); GlobalProperty hw_compat_2_12[] = { { "migration", "decompress-error-check", "off" }, { "hda-audio", "use-timer", "false" }, { "cirrus-vga", "global-vmstate", "true" }, { "VGA", "global-vmstate", "true" }, { "vmware-svga", "global-vmstate", "true" }, { "qxl-vga", "global-vmstate", "true" }, }; const size_t hw_compat_2_12_len = G_N_ELEMENTS(hw_compat_2_12); GlobalProperty hw_compat_2_11[] = { { "hpet", "hpet-offset-saved", "false" }, { "virtio-blk-pci", "vectors", "2" }, { "vhost-user-blk-pci", "vectors", "2" }, { "e1000", "migrate_tso_props", "off" }, }; const size_t hw_compat_2_11_len = G_N_ELEMENTS(hw_compat_2_11); GlobalProperty hw_compat_2_10[] = { { "virtio-mouse-device", "wheel-axis", "false" }, { "virtio-tablet-device", "wheel-axis", "false" }, }; const size_t hw_compat_2_10_len = G_N_ELEMENTS(hw_compat_2_10); GlobalProperty hw_compat_2_9[] = { { "pci-bridge", "shpc", "off" }, { "intel-iommu", "pt", "off" }, { "virtio-net-device", "x-mtu-bypass-backend", "off" }, { "pcie-root-port", "x-migrate-msix", "false" }, }; const size_t hw_compat_2_9_len = G_N_ELEMENTS(hw_compat_2_9); GlobalProperty hw_compat_2_8[] = { { "fw_cfg_mem", "x-file-slots", "0x10" }, { "fw_cfg_io", "x-file-slots", "0x10" }, { "pflash_cfi01", "old-multiple-chip-handling", "on" }, { "pci-bridge", "shpc", "on" }, { TYPE_PCI_DEVICE, "x-pcie-extcap-init", "off" }, { "virtio-pci", "x-pcie-deverr-init", "off" }, { "virtio-pci", "x-pcie-lnkctl-init", "off" }, { "virtio-pci", "x-pcie-pm-init", "off" }, { "cirrus-vga", "vgamem_mb", "8" }, { "isa-cirrus-vga", "vgamem_mb", "8" }, }; const size_t hw_compat_2_8_len = G_N_ELEMENTS(hw_compat_2_8); GlobalProperty hw_compat_2_7[] = { { "virtio-pci", "page-per-vq", "on" }, { "virtio-serial-device", "emergency-write", "off" }, { "ioapic", "version", "0x11" }, { "intel-iommu", "x-buggy-eim", "true" }, { "virtio-pci", "x-ignore-backend-features", "on" }, }; const size_t hw_compat_2_7_len = G_N_ELEMENTS(hw_compat_2_7); GlobalProperty hw_compat_2_6[] = { { "virtio-mmio", "format_transport_address", "off" }, /* Optional because not all virtio-pci devices support legacy mode */ { "virtio-pci", "disable-modern", "on", .optional = true }, { "virtio-pci", "disable-legacy", "off", .optional = true }, }; const size_t hw_compat_2_6_len = G_N_ELEMENTS(hw_compat_2_6); GlobalProperty hw_compat_2_5[] = { { "isa-fdc", "fallback", "144" }, { "pvscsi", "x-old-pci-configuration", "on" }, { "pvscsi", "x-disable-pcie", "on" }, { "vmxnet3", "x-old-msi-offsets", "on" }, { "vmxnet3", "x-disable-pcie", "on" }, }; const size_t hw_compat_2_5_len = G_N_ELEMENTS(hw_compat_2_5); GlobalProperty hw_compat_2_4[] = { /* Optional because the 'scsi' property is Linux-only */ { "virtio-blk-device", "scsi", "true", .optional = true }, { "e1000", "extra_mac_registers", "off" }, { "virtio-pci", "x-disable-pcie", "on" }, { "virtio-pci", "migrate-extra", "off" }, { "fw_cfg_mem", "dma_enabled", "off" }, { "fw_cfg_io", "dma_enabled", "off" } }; const size_t hw_compat_2_4_len = G_N_ELEMENTS(hw_compat_2_4); GlobalProperty hw_compat_2_3[] = { { "virtio-blk-pci", "any_layout", "off" }, { "virtio-balloon-pci", "any_layout", "off" }, { "virtio-serial-pci", "any_layout", "off" }, { "virtio-9p-pci", "any_layout", "off" }, { "virtio-rng-pci", "any_layout", "off" }, { TYPE_PCI_DEVICE, "x-pcie-lnksta-dllla", "off" }, { "migration", "send-configuration", "off" }, { "migration", "send-section-footer", "off" }, { "migration", "store-global-state", "off" }, }; const size_t hw_compat_2_3_len = G_N_ELEMENTS(hw_compat_2_3); GlobalProperty hw_compat_2_2[] = {}; const size_t hw_compat_2_2_len = G_N_ELEMENTS(hw_compat_2_2); GlobalProperty hw_compat_2_1[] = { { "intel-hda", "old_msi_addr", "on" }, { "VGA", "qemu-extended-regs", "off" }, { "secondary-vga", "qemu-extended-regs", "off" }, { "virtio-scsi-pci", "any_layout", "off" }, { "usb-mouse", "usb_version", "1" }, { "usb-kbd", "usb_version", "1" }, { "virtio-pci", "virtio-pci-bus-master-bug-migration", "on" }, }; const size_t hw_compat_2_1_len = G_N_ELEMENTS(hw_compat_2_1); MachineState *current_machine; static char *machine_get_kernel(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return g_strdup(ms->kernel_filename); } static void machine_set_kernel(Object *obj, const char *value, Error **errp) { MachineState *ms = MACHINE(obj); g_free(ms->kernel_filename); ms->kernel_filename = g_strdup(value); } static char *machine_get_initrd(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return g_strdup(ms->initrd_filename); } static void machine_set_initrd(Object *obj, const char *value, Error **errp) { MachineState *ms = MACHINE(obj); g_free(ms->initrd_filename); ms->initrd_filename = g_strdup(value); } static char *machine_get_append(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return g_strdup(ms->kernel_cmdline); } static void machine_set_append(Object *obj, const char *value, Error **errp) { MachineState *ms = MACHINE(obj); g_free(ms->kernel_cmdline); ms->kernel_cmdline = g_strdup(value); } static char *machine_get_dtb(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return g_strdup(ms->dtb); } static void machine_set_dtb(Object *obj, const char *value, Error **errp) { MachineState *ms = MACHINE(obj); g_free(ms->dtb); ms->dtb = g_strdup(value); } static char *machine_get_dumpdtb(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return g_strdup(ms->dumpdtb); } static void machine_set_dumpdtb(Object *obj, const char *value, Error **errp) { MachineState *ms = MACHINE(obj); g_free(ms->dumpdtb); ms->dumpdtb = g_strdup(value); } static void machine_get_phandle_start(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { MachineState *ms = MACHINE(obj); int64_t value = ms->phandle_start; visit_type_int(v, name, &value, errp); } static void machine_set_phandle_start(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { MachineState *ms = MACHINE(obj); int64_t value; if (!visit_type_int(v, name, &value, errp)) { return; } ms->phandle_start = value; } static char *machine_get_dt_compatible(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return g_strdup(ms->dt_compatible); } static void machine_set_dt_compatible(Object *obj, const char *value, Error **errp) { MachineState *ms = MACHINE(obj); g_free(ms->dt_compatible); ms->dt_compatible = g_strdup(value); } static bool machine_get_dump_guest_core(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return ms->dump_guest_core; } static void machine_set_dump_guest_core(Object *obj, bool value, Error **errp) { MachineState *ms = MACHINE(obj); ms->dump_guest_core = value; } static bool machine_get_mem_merge(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return ms->mem_merge; } static void machine_set_mem_merge(Object *obj, bool value, Error **errp) { MachineState *ms = MACHINE(obj); ms->mem_merge = value; } static bool machine_get_usb(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return ms->usb; } static void machine_set_usb(Object *obj, bool value, Error **errp) { MachineState *ms = MACHINE(obj); ms->usb = value; ms->usb_disabled = !value; } static bool machine_get_graphics(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return ms->enable_graphics; } static void machine_set_graphics(Object *obj, bool value, Error **errp) { MachineState *ms = MACHINE(obj); ms->enable_graphics = value; } static char *machine_get_firmware(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return g_strdup(ms->firmware); } static void machine_set_firmware(Object *obj, const char *value, Error **errp) { MachineState *ms = MACHINE(obj); g_free(ms->firmware); ms->firmware = g_strdup(value); } static void machine_set_suppress_vmdesc(Object *obj, bool value, Error **errp) { MachineState *ms = MACHINE(obj); ms->suppress_vmdesc = value; } static bool machine_get_suppress_vmdesc(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return ms->suppress_vmdesc; } static char *machine_get_memory_encryption(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); if (ms->cgs) { return g_strdup(object_get_canonical_path_component(OBJECT(ms->cgs))); } return NULL; } static void machine_set_memory_encryption(Object *obj, const char *value, Error **errp) { Object *cgs = object_resolve_path_component(object_get_objects_root(), value); if (!cgs) { error_setg(errp, "No such memory encryption object '%s'", value); return; } object_property_set_link(obj, "confidential-guest-support", cgs, errp); } static void machine_check_confidential_guest_support(const Object *obj, const char *name, Object *new_target, Error **errp) { /* * So far the only constraint is that the target has the * TYPE_CONFIDENTIAL_GUEST_SUPPORT interface, and that's checked * by the QOM core */ } static bool machine_get_nvdimm(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return ms->nvdimms_state->is_enabled; } static void machine_set_nvdimm(Object *obj, bool value, Error **errp) { MachineState *ms = MACHINE(obj); ms->nvdimms_state->is_enabled = value; } static bool machine_get_hmat(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return ms->numa_state->hmat_enabled; } static void machine_set_hmat(Object *obj, bool value, Error **errp) { MachineState *ms = MACHINE(obj); ms->numa_state->hmat_enabled = value; } static void machine_get_mem(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { MachineState *ms = MACHINE(obj); MemorySizeConfiguration mem = { .has_size = true, .size = ms->ram_size, .has_max_size = !!ms->ram_slots, .max_size = ms->maxram_size, .has_slots = !!ms->ram_slots, .slots = ms->ram_slots, }; MemorySizeConfiguration *p_mem = &mem; visit_type_MemorySizeConfiguration(v, name, &p_mem, &error_abort); } static void machine_set_mem(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { ERRP_GUARD(); MachineState *ms = MACHINE(obj); MachineClass *mc = MACHINE_GET_CLASS(obj); MemorySizeConfiguration *mem; if (!visit_type_MemorySizeConfiguration(v, name, &mem, errp)) { return; } if (!mem->has_size) { mem->has_size = true; mem->size = mc->default_ram_size; } mem->size = QEMU_ALIGN_UP(mem->size, 8192); if (mc->fixup_ram_size) { mem->size = mc->fixup_ram_size(mem->size); } if ((ram_addr_t)mem->size != mem->size) { error_setg(errp, "ram size too large"); goto out_free; } if (mem->has_max_size) { if (mem->max_size < mem->size) { error_setg(errp, "invalid value of maxmem: " "maximum memory size (0x%" PRIx64 ") must be at least " "the initial memory size (0x%" PRIx64 ")", mem->max_size, mem->size); goto out_free; } if (mem->has_slots && mem->slots && mem->max_size == mem->size) { error_setg(errp, "invalid value of maxmem: " "memory slots were specified but maximum memory size " "(0x%" PRIx64 ") is equal to the initial memory size " "(0x%" PRIx64 ")", mem->max_size, mem->size); goto out_free; } ms->maxram_size = mem->max_size; } else { if (mem->has_slots) { error_setg(errp, "slots specified but no max-size"); goto out_free; } ms->maxram_size = mem->size; } ms->ram_size = mem->size; ms->ram_slots = mem->has_slots ? mem->slots : 0; out_free: qapi_free_MemorySizeConfiguration(mem); } static char *machine_get_nvdimm_persistence(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return g_strdup(ms->nvdimms_state->persistence_string); } static void machine_set_nvdimm_persistence(Object *obj, const char *value, Error **errp) { MachineState *ms = MACHINE(obj); NVDIMMState *nvdimms_state = ms->nvdimms_state; if (strcmp(value, "cpu") == 0) { nvdimms_state->persistence = 3; } else if (strcmp(value, "mem-ctrl") == 0) { nvdimms_state->persistence = 2; } else { error_setg(errp, "-machine nvdimm-persistence=%s: unsupported option", value); return; } g_free(nvdimms_state->persistence_string); nvdimms_state->persistence_string = g_strdup(value); } void machine_class_allow_dynamic_sysbus_dev(MachineClass *mc, const char *type) { QAPI_LIST_PREPEND(mc->allowed_dynamic_sysbus_devices, g_strdup(type)); } bool device_is_dynamic_sysbus(MachineClass *mc, DeviceState *dev) { Object *obj = OBJECT(dev); if (!object_dynamic_cast(obj, TYPE_SYS_BUS_DEVICE)) { return false; } return device_type_is_dynamic_sysbus(mc, object_get_typename(obj)); } bool device_type_is_dynamic_sysbus(MachineClass *mc, const char *type) { bool allowed = false; strList *wl; ObjectClass *klass = object_class_by_name(type); for (wl = mc->allowed_dynamic_sysbus_devices; !allowed && wl; wl = wl->next) { allowed |= !!object_class_dynamic_cast(klass, wl->value); } return allowed; } HotpluggableCPUList *machine_query_hotpluggable_cpus(MachineState *machine) { int i; HotpluggableCPUList *head = NULL; MachineClass *mc = MACHINE_GET_CLASS(machine); /* force board to initialize possible_cpus if it hasn't been done yet */ mc->possible_cpu_arch_ids(machine); for (i = 0; i < machine->possible_cpus->len; i++) { Object *cpu; HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1); cpu_item->type = g_strdup(machine->possible_cpus->cpus[i].type); cpu_item->vcpus_count = machine->possible_cpus->cpus[i].vcpus_count; cpu_item->props = g_memdup(&machine->possible_cpus->cpus[i].props, sizeof(*cpu_item->props)); cpu = machine->possible_cpus->cpus[i].cpu; if (cpu) { cpu_item->qom_path = object_get_canonical_path(cpu); } QAPI_LIST_PREPEND(head, cpu_item); } return head; } /** * machine_set_cpu_numa_node: * @machine: machine object to modify * @props: specifies which cpu objects to assign to * numa node specified by @props.node_id * @errp: if an error occurs, a pointer to an area to store the error * * Associate NUMA node specified by @props.node_id with cpu slots that * match socket/core/thread-ids specified by @props. It's recommended to use * query-hotpluggable-cpus.props values to specify affected cpu slots, * which would lead to exact 1:1 mapping of cpu slots to NUMA node. * * However for CLI convenience it's possible to pass in subset of properties, * which would affect all cpu slots that match it. * Ex for pc machine: * -smp 4,cores=2,sockets=2 -numa node,nodeid=0 -numa node,nodeid=1 \ * -numa cpu,node-id=0,socket_id=0 \ * -numa cpu,node-id=1,socket_id=1 * will assign all child cores of socket 0 to node 0 and * of socket 1 to node 1. * * On attempt of reassigning (already assigned) cpu slot to another NUMA node, * return error. * Empty subset is disallowed and function will return with error in this case. */ void machine_set_cpu_numa_node(MachineState *machine, const CpuInstanceProperties *props, Error **errp) { MachineClass *mc = MACHINE_GET_CLASS(machine); NodeInfo *numa_info = machine->numa_state->nodes; bool match = false; int i; if (!mc->possible_cpu_arch_ids) { error_setg(errp, "mapping of CPUs to NUMA node is not supported"); return; } /* disabling node mapping is not supported, forbid it */ assert(props->has_node_id); /* force board to initialize possible_cpus if it hasn't been done yet */ mc->possible_cpu_arch_ids(machine); for (i = 0; i < machine->possible_cpus->len; i++) { CPUArchId *slot = &machine->possible_cpus->cpus[i]; /* reject unsupported by board properties */ if (props->has_thread_id && !slot->props.has_thread_id) { error_setg(errp, "thread-id is not supported"); return; } if (props->has_core_id && !slot->props.has_core_id) { error_setg(errp, "core-id is not supported"); return; } if (props->has_cluster_id && !slot->props.has_cluster_id) { error_setg(errp, "cluster-id is not supported"); return; } if (props->has_socket_id && !slot->props.has_socket_id) { error_setg(errp, "socket-id is not supported"); return; } if (props->has_die_id && !slot->props.has_die_id) { error_setg(errp, "die-id is not supported"); return; } /* skip slots with explicit mismatch */ if (props->has_thread_id && props->thread_id != slot->props.thread_id) { continue; } if (props->has_core_id && props->core_id != slot->props.core_id) { continue; } if (props->has_cluster_id && props->cluster_id != slot->props.cluster_id) { continue; } if (props->has_die_id && props->die_id != slot->props.die_id) { continue; } if (props->has_socket_id && props->socket_id != slot->props.socket_id) { continue; } /* reject assignment if slot is already assigned, for compatibility * of legacy cpu_index mapping with SPAPR core based mapping do not * error out if cpu thread and matched core have the same node-id */ if (slot->props.has_node_id && slot->props.node_id != props->node_id) { error_setg(errp, "CPU is already assigned to node-id: %" PRId64, slot->props.node_id); return; } /* assign slot to node as it's matched '-numa cpu' key */ match = true; slot->props.node_id = props->node_id; slot->props.has_node_id = props->has_node_id; if (machine->numa_state->hmat_enabled) { if ((numa_info[props->node_id].initiator < MAX_NODES) && (props->node_id != numa_info[props->node_id].initiator)) { error_setg(errp, "The initiator of CPU NUMA node %" PRId64 " should be itself (got %" PRIu16 ")", props->node_id, numa_info[props->node_id].initiator); return; } numa_info[props->node_id].has_cpu = true; numa_info[props->node_id].initiator = props->node_id; } } if (!match) { error_setg(errp, "no match found"); } } static void machine_get_smp(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { MachineState *ms = MACHINE(obj); SMPConfiguration *config = &(SMPConfiguration){ .has_cpus = true, .cpus = ms->smp.cpus, .has_sockets = true, .sockets = ms->smp.sockets, .has_dies = true, .dies = ms->smp.dies, .has_clusters = true, .clusters = ms->smp.clusters, .has_cores = true, .cores = ms->smp.cores, .has_threads = true, .threads = ms->smp.threads, .has_maxcpus = true, .maxcpus = ms->smp.max_cpus, }; if (!visit_type_SMPConfiguration(v, name, &config, &error_abort)) { return; } } static void machine_set_smp(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { MachineState *ms = MACHINE(obj); g_autoptr(SMPConfiguration) config = NULL; if (!visit_type_SMPConfiguration(v, name, &config, errp)) { return; } machine_parse_smp_config(ms, config, errp); } static void machine_get_boot(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { MachineState *ms = MACHINE(obj); BootConfiguration *config = &ms->boot_config; visit_type_BootConfiguration(v, name, &config, &error_abort); } static void machine_free_boot_config(MachineState *ms) { g_free(ms->boot_config.order); g_free(ms->boot_config.once); g_free(ms->boot_config.splash); } static void machine_copy_boot_config(MachineState *ms, BootConfiguration *config) { MachineClass *machine_class = MACHINE_GET_CLASS(ms); machine_free_boot_config(ms); ms->boot_config = *config; if (!config->order) { ms->boot_config.order = g_strdup(machine_class->default_boot_order); } } static void machine_set_boot(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { ERRP_GUARD(); MachineState *ms = MACHINE(obj); BootConfiguration *config = NULL; if (!visit_type_BootConfiguration(v, name, &config, errp)) { return; } if (config->order) { validate_bootdevices(config->order, errp); if (*errp) { goto out_free; } } if (config->once) { validate_bootdevices(config->once, errp); if (*errp) { goto out_free; } } machine_copy_boot_config(ms, config); /* Strings live in ms->boot_config. */ free(config); return; out_free: qapi_free_BootConfiguration(config); } static void machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); /* Default 128 MB as guest ram size */ mc->default_ram_size = 128 * MiB; mc->rom_file_has_mr = true; /* numa node memory size aligned on 8MB by default. * On Linux, each node's border has to be 8MB aligned */ mc->numa_mem_align_shift = 23; object_class_property_add_str(oc, "kernel", machine_get_kernel, machine_set_kernel); object_class_property_set_description(oc, "kernel", "Linux kernel image file"); object_class_property_add_str(oc, "initrd", machine_get_initrd, machine_set_initrd); object_class_property_set_description(oc, "initrd", "Linux initial ramdisk file"); object_class_property_add_str(oc, "append", machine_get_append, machine_set_append); object_class_property_set_description(oc, "append", "Linux kernel command line"); object_class_property_add_str(oc, "dtb", machine_get_dtb, machine_set_dtb); object_class_property_set_description(oc, "dtb", "Linux kernel device tree file"); object_class_property_add_str(oc, "dumpdtb", machine_get_dumpdtb, machine_set_dumpdtb); object_class_property_set_description(oc, "dumpdtb", "Dump current dtb to a file and quit"); object_class_property_add(oc, "boot", "BootConfiguration", machine_get_boot, machine_set_boot, NULL, NULL); object_class_property_set_description(oc, "boot", "Boot configuration"); object_class_property_add(oc, "smp", "SMPConfiguration", machine_get_smp, machine_set_smp, NULL, NULL); object_class_property_set_description(oc, "smp", "CPU topology"); object_class_property_add(oc, "phandle-start", "int", machine_get_phandle_start, machine_set_phandle_start, NULL, NULL); object_class_property_set_description(oc, "phandle-start", "The first phandle ID we may generate dynamically"); object_class_property_add_str(oc, "dt-compatible", machine_get_dt_compatible, machine_set_dt_compatible); object_class_property_set_description(oc, "dt-compatible", "Overrides the \"compatible\" property of the dt root node"); object_class_property_add_bool(oc, "dump-guest-core", machine_get_dump_guest_core, machine_set_dump_guest_core); object_class_property_set_description(oc, "dump-guest-core", "Include guest memory in a core dump"); object_class_property_add_bool(oc, "mem-merge", machine_get_mem_merge, machine_set_mem_merge); object_class_property_set_description(oc, "mem-merge", "Enable/disable memory merge support"); object_class_property_add_bool(oc, "usb", machine_get_usb, machine_set_usb); object_class_property_set_description(oc, "usb", "Set on/off to enable/disable usb"); object_class_property_add_bool(oc, "graphics", machine_get_graphics, machine_set_graphics); object_class_property_set_description(oc, "graphics", "Set on/off to enable/disable graphics emulation"); object_class_property_add_str(oc, "firmware", machine_get_firmware, machine_set_firmware); object_class_property_set_description(oc, "firmware", "Firmware image"); object_class_property_add_bool(oc, "suppress-vmdesc", machine_get_suppress_vmdesc, machine_set_suppress_vmdesc); object_class_property_set_description(oc, "suppress-vmdesc", "Set on to disable self-describing migration"); object_class_property_add_link(oc, "confidential-guest-support", TYPE_CONFIDENTIAL_GUEST_SUPPORT, offsetof(MachineState, cgs), machine_check_confidential_guest_support, OBJ_PROP_LINK_STRONG); object_class_property_set_description(oc, "confidential-guest-support", "Set confidential guest scheme to support"); /* For compatibility */ object_class_property_add_str(oc, "memory-encryption", machine_get_memory_encryption, machine_set_memory_encryption); object_class_property_set_description(oc, "memory-encryption", "Set memory encryption object to use"); object_class_property_add_link(oc, "memory-backend", TYPE_MEMORY_BACKEND, offsetof(MachineState, memdev), object_property_allow_set_link, OBJ_PROP_LINK_STRONG); object_class_property_set_description(oc, "memory-backend", "Set RAM backend" "Valid value is ID of hostmem based backend"); object_class_property_add(oc, "memory", "MemorySizeConfiguration", machine_get_mem, machine_set_mem, NULL, NULL); object_class_property_set_description(oc, "memory", "Memory size configuration"); } static void machine_class_base_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->max_cpus = mc->max_cpus ?: 1; mc->min_cpus = mc->min_cpus ?: 1; mc->default_cpus = mc->default_cpus ?: 1; if (!object_class_is_abstract(oc)) { const char *cname = object_class_get_name(oc); assert(g_str_has_suffix(cname, TYPE_MACHINE_SUFFIX)); mc->name = g_strndup(cname, strlen(cname) - strlen(TYPE_MACHINE_SUFFIX)); mc->compat_props = g_ptr_array_new(); } } static void machine_initfn(Object *obj) { MachineState *ms = MACHINE(obj); MachineClass *mc = MACHINE_GET_CLASS(obj); container_get(obj, "/peripheral"); container_get(obj, "/peripheral-anon"); ms->dump_guest_core = true; ms->mem_merge = true; ms->enable_graphics = true; ms->kernel_cmdline = g_strdup(""); ms->ram_size = mc->default_ram_size; ms->maxram_size = mc->default_ram_size; if (mc->nvdimm_supported) { Object *obj = OBJECT(ms); ms->nvdimms_state = g_new0(NVDIMMState, 1); object_property_add_bool(obj, "nvdimm", machine_get_nvdimm, machine_set_nvdimm); object_property_set_description(obj, "nvdimm", "Set on/off to enable/disable " "NVDIMM instantiation"); object_property_add_str(obj, "nvdimm-persistence", machine_get_nvdimm_persistence, machine_set_nvdimm_persistence); object_property_set_description(obj, "nvdimm-persistence", "Set NVDIMM persistence" "Valid values are cpu, mem-ctrl"); } if (mc->cpu_index_to_instance_props && mc->get_default_cpu_node_id) { ms->numa_state = g_new0(NumaState, 1); object_property_add_bool(obj, "hmat", machine_get_hmat, machine_set_hmat); object_property_set_description(obj, "hmat", "Set on/off to enable/disable " "ACPI Heterogeneous Memory Attribute " "Table (HMAT)"); } /* default to mc->default_cpus */ ms->smp.cpus = mc->default_cpus; ms->smp.max_cpus = mc->default_cpus; ms->smp.sockets = 1; ms->smp.dies = 1; ms->smp.clusters = 1; ms->smp.cores = 1; ms->smp.threads = 1; machine_copy_boot_config(ms, &(BootConfiguration){ 0 }); } static void machine_finalize(Object *obj) { MachineState *ms = MACHINE(obj); machine_free_boot_config(ms); g_free(ms->kernel_filename); g_free(ms->initrd_filename); g_free(ms->kernel_cmdline); g_free(ms->dtb); g_free(ms->dumpdtb); g_free(ms->dt_compatible); g_free(ms->firmware); g_free(ms->device_memory); g_free(ms->nvdimms_state); g_free(ms->numa_state); } bool machine_usb(MachineState *machine) { return machine->usb; } int machine_phandle_start(MachineState *machine) { return machine->phandle_start; } bool machine_dump_guest_core(MachineState *machine) { return machine->dump_guest_core; } bool machine_mem_merge(MachineState *machine) { return machine->mem_merge; } static char *cpu_slot_to_string(const CPUArchId *cpu) { GString *s = g_string_new(NULL); if (cpu->props.has_socket_id) { g_string_append_printf(s, "socket-id: %"PRId64, cpu->props.socket_id); } if (cpu->props.has_die_id) { if (s->len) { g_string_append_printf(s, ", "); } g_string_append_printf(s, "die-id: %"PRId64, cpu->props.die_id); } if (cpu->props.has_cluster_id) { if (s->len) { g_string_append_printf(s, ", "); } g_string_append_printf(s, "cluster-id: %"PRId64, cpu->props.cluster_id); } if (cpu->props.has_core_id) { if (s->len) { g_string_append_printf(s, ", "); } g_string_append_printf(s, "core-id: %"PRId64, cpu->props.core_id); } if (cpu->props.has_thread_id) { if (s->len) { g_string_append_printf(s, ", "); } g_string_append_printf(s, "thread-id: %"PRId64, cpu->props.thread_id); } return g_string_free(s, false); } static void numa_validate_initiator(NumaState *numa_state) { int i; NodeInfo *numa_info = numa_state->nodes; for (i = 0; i < numa_state->num_nodes; i++) { if (numa_info[i].initiator == MAX_NODES) { continue; } if (!numa_info[numa_info[i].initiator].present) { error_report("NUMA node %" PRIu16 " is missing, use " "'-numa node' option to declare it first", numa_info[i].initiator); exit(1); } if (!numa_info[numa_info[i].initiator].has_cpu) { error_report("The initiator of NUMA node %d is invalid", i); exit(1); } } } static void machine_numa_finish_cpu_init(MachineState *machine) { int i; bool default_mapping; GString *s = g_string_new(NULL); MachineClass *mc = MACHINE_GET_CLASS(machine); const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(machine); assert(machine->numa_state->num_nodes); for (i = 0; i < possible_cpus->len; i++) { if (possible_cpus->cpus[i].props.has_node_id) { break; } } default_mapping = (i == possible_cpus->len); for (i = 0; i < possible_cpus->len; i++) { const CPUArchId *cpu_slot = &possible_cpus->cpus[i]; if (!cpu_slot->props.has_node_id) { /* fetch default mapping from board and enable it */ CpuInstanceProperties props = cpu_slot->props; props.node_id = mc->get_default_cpu_node_id(machine, i); if (!default_mapping) { /* record slots with not set mapping, * TODO: make it hard error in future */ char *cpu_str = cpu_slot_to_string(cpu_slot); g_string_append_printf(s, "%sCPU %d [%s]", s->len ? ", " : "", i, cpu_str); g_free(cpu_str); /* non mapped cpus used to fallback to node 0 */ props.node_id = 0; } props.has_node_id = true; machine_set_cpu_numa_node(machine, &props, &error_fatal); } } if (machine->numa_state->hmat_enabled) { numa_validate_initiator(machine->numa_state); } if (s->len && !qtest_enabled()) { warn_report("CPU(s) not present in any NUMA nodes: %s", s->str); warn_report("All CPU(s) up to maxcpus should be described " "in NUMA config, ability to start up with partial NUMA " "mappings is obsoleted and will be removed in future"); } g_string_free(s, true); } MemoryRegion *machine_consume_memdev(MachineState *machine, HostMemoryBackend *backend) { MemoryRegion *ret = host_memory_backend_get_memory(backend); if (host_memory_backend_is_mapped(backend)) { error_report("memory backend %s can't be used multiple times.", object_get_canonical_path_component(OBJECT(backend))); exit(EXIT_FAILURE); } host_memory_backend_set_mapped(backend, true); vmstate_register_ram_global(ret); return ret; } static bool create_default_memdev(MachineState *ms, const char *path, Error **errp) { Object *obj; MachineClass *mc = MACHINE_GET_CLASS(ms); bool r = false; obj = object_new(path ? TYPE_MEMORY_BACKEND_FILE : TYPE_MEMORY_BACKEND_RAM); if (path) { if (!object_property_set_str(obj, "mem-path", path, errp)) { goto out; } } if (!object_property_set_int(obj, "size", ms->ram_size, errp)) { goto out; } object_property_add_child(object_get_objects_root(), mc->default_ram_id, obj); /* Ensure backend's memory region name is equal to mc->default_ram_id */ if (!object_property_set_bool(obj, "x-use-canonical-path-for-ramblock-id", false, errp)) { goto out; } if (!user_creatable_complete(USER_CREATABLE(obj), errp)) { goto out; } r = object_property_set_link(OBJECT(ms), "memory-backend", obj, errp); out: object_unref(obj); return r; } void machine_run_board_init(MachineState *machine, const char *mem_path, Error **errp) { MachineClass *machine_class = MACHINE_GET_CLASS(machine); ObjectClass *oc = object_class_by_name(machine->cpu_type); CPUClass *cc; /* This checkpoint is required by replay to separate prior clock reading from the other reads, because timer polling functions query clock values from the log. */ replay_checkpoint(CHECKPOINT_INIT); if (!xen_enabled()) { /* On 32-bit hosts, QEMU is limited by virtual address space */ if (machine->ram_size > (2047 << 20) && HOST_LONG_BITS == 32) { error_setg(errp, "at most 2047 MB RAM can be simulated"); return; } } if (machine->memdev) { ram_addr_t backend_size = object_property_get_uint(OBJECT(machine->memdev), "size", &error_abort); if (backend_size != machine->ram_size) { error_setg(errp, "Machine memory size does not match the size of the memory backend"); return; } } else if (machine_class->default_ram_id && machine->ram_size && numa_uses_legacy_mem()) { if (!create_default_memdev(current_machine, mem_path, errp)) { return; } } if (machine->numa_state) { numa_complete_configuration(machine); if (machine->numa_state->num_nodes) { machine_numa_finish_cpu_init(machine); } } if (!machine->ram && machine->memdev) { machine->ram = machine_consume_memdev(machine, machine->memdev); } /* If the machine supports the valid_cpu_types check and the user * specified a CPU with -cpu check here that the user CPU is supported. */ if (machine_class->valid_cpu_types && machine->cpu_type) { int i; for (i = 0; machine_class->valid_cpu_types[i]; i++) { if (object_class_dynamic_cast(oc, machine_class->valid_cpu_types[i])) { /* The user specificed CPU is in the valid field, we are * good to go. */ break; } } if (!machine_class->valid_cpu_types[i]) { /* The user specified CPU is not valid */ error_report("Invalid CPU type: %s", machine->cpu_type); error_printf("The valid types are: %s", machine_class->valid_cpu_types[0]); for (i = 1; machine_class->valid_cpu_types[i]; i++) { error_printf(", %s", machine_class->valid_cpu_types[i]); } error_printf("\n"); exit(1); } } /* Check if CPU type is deprecated and warn if so */ cc = CPU_CLASS(oc); if (cc && cc->deprecation_note) { warn_report("CPU model %s is deprecated -- %s", machine->cpu_type, cc->deprecation_note); } if (machine->cgs) { /* * With confidential guests, the host can't see the real * contents of RAM, so there's no point in it trying to merge * areas. */ machine_set_mem_merge(OBJECT(machine), false, &error_abort); /* * Virtio devices can't count on directly accessing guest * memory, so they need iommu_platform=on to use normal DMA * mechanisms. That requires also disabling legacy virtio * support for those virtio pci devices which allow it. */ object_register_sugar_prop(TYPE_VIRTIO_PCI, "disable-legacy", "on", true); object_register_sugar_prop(TYPE_VIRTIO_DEVICE, "iommu_platform", "on", false); } accel_init_interfaces(ACCEL_GET_CLASS(machine->accelerator)); machine_class->init(machine); phase_advance(PHASE_MACHINE_INITIALIZED); } static NotifierList machine_init_done_notifiers = NOTIFIER_LIST_INITIALIZER(machine_init_done_notifiers); void qemu_add_machine_init_done_notifier(Notifier *notify) { notifier_list_add(&machine_init_done_notifiers, notify); if (phase_check(PHASE_MACHINE_READY)) { notify->notify(notify, NULL); } } void qemu_remove_machine_init_done_notifier(Notifier *notify) { notifier_remove(notify); } void qdev_machine_creation_done(void) { cpu_synchronize_all_post_init(); if (current_machine->boot_config.once) { qemu_boot_set(current_machine->boot_config.once, &error_fatal); qemu_register_reset(restore_boot_order, g_strdup(current_machine->boot_config.order)); } /* * ok, initial machine setup is done, starting from now we can * only create hotpluggable devices */ phase_advance(PHASE_MACHINE_READY); qdev_assert_realized_properly(); /* TODO: once all bus devices are qdevified, this should be done * when bus is created by qdev.c */ /* * TODO: If we had a main 'reset container' that the whole system * lived in, we could reset that using the multi-phase reset * APIs. For the moment, we just reset the sysbus, which will cause * all devices hanging off it (and all their child buses, recursively) * to be reset. Note that this will *not* reset any Device objects * which are not attached to some part of the qbus tree! */ qemu_register_reset(resettable_cold_reset_fn, sysbus_get_default()); notifier_list_notify(&machine_init_done_notifiers, NULL); if (rom_check_and_register_reset() != 0) { exit(1); } replay_start(); /* This checkpoint is required by replay to separate prior clock reading from the other reads, because timer polling functions query clock values from the log. */ replay_checkpoint(CHECKPOINT_RESET); qemu_system_reset(SHUTDOWN_CAUSE_NONE); register_global_state(); } static const TypeInfo machine_info = { .name = TYPE_MACHINE, .parent = TYPE_OBJECT, .abstract = true, .class_size = sizeof(MachineClass), .class_init = machine_class_init, .class_base_init = machine_class_base_init, .instance_size = sizeof(MachineState), .instance_init = machine_initfn, .instance_finalize = machine_finalize, }; static void machine_register_types(void) { type_register_static(&machine_info); } type_init(machine_register_types)