/* * QEMU Machine * * Copyright (C) 2014 Red Hat Inc * * Authors: * Marcel Apfelbaum * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "qemu/units.h" #include "hw/boards.h" #include "qapi/error.h" #include "qapi/qapi-visit-common.h" #include "qapi/visitor.h" #include "hw/sysbus.h" #include "sysemu/sysemu.h" #include "sysemu/numa.h" #include "qemu/error-report.h" #include "sysemu/qtest.h" static char *machine_get_accel(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return g_strdup(ms->accel); } static void machine_set_accel(Object *obj, const char *value, Error **errp) { MachineState *ms = MACHINE(obj); g_free(ms->accel); ms->accel = g_strdup(value); } static void machine_set_kernel_irqchip(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { Error *err = NULL; MachineState *ms = MACHINE(obj); OnOffSplit mode; visit_type_OnOffSplit(v, name, &mode, &err); if (err) { error_propagate(errp, err); return; } else { switch (mode) { case ON_OFF_SPLIT_ON: ms->kernel_irqchip_allowed = true; ms->kernel_irqchip_required = true; ms->kernel_irqchip_split = false; break; case ON_OFF_SPLIT_OFF: ms->kernel_irqchip_allowed = false; ms->kernel_irqchip_required = false; ms->kernel_irqchip_split = false; break; case ON_OFF_SPLIT_SPLIT: ms->kernel_irqchip_allowed = true; ms->kernel_irqchip_required = true; ms->kernel_irqchip_split = true; break; default: /* The value was checked in visit_type_OnOffSplit() above. If * we get here, then something is wrong in QEMU. */ abort(); } } } static void machine_get_kvm_shadow_mem(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { MachineState *ms = MACHINE(obj); int64_t value = ms->kvm_shadow_mem; visit_type_int(v, name, &value, errp); } static void machine_set_kvm_shadow_mem(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { MachineState *ms = MACHINE(obj); Error *error = NULL; int64_t value; visit_type_int(v, name, &value, &error); if (error) { error_propagate(errp, error); return; } ms->kvm_shadow_mem = value; } static char *machine_get_kernel(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return g_strdup(ms->kernel_filename); } static void machine_set_kernel(Object *obj, const char *value, Error **errp) { MachineState *ms = MACHINE(obj); g_free(ms->kernel_filename); ms->kernel_filename = g_strdup(value); } static char *machine_get_initrd(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return g_strdup(ms->initrd_filename); } static void machine_set_initrd(Object *obj, const char *value, Error **errp) { MachineState *ms = MACHINE(obj); g_free(ms->initrd_filename); ms->initrd_filename = g_strdup(value); } static char *machine_get_append(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return g_strdup(ms->kernel_cmdline); } static void machine_set_append(Object *obj, const char *value, Error **errp) { MachineState *ms = MACHINE(obj); g_free(ms->kernel_cmdline); ms->kernel_cmdline = g_strdup(value); } static char *machine_get_dtb(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return g_strdup(ms->dtb); } static void machine_set_dtb(Object *obj, const char *value, Error **errp) { MachineState *ms = MACHINE(obj); g_free(ms->dtb); ms->dtb = g_strdup(value); } static char *machine_get_dumpdtb(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return g_strdup(ms->dumpdtb); } static void machine_set_dumpdtb(Object *obj, const char *value, Error **errp) { MachineState *ms = MACHINE(obj); g_free(ms->dumpdtb); ms->dumpdtb = g_strdup(value); } static void machine_get_phandle_start(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { MachineState *ms = MACHINE(obj); int64_t value = ms->phandle_start; visit_type_int(v, name, &value, errp); } static void machine_set_phandle_start(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { MachineState *ms = MACHINE(obj); Error *error = NULL; int64_t value; visit_type_int(v, name, &value, &error); if (error) { error_propagate(errp, error); return; } ms->phandle_start = value; } static char *machine_get_dt_compatible(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return g_strdup(ms->dt_compatible); } static void machine_set_dt_compatible(Object *obj, const char *value, Error **errp) { MachineState *ms = MACHINE(obj); g_free(ms->dt_compatible); ms->dt_compatible = g_strdup(value); } static bool machine_get_dump_guest_core(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return ms->dump_guest_core; } static void machine_set_dump_guest_core(Object *obj, bool value, Error **errp) { MachineState *ms = MACHINE(obj); ms->dump_guest_core = value; } static bool machine_get_mem_merge(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return ms->mem_merge; } static void machine_set_mem_merge(Object *obj, bool value, Error **errp) { MachineState *ms = MACHINE(obj); ms->mem_merge = value; } static bool machine_get_usb(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return ms->usb; } static void machine_set_usb(Object *obj, bool value, Error **errp) { MachineState *ms = MACHINE(obj); ms->usb = value; ms->usb_disabled = !value; } static bool machine_get_graphics(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return ms->enable_graphics; } static void machine_set_graphics(Object *obj, bool value, Error **errp) { MachineState *ms = MACHINE(obj); ms->enable_graphics = value; } static bool machine_get_igd_gfx_passthru(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return ms->igd_gfx_passthru; } static void machine_set_igd_gfx_passthru(Object *obj, bool value, Error **errp) { MachineState *ms = MACHINE(obj); ms->igd_gfx_passthru = value; } static char *machine_get_firmware(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return g_strdup(ms->firmware); } static void machine_set_firmware(Object *obj, const char *value, Error **errp) { MachineState *ms = MACHINE(obj); g_free(ms->firmware); ms->firmware = g_strdup(value); } static void machine_set_suppress_vmdesc(Object *obj, bool value, Error **errp) { MachineState *ms = MACHINE(obj); ms->suppress_vmdesc = value; } static bool machine_get_suppress_vmdesc(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return ms->suppress_vmdesc; } static void machine_set_enforce_config_section(Object *obj, bool value, Error **errp) { MachineState *ms = MACHINE(obj); warn_report("enforce-config-section is deprecated, please use " "-global migration.send-configuration=on|off instead"); ms->enforce_config_section = value; } static bool machine_get_enforce_config_section(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return ms->enforce_config_section; } static char *machine_get_memory_encryption(Object *obj, Error **errp) { MachineState *ms = MACHINE(obj); return g_strdup(ms->memory_encryption); } static void machine_set_memory_encryption(Object *obj, const char *value, Error **errp) { MachineState *ms = MACHINE(obj); g_free(ms->memory_encryption); ms->memory_encryption = g_strdup(value); } void machine_class_allow_dynamic_sysbus_dev(MachineClass *mc, const char *type) { strList *item = g_new0(strList, 1); item->value = g_strdup(type); item->next = mc->allowed_dynamic_sysbus_devices; mc->allowed_dynamic_sysbus_devices = item; } static void validate_sysbus_device(SysBusDevice *sbdev, void *opaque) { MachineState *machine = opaque; MachineClass *mc = MACHINE_GET_CLASS(machine); bool allowed = false; strList *wl; for (wl = mc->allowed_dynamic_sysbus_devices; !allowed && wl; wl = wl->next) { allowed |= !!object_dynamic_cast(OBJECT(sbdev), wl->value); } if (!allowed) { error_report("Option '-device %s' cannot be handled by this machine", object_class_get_name(object_get_class(OBJECT(sbdev)))); exit(1); } } static void machine_init_notify(Notifier *notifier, void *data) { MachineState *machine = MACHINE(qdev_get_machine()); /* * Loop through all dynamically created sysbus devices and check if they are * all allowed. If a device is not allowed, error out. */ foreach_dynamic_sysbus_device(validate_sysbus_device, machine); } HotpluggableCPUList *machine_query_hotpluggable_cpus(MachineState *machine) { int i; HotpluggableCPUList *head = NULL; MachineClass *mc = MACHINE_GET_CLASS(machine); /* force board to initialize possible_cpus if it hasn't been done yet */ mc->possible_cpu_arch_ids(machine); for (i = 0; i < machine->possible_cpus->len; i++) { Object *cpu; HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1); HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1); cpu_item->type = g_strdup(machine->possible_cpus->cpus[i].type); cpu_item->vcpus_count = machine->possible_cpus->cpus[i].vcpus_count; cpu_item->props = g_memdup(&machine->possible_cpus->cpus[i].props, sizeof(*cpu_item->props)); cpu = machine->possible_cpus->cpus[i].cpu; if (cpu) { cpu_item->has_qom_path = true; cpu_item->qom_path = object_get_canonical_path(cpu); } list_item->value = cpu_item; list_item->next = head; head = list_item; } return head; } /** * machine_set_cpu_numa_node: * @machine: machine object to modify * @props: specifies which cpu objects to assign to * numa node specified by @props.node_id * @errp: if an error occurs, a pointer to an area to store the error * * Associate NUMA node specified by @props.node_id with cpu slots that * match socket/core/thread-ids specified by @props. It's recommended to use * query-hotpluggable-cpus.props values to specify affected cpu slots, * which would lead to exact 1:1 mapping of cpu slots to NUMA node. * * However for CLI convenience it's possible to pass in subset of properties, * which would affect all cpu slots that match it. * Ex for pc machine: * -smp 4,cores=2,sockets=2 -numa node,nodeid=0 -numa node,nodeid=1 \ * -numa cpu,node-id=0,socket_id=0 \ * -numa cpu,node-id=1,socket_id=1 * will assign all child cores of socket 0 to node 0 and * of socket 1 to node 1. * * On attempt of reassigning (already assigned) cpu slot to another NUMA node, * return error. * Empty subset is disallowed and function will return with error in this case. */ void machine_set_cpu_numa_node(MachineState *machine, const CpuInstanceProperties *props, Error **errp) { MachineClass *mc = MACHINE_GET_CLASS(machine); bool match = false; int i; if (!mc->possible_cpu_arch_ids) { error_setg(errp, "mapping of CPUs to NUMA node is not supported"); return; } /* disabling node mapping is not supported, forbid it */ assert(props->has_node_id); /* force board to initialize possible_cpus if it hasn't been done yet */ mc->possible_cpu_arch_ids(machine); for (i = 0; i < machine->possible_cpus->len; i++) { CPUArchId *slot = &machine->possible_cpus->cpus[i]; /* reject unsupported by board properties */ if (props->has_thread_id && !slot->props.has_thread_id) { error_setg(errp, "thread-id is not supported"); return; } if (props->has_core_id && !slot->props.has_core_id) { error_setg(errp, "core-id is not supported"); return; } if (props->has_socket_id && !slot->props.has_socket_id) { error_setg(errp, "socket-id is not supported"); return; } /* skip slots with explicit mismatch */ if (props->has_thread_id && props->thread_id != slot->props.thread_id) { continue; } if (props->has_core_id && props->core_id != slot->props.core_id) { continue; } if (props->has_socket_id && props->socket_id != slot->props.socket_id) { continue; } /* reject assignment if slot is already assigned, for compatibility * of legacy cpu_index mapping with SPAPR core based mapping do not * error out if cpu thread and matched core have the same node-id */ if (slot->props.has_node_id && slot->props.node_id != props->node_id) { error_setg(errp, "CPU is already assigned to node-id: %" PRId64, slot->props.node_id); return; } /* assign slot to node as it's matched '-numa cpu' key */ match = true; slot->props.node_id = props->node_id; slot->props.has_node_id = props->has_node_id; } if (!match) { error_setg(errp, "no match found"); } } static void machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); /* Default 128 MB as guest ram size */ mc->default_ram_size = 128 * MiB; mc->rom_file_has_mr = true; /* numa node memory size aligned on 8MB by default. * On Linux, each node's border has to be 8MB aligned */ mc->numa_mem_align_shift = 23; mc->numa_auto_assign_ram = numa_default_auto_assign_ram; object_class_property_add_str(oc, "accel", machine_get_accel, machine_set_accel, &error_abort); object_class_property_set_description(oc, "accel", "Accelerator list", &error_abort); object_class_property_add(oc, "kernel-irqchip", "on|off|split", NULL, machine_set_kernel_irqchip, NULL, NULL, &error_abort); object_class_property_set_description(oc, "kernel-irqchip", "Configure KVM in-kernel irqchip", &error_abort); object_class_property_add(oc, "kvm-shadow-mem", "int", machine_get_kvm_shadow_mem, machine_set_kvm_shadow_mem, NULL, NULL, &error_abort); object_class_property_set_description(oc, "kvm-shadow-mem", "KVM shadow MMU size", &error_abort); object_class_property_add_str(oc, "kernel", machine_get_kernel, machine_set_kernel, &error_abort); object_class_property_set_description(oc, "kernel", "Linux kernel image file", &error_abort); object_class_property_add_str(oc, "initrd", machine_get_initrd, machine_set_initrd, &error_abort); object_class_property_set_description(oc, "initrd", "Linux initial ramdisk file", &error_abort); object_class_property_add_str(oc, "append", machine_get_append, machine_set_append, &error_abort); object_class_property_set_description(oc, "append", "Linux kernel command line", &error_abort); object_class_property_add_str(oc, "dtb", machine_get_dtb, machine_set_dtb, &error_abort); object_class_property_set_description(oc, "dtb", "Linux kernel device tree file", &error_abort); object_class_property_add_str(oc, "dumpdtb", machine_get_dumpdtb, machine_set_dumpdtb, &error_abort); object_class_property_set_description(oc, "dumpdtb", "Dump current dtb to a file and quit", &error_abort); object_class_property_add(oc, "phandle-start", "int", machine_get_phandle_start, machine_set_phandle_start, NULL, NULL, &error_abort); object_class_property_set_description(oc, "phandle-start", "The first phandle ID we may generate dynamically", &error_abort); object_class_property_add_str(oc, "dt-compatible", machine_get_dt_compatible, machine_set_dt_compatible, &error_abort); object_class_property_set_description(oc, "dt-compatible", "Overrides the \"compatible\" property of the dt root node", &error_abort); object_class_property_add_bool(oc, "dump-guest-core", machine_get_dump_guest_core, machine_set_dump_guest_core, &error_abort); object_class_property_set_description(oc, "dump-guest-core", "Include guest memory in a core dump", &error_abort); object_class_property_add_bool(oc, "mem-merge", machine_get_mem_merge, machine_set_mem_merge, &error_abort); object_class_property_set_description(oc, "mem-merge", "Enable/disable memory merge support", &error_abort); object_class_property_add_bool(oc, "usb", machine_get_usb, machine_set_usb, &error_abort); object_class_property_set_description(oc, "usb", "Set on/off to enable/disable usb", &error_abort); object_class_property_add_bool(oc, "graphics", machine_get_graphics, machine_set_graphics, &error_abort); object_class_property_set_description(oc, "graphics", "Set on/off to enable/disable graphics emulation", &error_abort); object_class_property_add_bool(oc, "igd-passthru", machine_get_igd_gfx_passthru, machine_set_igd_gfx_passthru, &error_abort); object_class_property_set_description(oc, "igd-passthru", "Set on/off to enable/disable igd passthrou", &error_abort); object_class_property_add_str(oc, "firmware", machine_get_firmware, machine_set_firmware, &error_abort); object_class_property_set_description(oc, "firmware", "Firmware image", &error_abort); object_class_property_add_bool(oc, "suppress-vmdesc", machine_get_suppress_vmdesc, machine_set_suppress_vmdesc, &error_abort); object_class_property_set_description(oc, "suppress-vmdesc", "Set on to disable self-describing migration", &error_abort); object_class_property_add_bool(oc, "enforce-config-section", machine_get_enforce_config_section, machine_set_enforce_config_section, &error_abort); object_class_property_set_description(oc, "enforce-config-section", "Set on to enforce configuration section migration", &error_abort); object_class_property_add_str(oc, "memory-encryption", machine_get_memory_encryption, machine_set_memory_encryption, &error_abort); object_class_property_set_description(oc, "memory-encryption", "Set memory encryption object to use", &error_abort); } static void machine_class_base_init(ObjectClass *oc, void *data) { if (!object_class_is_abstract(oc)) { MachineClass *mc = MACHINE_CLASS(oc); const char *cname = object_class_get_name(oc); assert(g_str_has_suffix(cname, TYPE_MACHINE_SUFFIX)); mc->name = g_strndup(cname, strlen(cname) - strlen(TYPE_MACHINE_SUFFIX)); } } static void machine_initfn(Object *obj) { MachineState *ms = MACHINE(obj); ms->kernel_irqchip_allowed = true; ms->kvm_shadow_mem = -1; ms->dump_guest_core = true; ms->mem_merge = true; ms->enable_graphics = true; /* Register notifier when init is done for sysbus sanity checks */ ms->sysbus_notifier.notify = machine_init_notify; qemu_add_machine_init_done_notifier(&ms->sysbus_notifier); } static void machine_finalize(Object *obj) { MachineState *ms = MACHINE(obj); g_free(ms->accel); g_free(ms->kernel_filename); g_free(ms->initrd_filename); g_free(ms->kernel_cmdline); g_free(ms->dtb); g_free(ms->dumpdtb); g_free(ms->dt_compatible); g_free(ms->firmware); g_free(ms->device_memory); } bool machine_usb(MachineState *machine) { return machine->usb; } bool machine_kernel_irqchip_allowed(MachineState *machine) { return machine->kernel_irqchip_allowed; } bool machine_kernel_irqchip_required(MachineState *machine) { return machine->kernel_irqchip_required; } bool machine_kernel_irqchip_split(MachineState *machine) { return machine->kernel_irqchip_split; } int machine_kvm_shadow_mem(MachineState *machine) { return machine->kvm_shadow_mem; } int machine_phandle_start(MachineState *machine) { return machine->phandle_start; } bool machine_dump_guest_core(MachineState *machine) { return machine->dump_guest_core; } bool machine_mem_merge(MachineState *machine) { return machine->mem_merge; } static char *cpu_slot_to_string(const CPUArchId *cpu) { GString *s = g_string_new(NULL); if (cpu->props.has_socket_id) { g_string_append_printf(s, "socket-id: %"PRId64, cpu->props.socket_id); } if (cpu->props.has_core_id) { if (s->len) { g_string_append_printf(s, ", "); } g_string_append_printf(s, "core-id: %"PRId64, cpu->props.core_id); } if (cpu->props.has_thread_id) { if (s->len) { g_string_append_printf(s, ", "); } g_string_append_printf(s, "thread-id: %"PRId64, cpu->props.thread_id); } return g_string_free(s, false); } static void machine_numa_finish_cpu_init(MachineState *machine) { int i; bool default_mapping; GString *s = g_string_new(NULL); MachineClass *mc = MACHINE_GET_CLASS(machine); const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(machine); assert(nb_numa_nodes); for (i = 0; i < possible_cpus->len; i++) { if (possible_cpus->cpus[i].props.has_node_id) { break; } } default_mapping = (i == possible_cpus->len); for (i = 0; i < possible_cpus->len; i++) { const CPUArchId *cpu_slot = &possible_cpus->cpus[i]; if (!cpu_slot->props.has_node_id) { /* fetch default mapping from board and enable it */ CpuInstanceProperties props = cpu_slot->props; props.node_id = mc->get_default_cpu_node_id(machine, i); if (!default_mapping) { /* record slots with not set mapping, * TODO: make it hard error in future */ char *cpu_str = cpu_slot_to_string(cpu_slot); g_string_append_printf(s, "%sCPU %d [%s]", s->len ? ", " : "", i, cpu_str); g_free(cpu_str); /* non mapped cpus used to fallback to node 0 */ props.node_id = 0; } props.has_node_id = true; machine_set_cpu_numa_node(machine, &props, &error_fatal); } } if (s->len && !qtest_enabled()) { warn_report("CPU(s) not present in any NUMA nodes: %s", s->str); warn_report("All CPU(s) up to maxcpus should be described " "in NUMA config, ability to start up with partial NUMA " "mappings is obsoleted and will be removed in future"); } g_string_free(s, true); } void machine_run_board_init(MachineState *machine) { MachineClass *machine_class = MACHINE_GET_CLASS(machine); numa_complete_configuration(machine); if (nb_numa_nodes) { machine_numa_finish_cpu_init(machine); } /* If the machine supports the valid_cpu_types check and the user * specified a CPU with -cpu check here that the user CPU is supported. */ if (machine_class->valid_cpu_types && machine->cpu_type) { ObjectClass *class = object_class_by_name(machine->cpu_type); int i; for (i = 0; machine_class->valid_cpu_types[i]; i++) { if (object_class_dynamic_cast(class, machine_class->valid_cpu_types[i])) { /* The user specificed CPU is in the valid field, we are * good to go. */ break; } } if (!machine_class->valid_cpu_types[i]) { /* The user specified CPU is not valid */ error_report("Invalid CPU type: %s", machine->cpu_type); error_printf("The valid types are: %s", machine_class->valid_cpu_types[0]); for (i = 1; machine_class->valid_cpu_types[i]; i++) { error_printf(", %s", machine_class->valid_cpu_types[i]); } error_printf("\n"); exit(1); } } machine_class->init(machine); } static void machine_class_finalize(ObjectClass *klass, void *data) { MachineClass *mc = MACHINE_CLASS(klass); if (mc->compat_props) { g_array_free(mc->compat_props, true); } g_free(mc->name); } void machine_register_compat_props(MachineState *machine) { MachineClass *mc = MACHINE_GET_CLASS(machine); int i; GlobalProperty *p; if (!mc->compat_props) { return; } for (i = 0; i < mc->compat_props->len; i++) { p = g_array_index(mc->compat_props, GlobalProperty *, i); /* Machine compat_props must never cause errors: */ p->errp = &error_abort; qdev_prop_register_global(p); } } static const TypeInfo machine_info = { .name = TYPE_MACHINE, .parent = TYPE_OBJECT, .abstract = true, .class_size = sizeof(MachineClass), .class_init = machine_class_init, .class_base_init = machine_class_base_init, .class_finalize = machine_class_finalize, .instance_size = sizeof(MachineState), .instance_init = machine_initfn, .instance_finalize = machine_finalize, }; static void machine_register_types(void) { type_register_static(&machine_info); } type_init(machine_register_types)