/* * QEMU Executable loader * * Copyright (c) 2006 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * Gunzip functionality in this file is derived from u-boot: * * (C) Copyright 2008 Semihalf * * (C) Copyright 2000-2005 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see . */ #include "qemu/osdep.h" #include "qemu/datadir.h" #include "qemu/error-report.h" #include "qapi/error.h" #include "qapi/qapi-commands-machine.h" #include "qapi/type-helpers.h" #include "trace.h" #include "hw/hw.h" #include "disas/disas.h" #include "migration/vmstate.h" #include "monitor/monitor.h" #include "sysemu/reset.h" #include "sysemu/sysemu.h" #include "uboot_image.h" #include "hw/loader.h" #include "hw/nvram/fw_cfg.h" #include "exec/memory.h" #include "hw/boards.h" #include "qemu/cutils.h" #include "sysemu/runstate.h" #include "tcg/debuginfo.h" #include static int roms_loaded; /* return the size or -1 if error */ int64_t get_image_size(const char *filename) { int fd; int64_t size; fd = open(filename, O_RDONLY | O_BINARY); if (fd < 0) return -1; size = lseek(fd, 0, SEEK_END); close(fd); return size; } /* return the size or -1 if error */ ssize_t load_image_size(const char *filename, void *addr, size_t size) { int fd; ssize_t actsize, l = 0; fd = open(filename, O_RDONLY | O_BINARY); if (fd < 0) { return -1; } while ((actsize = read(fd, addr + l, size - l)) > 0) { l += actsize; } close(fd); return actsize < 0 ? -1 : l; } /* read()-like version */ ssize_t read_targphys(const char *name, int fd, hwaddr dst_addr, size_t nbytes) { uint8_t *buf; ssize_t did; buf = g_malloc(nbytes); did = read(fd, buf, nbytes); if (did > 0) rom_add_blob_fixed("read", buf, did, dst_addr); g_free(buf); return did; } ssize_t load_image_targphys(const char *filename, hwaddr addr, uint64_t max_sz) { return load_image_targphys_as(filename, addr, max_sz, NULL); } /* return the size or -1 if error */ ssize_t load_image_targphys_as(const char *filename, hwaddr addr, uint64_t max_sz, AddressSpace *as) { ssize_t size; size = get_image_size(filename); if (size < 0 || size > max_sz) { return -1; } if (size > 0) { if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { return -1; } } return size; } ssize_t load_image_mr(const char *filename, MemoryRegion *mr) { ssize_t size; if (!memory_access_is_direct(mr, false)) { /* Can only load an image into RAM or ROM */ return -1; } size = get_image_size(filename); if (size < 0 || size > memory_region_size(mr)) { return -1; } if (size > 0) { if (rom_add_file_mr(filename, mr, -1) < 0) { return -1; } } return size; } void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, const char *source) { const char *nulp; char *ptr; if (buf_size <= 0) return; nulp = memchr(source, 0, buf_size); if (nulp) { rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); } else { rom_add_blob_fixed(name, source, buf_size, dest); ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); *ptr = 0; } } /* A.OUT loader */ struct exec { uint32_t a_info; /* Use macros N_MAGIC, etc for access */ uint32_t a_text; /* length of text, in bytes */ uint32_t a_data; /* length of data, in bytes */ uint32_t a_bss; /* length of uninitialized data area, in bytes */ uint32_t a_syms; /* length of symbol table data in file, in bytes */ uint32_t a_entry; /* start address */ uint32_t a_trsize; /* length of relocation info for text, in bytes */ uint32_t a_drsize; /* length of relocation info for data, in bytes */ }; static void bswap_ahdr(struct exec *e) { bswap32s(&e->a_info); bswap32s(&e->a_text); bswap32s(&e->a_data); bswap32s(&e->a_bss); bswap32s(&e->a_syms); bswap32s(&e->a_entry); bswap32s(&e->a_trsize); bswap32s(&e->a_drsize); } #define N_MAGIC(exec) ((exec).a_info & 0xffff) #define OMAGIC 0407 #define NMAGIC 0410 #define ZMAGIC 0413 #define QMAGIC 0314 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) #define N_TXTOFF(x) \ (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) #define N_DATADDR(x, target_page_size) \ (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) ssize_t load_aout(const char *filename, hwaddr addr, int max_sz, int bswap_needed, hwaddr target_page_size) { int fd; ssize_t size, ret; struct exec e; uint32_t magic; fd = open(filename, O_RDONLY | O_BINARY); if (fd < 0) return -1; size = read(fd, &e, sizeof(e)); if (size < 0) goto fail; if (bswap_needed) { bswap_ahdr(&e); } magic = N_MAGIC(e); switch (magic) { case ZMAGIC: case QMAGIC: case OMAGIC: if (e.a_text + e.a_data > max_sz) goto fail; lseek(fd, N_TXTOFF(e), SEEK_SET); size = read_targphys(filename, fd, addr, e.a_text + e.a_data); if (size < 0) goto fail; break; case NMAGIC: if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) goto fail; lseek(fd, N_TXTOFF(e), SEEK_SET); size = read_targphys(filename, fd, addr, e.a_text); if (size < 0) goto fail; ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), e.a_data); if (ret < 0) goto fail; size += ret; break; default: goto fail; } close(fd); return size; fail: close(fd); return -1; } /* ELF loader */ static void *load_at(int fd, off_t offset, size_t size) { void *ptr; if (lseek(fd, offset, SEEK_SET) < 0) return NULL; ptr = g_malloc(size); if (read(fd, ptr, size) != size) { g_free(ptr); return NULL; } return ptr; } #ifdef ELF_CLASS #undef ELF_CLASS #endif #define ELF_CLASS ELFCLASS32 #include "elf.h" #define SZ 32 #define elf_word uint32_t #define elf_sword int32_t #define bswapSZs bswap32s #include "hw/elf_ops.h.inc" #undef elfhdr #undef elf_phdr #undef elf_shdr #undef elf_sym #undef elf_rela #undef elf_note #undef elf_word #undef elf_sword #undef bswapSZs #undef SZ #define elfhdr elf64_hdr #define elf_phdr elf64_phdr #define elf_note elf64_note #define elf_shdr elf64_shdr #define elf_sym elf64_sym #define elf_rela elf64_rela #define elf_word uint64_t #define elf_sword int64_t #define bswapSZs bswap64s #define SZ 64 #include "hw/elf_ops.h.inc" const char *load_elf_strerror(ssize_t error) { switch (error) { case 0: return "No error"; case ELF_LOAD_FAILED: return "Failed to load ELF"; case ELF_LOAD_NOT_ELF: return "The image is not ELF"; case ELF_LOAD_WRONG_ARCH: return "The image is from incompatible architecture"; case ELF_LOAD_WRONG_ENDIAN: return "The image has incorrect endianness"; case ELF_LOAD_TOO_BIG: return "The image segments are too big to load"; default: return "Unknown error"; } } void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) { int fd; uint8_t e_ident_local[EI_NIDENT]; uint8_t *e_ident; size_t hdr_size, off; bool is64l; if (!hdr) { hdr = e_ident_local; } e_ident = hdr; fd = open(filename, O_RDONLY | O_BINARY); if (fd < 0) { error_setg_errno(errp, errno, "Failed to open file: %s", filename); return; } if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { error_setg_errno(errp, errno, "Failed to read file: %s", filename); goto fail; } if (e_ident[0] != ELFMAG0 || e_ident[1] != ELFMAG1 || e_ident[2] != ELFMAG2 || e_ident[3] != ELFMAG3) { error_setg(errp, "Bad ELF magic"); goto fail; } is64l = e_ident[EI_CLASS] == ELFCLASS64; hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); if (is64) { *is64 = is64l; } off = EI_NIDENT; while (hdr != e_ident_local && off < hdr_size) { size_t br = read(fd, hdr + off, hdr_size - off); switch (br) { case 0: error_setg(errp, "File too short: %s", filename); goto fail; case -1: error_setg_errno(errp, errno, "Failed to read file: %s", filename); goto fail; } off += br; } fail: close(fd); } /* return < 0 if error, otherwise the number of bytes loaded in memory */ ssize_t load_elf(const char *filename, uint64_t (*elf_note_fn)(void *, void *, bool), uint64_t (*translate_fn)(void *, uint64_t), void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags, int big_endian, int elf_machine, int clear_lsb, int data_swab) { return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque, pentry, lowaddr, highaddr, pflags, big_endian, elf_machine, clear_lsb, data_swab, NULL); } /* return < 0 if error, otherwise the number of bytes loaded in memory */ ssize_t load_elf_as(const char *filename, uint64_t (*elf_note_fn)(void *, void *, bool), uint64_t (*translate_fn)(void *, uint64_t), void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags, int big_endian, int elf_machine, int clear_lsb, int data_swab, AddressSpace *as) { return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque, pentry, lowaddr, highaddr, pflags, big_endian, elf_machine, clear_lsb, data_swab, as, true); } /* return < 0 if error, otherwise the number of bytes loaded in memory */ ssize_t load_elf_ram(const char *filename, uint64_t (*elf_note_fn)(void *, void *, bool), uint64_t (*translate_fn)(void *, uint64_t), void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags, int big_endian, int elf_machine, int clear_lsb, int data_swab, AddressSpace *as, bool load_rom) { return load_elf_ram_sym(filename, elf_note_fn, translate_fn, translate_opaque, pentry, lowaddr, highaddr, pflags, big_endian, elf_machine, clear_lsb, data_swab, as, load_rom, NULL); } /* return < 0 if error, otherwise the number of bytes loaded in memory */ ssize_t load_elf_ram_sym(const char *filename, uint64_t (*elf_note_fn)(void *, void *, bool), uint64_t (*translate_fn)(void *, uint64_t), void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags, int big_endian, int elf_machine, int clear_lsb, int data_swab, AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) { int fd, data_order, target_data_order, must_swab; ssize_t ret = ELF_LOAD_FAILED; uint8_t e_ident[EI_NIDENT]; fd = open(filename, O_RDONLY | O_BINARY); if (fd < 0) { perror(filename); return -1; } if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) goto fail; if (e_ident[0] != ELFMAG0 || e_ident[1] != ELFMAG1 || e_ident[2] != ELFMAG2 || e_ident[3] != ELFMAG3) { ret = ELF_LOAD_NOT_ELF; goto fail; } #if HOST_BIG_ENDIAN data_order = ELFDATA2MSB; #else data_order = ELFDATA2LSB; #endif must_swab = data_order != e_ident[EI_DATA]; if (big_endian) { target_data_order = ELFDATA2MSB; } else { target_data_order = ELFDATA2LSB; } if (target_data_order != e_ident[EI_DATA]) { ret = ELF_LOAD_WRONG_ENDIAN; goto fail; } lseek(fd, 0, SEEK_SET); if (e_ident[EI_CLASS] == ELFCLASS64) { ret = load_elf64(filename, fd, elf_note_fn, translate_fn, translate_opaque, must_swab, pentry, lowaddr, highaddr, pflags, elf_machine, clear_lsb, data_swab, as, load_rom, sym_cb); } else { ret = load_elf32(filename, fd, elf_note_fn, translate_fn, translate_opaque, must_swab, pentry, lowaddr, highaddr, pflags, elf_machine, clear_lsb, data_swab, as, load_rom, sym_cb); } if (ret > 0) { debuginfo_report_elf(filename, fd, 0); } fail: close(fd); return ret; } static void bswap_uboot_header(uboot_image_header_t *hdr) { #if !HOST_BIG_ENDIAN bswap32s(&hdr->ih_magic); bswap32s(&hdr->ih_hcrc); bswap32s(&hdr->ih_time); bswap32s(&hdr->ih_size); bswap32s(&hdr->ih_load); bswap32s(&hdr->ih_ep); bswap32s(&hdr->ih_dcrc); #endif } #define ZALLOC_ALIGNMENT 16 static void *zalloc(void *x, unsigned items, unsigned size) { void *p; size *= items; size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); p = g_malloc(size); return (p); } static void zfree(void *x, void *addr) { g_free(addr); } #define HEAD_CRC 2 #define EXTRA_FIELD 4 #define ORIG_NAME 8 #define COMMENT 0x10 #define RESERVED 0xe0 #define DEFLATED 8 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) { z_stream s = {}; ssize_t dstbytes; int r, i, flags; /* skip header */ i = 10; if (srclen < 4) { goto toosmall; } flags = src[3]; if (src[2] != DEFLATED || (flags & RESERVED) != 0) { puts ("Error: Bad gzipped data\n"); return -1; } if ((flags & EXTRA_FIELD) != 0) { if (srclen < 12) { goto toosmall; } i = 12 + src[10] + (src[11] << 8); } if ((flags & ORIG_NAME) != 0) { while (i < srclen && src[i++] != 0) { /* do nothing */ } } if ((flags & COMMENT) != 0) { while (i < srclen && src[i++] != 0) { /* do nothing */ } } if ((flags & HEAD_CRC) != 0) { i += 2; } if (i >= srclen) { goto toosmall; } s.zalloc = zalloc; s.zfree = zfree; r = inflateInit2(&s, -MAX_WBITS); if (r != Z_OK) { printf ("Error: inflateInit2() returned %d\n", r); return (-1); } s.next_in = src + i; s.avail_in = srclen - i; s.next_out = dst; s.avail_out = dstlen; r = inflate(&s, Z_FINISH); if (r != Z_OK && r != Z_STREAM_END) { printf ("Error: inflate() returned %d\n", r); inflateEnd(&s); return -1; } dstbytes = s.next_out - (unsigned char *) dst; inflateEnd(&s); return dstbytes; toosmall: puts("Error: gunzip out of data in header\n"); return -1; } /* Load a U-Boot image. */ static ssize_t load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, int *is_linux, uint8_t image_type, uint64_t (*translate_fn)(void *, uint64_t), void *translate_opaque, AddressSpace *as) { int fd; ssize_t size; hwaddr address; uboot_image_header_t h; uboot_image_header_t *hdr = &h; uint8_t *data = NULL; int ret = -1; int do_uncompress = 0; fd = open(filename, O_RDONLY | O_BINARY); if (fd < 0) return -1; size = read(fd, hdr, sizeof(uboot_image_header_t)); if (size < sizeof(uboot_image_header_t)) { goto out; } bswap_uboot_header(hdr); if (hdr->ih_magic != IH_MAGIC) goto out; if (hdr->ih_type != image_type) { if (!(image_type == IH_TYPE_KERNEL && hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, image_type); goto out; } } /* TODO: Implement other image types. */ switch (hdr->ih_type) { case IH_TYPE_KERNEL_NOLOAD: if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { fprintf(stderr, "this image format (kernel_noload) cannot be " "loaded on this machine type"); goto out; } hdr->ih_load = *loadaddr + sizeof(*hdr); hdr->ih_ep += hdr->ih_load; /* fall through */ case IH_TYPE_KERNEL: address = hdr->ih_load; if (translate_fn) { address = translate_fn(translate_opaque, address); } if (loadaddr) { *loadaddr = hdr->ih_load; } switch (hdr->ih_comp) { case IH_COMP_NONE: break; case IH_COMP_GZIP: do_uncompress = 1; break; default: fprintf(stderr, "Unable to load u-boot images with compression type %d\n", hdr->ih_comp); goto out; } if (ep) { *ep = hdr->ih_ep; } /* TODO: Check CPU type. */ if (is_linux) { if (hdr->ih_os == IH_OS_LINUX) { *is_linux = 1; } else if (hdr->ih_os == IH_OS_VXWORKS) { /* * VxWorks 7 uses the same boot interface as the Linux kernel * on Arm (64-bit only), PowerPC and RISC-V architectures. */ switch (hdr->ih_arch) { case IH_ARCH_ARM64: case IH_ARCH_PPC: case IH_ARCH_RISCV: *is_linux = 1; break; default: *is_linux = 0; break; } } else { *is_linux = 0; } } break; case IH_TYPE_RAMDISK: address = *loadaddr; break; default: fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); goto out; } data = g_malloc(hdr->ih_size); if (read(fd, data, hdr->ih_size) != hdr->ih_size) { fprintf(stderr, "Error reading file\n"); goto out; } if (do_uncompress) { uint8_t *compressed_data; size_t max_bytes; ssize_t bytes; compressed_data = data; max_bytes = UBOOT_MAX_GUNZIP_BYTES; data = g_malloc(max_bytes); bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); g_free(compressed_data); if (bytes < 0) { fprintf(stderr, "Unable to decompress gzipped image!\n"); goto out; } hdr->ih_size = bytes; } rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); ret = hdr->ih_size; out: g_free(data); close(fd); return ret; } ssize_t load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, int *is_linux, uint64_t (*translate_fn)(void *, uint64_t), void *translate_opaque) { return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, translate_fn, translate_opaque, NULL); } ssize_t load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, int *is_linux, uint64_t (*translate_fn)(void *, uint64_t), void *translate_opaque, AddressSpace *as) { return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, translate_fn, translate_opaque, as); } /* Load a ramdisk. */ ssize_t load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) { return load_ramdisk_as(filename, addr, max_sz, NULL); } ssize_t load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, AddressSpace *as) { return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, NULL, NULL, as); } /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ ssize_t load_image_gzipped_buffer(const char *filename, uint64_t max_sz, uint8_t **buffer) { uint8_t *compressed_data = NULL; uint8_t *data = NULL; gsize len; ssize_t bytes; int ret = -1; if (!g_file_get_contents(filename, (char **) &compressed_data, &len, NULL)) { goto out; } /* Is it a gzip-compressed file? */ if (len < 2 || compressed_data[0] != 0x1f || compressed_data[1] != 0x8b) { goto out; } if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; } data = g_malloc(max_sz); bytes = gunzip(data, max_sz, compressed_data, len); if (bytes < 0) { fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", filename); goto out; } /* trim to actual size and return to caller */ *buffer = g_realloc(data, bytes); ret = bytes; /* ownership has been transferred to caller */ data = NULL; out: g_free(compressed_data); g_free(data); return ret; } /* Load a gzip-compressed kernel. */ ssize_t load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) { ssize_t bytes; uint8_t *data; bytes = load_image_gzipped_buffer(filename, max_sz, &data); if (bytes != -1) { rom_add_blob_fixed(filename, data, bytes, addr); g_free(data); } return bytes; } /* The PE/COFF MS-DOS stub magic number */ #define EFI_PE_MSDOS_MAGIC "MZ" /* * The Linux header magic number for a EFI PE/COFF * image targeting an unspecified architecture. */ #define EFI_PE_LINUX_MAGIC "\xcd\x23\x82\x81" /* * Bootable Linux kernel images may be packaged as EFI zboot images, which are * self-decompressing executables when loaded via EFI. The compressed payload * can also be extracted from the image and decompressed by a non-EFI loader. * * The de facto specification for this format is at the following URL: * * https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/firmware/efi/libstub/zboot-header.S * * This definition is based on Linux upstream commit 29636a5ce87beba. */ struct linux_efi_zboot_header { uint8_t msdos_magic[2]; /* PE/COFF 'MZ' magic number */ uint8_t reserved0[2]; uint8_t zimg[4]; /* "zimg" for Linux EFI zboot images */ uint32_t payload_offset; /* LE offset to compressed payload */ uint32_t payload_size; /* LE size of the compressed payload */ uint8_t reserved1[8]; char compression_type[32]; /* Compression type, NUL terminated */ uint8_t linux_magic[4]; /* Linux header magic */ uint32_t pe_header_offset; /* LE offset to the PE header */ }; /* * Check whether *buffer points to a Linux EFI zboot image in memory. * * If it does, attempt to decompress it to a new buffer, and free the old one. * If any of this fails, return an error to the caller. * * If the image is not a Linux EFI zboot image, do nothing and return success. */ ssize_t unpack_efi_zboot_image(uint8_t **buffer, int *size) { const struct linux_efi_zboot_header *header; uint8_t *data = NULL; int ploff, plsize; ssize_t bytes; /* ignore if this is too small to be a EFI zboot image */ if (*size < sizeof(*header)) { return 0; } header = (struct linux_efi_zboot_header *)*buffer; /* ignore if this is not a Linux EFI zboot image */ if (memcmp(&header->msdos_magic, EFI_PE_MSDOS_MAGIC, 2) != 0 || memcmp(&header->zimg, "zimg", 4) != 0 || memcmp(&header->linux_magic, EFI_PE_LINUX_MAGIC, 4) != 0) { return 0; } if (strcmp(header->compression_type, "gzip") != 0) { fprintf(stderr, "unable to handle EFI zboot image with \"%.*s\" compression\n", (int)sizeof(header->compression_type) - 1, header->compression_type); return -1; } ploff = ldl_le_p(&header->payload_offset); plsize = ldl_le_p(&header->payload_size); if (ploff < 0 || plsize < 0 || ploff + plsize > *size) { fprintf(stderr, "unable to handle corrupt EFI zboot image\n"); return -1; } data = g_malloc(LOAD_IMAGE_MAX_GUNZIP_BYTES); bytes = gunzip(data, LOAD_IMAGE_MAX_GUNZIP_BYTES, *buffer + ploff, plsize); if (bytes < 0) { fprintf(stderr, "failed to decompress EFI zboot image\n"); g_free(data); return -1; } g_free(*buffer); *buffer = g_realloc(data, bytes); *size = bytes; return bytes; } /* * Functions for reboot-persistent memory regions. * - used for vga bios and option roms. * - also linux kernel (-kernel / -initrd). */ typedef struct Rom Rom; struct Rom { char *name; char *path; /* datasize is the amount of memory allocated in "data". If datasize is less * than romsize, it means that the area from datasize to romsize is filled * with zeros. */ size_t romsize; size_t datasize; uint8_t *data; MemoryRegion *mr; AddressSpace *as; int isrom; char *fw_dir; char *fw_file; GMappedFile *mapped_file; bool committed; hwaddr addr; QTAILQ_ENTRY(Rom) next; }; static FWCfgState *fw_cfg; static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); /* * rom->data can be heap-allocated or memory-mapped (e.g. when added with * rom_add_elf_program()) */ static void rom_free_data(Rom *rom) { if (rom->mapped_file) { g_mapped_file_unref(rom->mapped_file); rom->mapped_file = NULL; } else { g_free(rom->data); } rom->data = NULL; } static void rom_free(Rom *rom) { rom_free_data(rom); g_free(rom->path); g_free(rom->name); g_free(rom->fw_dir); g_free(rom->fw_file); g_free(rom); } static inline bool rom_order_compare(Rom *rom, Rom *item) { return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || (rom->as == item->as && rom->addr >= item->addr); } static void rom_insert(Rom *rom) { Rom *item; if (roms_loaded) { hw_error ("ROM images must be loaded at startup\n"); } /* The user didn't specify an address space, this is the default */ if (!rom->as) { rom->as = &address_space_memory; } rom->committed = false; /* List is ordered by load address in the same address space */ QTAILQ_FOREACH(item, &roms, next) { if (rom_order_compare(rom, item)) { continue; } QTAILQ_INSERT_BEFORE(item, rom, next); return; } QTAILQ_INSERT_TAIL(&roms, rom, next); } static void fw_cfg_resized(const char *id, uint64_t length, void *host) { if (fw_cfg) { fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); } } static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) { void *data; rom->mr = g_malloc(sizeof(*rom->mr)); memory_region_init_resizeable_ram(rom->mr, owner, name, rom->datasize, rom->romsize, fw_cfg_resized, &error_fatal); memory_region_set_readonly(rom->mr, ro); vmstate_register_ram_global(rom->mr); data = memory_region_get_ram_ptr(rom->mr); memcpy(data, rom->data, rom->datasize); return data; } ssize_t rom_add_file(const char *file, const char *fw_dir, hwaddr addr, int32_t bootindex, bool has_option_rom, MemoryRegion *mr, AddressSpace *as) { MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); Rom *rom; ssize_t rc; int fd = -1; char devpath[100]; if (as && mr) { fprintf(stderr, "Specifying an Address Space and Memory Region is " \ "not valid when loading a rom\n"); /* We haven't allocated anything so we don't need any cleanup */ return -1; } rom = g_malloc0(sizeof(*rom)); rom->name = g_strdup(file); rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); rom->as = as; if (rom->path == NULL) { rom->path = g_strdup(file); } fd = open(rom->path, O_RDONLY | O_BINARY); if (fd == -1) { fprintf(stderr, "Could not open option rom '%s': %s\n", rom->path, strerror(errno)); goto err; } if (fw_dir) { rom->fw_dir = g_strdup(fw_dir); rom->fw_file = g_strdup(file); } rom->addr = addr; rom->romsize = lseek(fd, 0, SEEK_END); if (rom->romsize == -1) { fprintf(stderr, "rom: file %-20s: get size error: %s\n", rom->name, strerror(errno)); goto err; } rom->datasize = rom->romsize; rom->data = g_malloc0(rom->datasize); lseek(fd, 0, SEEK_SET); rc = read(fd, rom->data, rom->datasize); if (rc != rom->datasize) { fprintf(stderr, "rom: file %-20s: read error: rc=%zd (expected %zd)\n", rom->name, rc, rom->datasize); goto err; } close(fd); rom_insert(rom); if (rom->fw_file && fw_cfg) { const char *basename; char fw_file_name[FW_CFG_MAX_FILE_PATH]; void *data; basename = strrchr(rom->fw_file, '/'); if (basename) { basename++; } else { basename = rom->fw_file; } snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, basename); snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); if ((!has_option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); } else { data = rom->data; } fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); } else { if (mr) { rom->mr = mr; snprintf(devpath, sizeof(devpath), "/rom@%s", file); } else { snprintf(devpath, sizeof(devpath), "/rom@" HWADDR_FMT_plx, addr); } } add_boot_device_path(bootindex, NULL, devpath); return 0; err: if (fd != -1) close(fd); rom_free(rom); return -1; } MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, size_t max_len, hwaddr addr, const char *fw_file_name, FWCfgCallback fw_callback, void *callback_opaque, AddressSpace *as, bool read_only) { MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); Rom *rom; MemoryRegion *mr = NULL; rom = g_malloc0(sizeof(*rom)); rom->name = g_strdup(name); rom->as = as; rom->addr = addr; rom->romsize = max_len ? max_len : len; rom->datasize = len; g_assert(rom->romsize >= rom->datasize); rom->data = g_malloc0(rom->datasize); memcpy(rom->data, blob, len); rom_insert(rom); if (fw_file_name && fw_cfg) { char devpath[100]; void *data; if (read_only) { snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); } else { snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); } if (mc->rom_file_has_mr) { data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); mr = rom->mr; } else { data = rom->data; } fw_cfg_add_file_callback(fw_cfg, fw_file_name, fw_callback, NULL, callback_opaque, data, rom->datasize, read_only); } return mr; } /* This function is specific for elf program because we don't need to allocate * all the rom. We just allocate the first part and the rest is just zeros. This * is why romsize and datasize are different. Also, this function takes its own * reference to "mapped_file", so we don't have to allocate and copy the buffer. */ int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data, size_t datasize, size_t romsize, hwaddr addr, AddressSpace *as) { Rom *rom; rom = g_malloc0(sizeof(*rom)); rom->name = g_strdup(name); rom->addr = addr; rom->datasize = datasize; rom->romsize = romsize; rom->data = data; rom->as = as; if (mapped_file && data) { g_mapped_file_ref(mapped_file); rom->mapped_file = mapped_file; } rom_insert(rom); return 0; } ssize_t rom_add_vga(const char *file) { return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); } ssize_t rom_add_option(const char *file, int32_t bootindex) { return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); } static void rom_reset(void *unused) { Rom *rom; QTAILQ_FOREACH(rom, &roms, next) { if (rom->fw_file) { continue; } /* * We don't need to fill in the RAM with ROM data because we'll fill * the data in during the next incoming migration in all cases. Note * that some of those RAMs can actually be modified by the guest. */ if (runstate_check(RUN_STATE_INMIGRATE)) { if (rom->data && rom->isrom) { /* * Free it so that a rom_reset after migration doesn't * overwrite a potentially modified 'rom'. */ rom_free_data(rom); } continue; } if (rom->data == NULL) { continue; } if (rom->mr) { void *host = memory_region_get_ram_ptr(rom->mr); memcpy(host, rom->data, rom->datasize); memset(host + rom->datasize, 0, rom->romsize - rom->datasize); } else { address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, rom->data, rom->datasize); address_space_set(rom->as, rom->addr + rom->datasize, 0, rom->romsize - rom->datasize, MEMTXATTRS_UNSPECIFIED); } if (rom->isrom) { /* rom needs to be written only once */ rom_free_data(rom); } /* * The rom loader is really on the same level as firmware in the guest * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure * that the instruction cache for that new region is clear, so that the * CPU definitely fetches its instructions from the just written data. */ cpu_flush_icache_range(rom->addr, rom->datasize); trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom); } } /* Return true if two consecutive ROMs in the ROM list overlap */ static bool roms_overlap(Rom *last_rom, Rom *this_rom) { if (!last_rom) { return false; } return last_rom->as == this_rom->as && last_rom->addr + last_rom->romsize > this_rom->addr; } static const char *rom_as_name(Rom *rom) { const char *name = rom->as ? rom->as->name : NULL; return name ?: "anonymous"; } static void rom_print_overlap_error_header(void) { error_report("Some ROM regions are overlapping"); error_printf( "These ROM regions might have been loaded by " "direct user request or by default.\n" "They could be BIOS/firmware images, a guest kernel, " "initrd or some other file loaded into guest memory.\n" "Check whether you intended to load all this guest code, and " "whether it has been built to load to the correct addresses.\n"); } static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom) { error_printf( "\nThe following two regions overlap (in the %s address space):\n", rom_as_name(rom)); error_printf( " %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n", last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize); error_printf( " %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n", rom->name, rom->addr, rom->addr + rom->romsize); } int rom_check_and_register_reset(void) { MemoryRegionSection section; Rom *rom, *last_rom = NULL; bool found_overlap = false; QTAILQ_FOREACH(rom, &roms, next) { if (rom->fw_file) { continue; } if (!rom->mr) { if (roms_overlap(last_rom, rom)) { if (!found_overlap) { found_overlap = true; rom_print_overlap_error_header(); } rom_print_one_overlap_error(last_rom, rom); /* Keep going through the list so we report all overlaps */ } last_rom = rom; } section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), rom->addr, 1); rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); memory_region_unref(section.mr); } if (found_overlap) { return -1; } qemu_register_reset(rom_reset, NULL); roms_loaded = 1; return 0; } void rom_set_fw(FWCfgState *f) { fw_cfg = f; } void rom_set_order_override(int order) { if (!fw_cfg) return; fw_cfg_set_order_override(fw_cfg, order); } void rom_reset_order_override(void) { if (!fw_cfg) return; fw_cfg_reset_order_override(fw_cfg); } void rom_transaction_begin(void) { Rom *rom; /* Ignore ROMs added without the transaction API */ QTAILQ_FOREACH(rom, &roms, next) { rom->committed = true; } } void rom_transaction_end(bool commit) { Rom *rom; Rom *tmp; QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { if (rom->committed) { continue; } if (commit) { rom->committed = true; } else { QTAILQ_REMOVE(&roms, rom, next); rom_free(rom); } } } static Rom *find_rom(hwaddr addr, size_t size) { Rom *rom; QTAILQ_FOREACH(rom, &roms, next) { if (rom->fw_file) { continue; } if (rom->mr) { continue; } if (rom->addr > addr) { continue; } if (rom->addr + rom->romsize < addr + size) { continue; } return rom; } return NULL; } typedef struct RomSec { hwaddr base; int se; /* start/end flag */ } RomSec; /* * Sort into address order. We break ties between rom-startpoints * and rom-endpoints in favour of the startpoint, by sorting the 0->1 * transition before the 1->0 transition. Either way round would * work, but this way saves a little work later by avoiding * dealing with "gaps" of 0 length. */ static gint sort_secs(gconstpointer a, gconstpointer b) { RomSec *ra = (RomSec *) a; RomSec *rb = (RomSec *) b; if (ra->base == rb->base) { return ra->se - rb->se; } return ra->base > rb->base ? 1 : -1; } static GList *add_romsec_to_list(GList *secs, hwaddr base, int se) { RomSec *cand = g_new(RomSec, 1); cand->base = base; cand->se = se; return g_list_prepend(secs, cand); } RomGap rom_find_largest_gap_between(hwaddr base, size_t size) { Rom *rom; RomSec *cand; RomGap res = {0, 0}; hwaddr gapstart = base; GList *it, *secs = NULL; int count = 0; QTAILQ_FOREACH(rom, &roms, next) { /* Ignore blobs being loaded to special places */ if (rom->mr || rom->fw_file) { continue; } /* ignore anything finishing below base */ if (rom->addr + rom->romsize <= base) { continue; } /* ignore anything starting above the region */ if (rom->addr >= base + size) { continue; } /* Save the start and end of each relevant ROM */ secs = add_romsec_to_list(secs, rom->addr, 1); if (rom->addr + rom->romsize < base + size) { secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1); } } /* sentinel */ secs = add_romsec_to_list(secs, base + size, 1); secs = g_list_sort(secs, sort_secs); for (it = g_list_first(secs); it; it = g_list_next(it)) { cand = (RomSec *) it->data; if (count == 0 && count + cand->se == 1) { size_t gap = cand->base - gapstart; if (gap > res.size) { res.base = gapstart; res.size = gap; } } else if (count == 1 && count + cand->se == 0) { gapstart = cand->base; } count += cand->se; } g_list_free_full(secs, g_free); return res; } /* * Copies memory from registered ROMs to dest. Any memory that is contained in * a ROM between addr and addr + size is copied. Note that this can involve * multiple ROMs, which need not start at addr and need not end at addr + size. */ int rom_copy(uint8_t *dest, hwaddr addr, size_t size) { hwaddr end = addr + size; uint8_t *s, *d = dest; size_t l = 0; Rom *rom; QTAILQ_FOREACH(rom, &roms, next) { if (rom->fw_file) { continue; } if (rom->mr) { continue; } if (rom->addr + rom->romsize < addr) { continue; } if (rom->addr > end || rom->addr < addr) { break; } d = dest + (rom->addr - addr); s = rom->data; l = rom->datasize; if ((d + l) > (dest + size)) { l = dest - d; } if (l > 0) { memcpy(d, s, l); } if (rom->romsize > rom->datasize) { /* If datasize is less than romsize, it means that we didn't * allocate all the ROM because the trailing data are only zeros. */ d += l; l = rom->romsize - rom->datasize; if ((d + l) > (dest + size)) { /* Rom size doesn't fit in the destination area. Adjust to avoid * overflow. */ l = dest - d; } if (l > 0) { memset(d, 0x0, l); } } } return (d + l) - dest; } void *rom_ptr(hwaddr addr, size_t size) { Rom *rom; rom = find_rom(addr, size); if (!rom || !rom->data) return NULL; return rom->data + (addr - rom->addr); } typedef struct FindRomCBData { size_t size; /* Amount of data we want from ROM, in bytes */ MemoryRegion *mr; /* MR at the unaliased guest addr */ hwaddr xlat; /* Offset of addr within mr */ void *rom; /* Output: rom data pointer, if found */ } FindRomCBData; static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr, hwaddr offset_in_region, void *opaque) { FindRomCBData *cbdata = opaque; hwaddr alias_addr; if (mr != cbdata->mr) { return false; } alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region; cbdata->rom = rom_ptr(alias_addr, cbdata->size); if (!cbdata->rom) { return false; } /* Found a match, stop iterating */ return true; } void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size) { /* * Find any ROM data for the given guest address range. If there * is a ROM blob then return a pointer to the host memory * corresponding to 'addr'; otherwise return NULL. * * We look not only for ROM blobs that were loaded directly to * addr, but also for ROM blobs that were loaded to aliases of * that memory at other addresses within the AddressSpace. * * Note that we do not check @as against the 'as' member in the * 'struct Rom' returned by rom_ptr(). The Rom::as is the * AddressSpace which the rom blob should be written to, whereas * our @as argument is the AddressSpace which we are (effectively) * reading from, and the same underlying RAM will often be visible * in multiple AddressSpaces. (A common example is a ROM blob * written to the 'system' address space but then read back via a * CPU's cpu->as pointer.) This does mean we might potentially * return a false-positive match if a ROM blob was loaded into an * AS which is entirely separate and distinct from the one we're * querying, but this issue exists also for rom_ptr() and hasn't * caused any problems in practice. */ FlatView *fv; void *rom; hwaddr len_unused; FindRomCBData cbdata = {}; /* Easy case: there's data at the actual address */ rom = rom_ptr(addr, size); if (rom) { return rom; } RCU_READ_LOCK_GUARD(); fv = address_space_to_flatview(as); cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused, false, MEMTXATTRS_UNSPECIFIED); if (!cbdata.mr) { /* Nothing at this address, so there can't be any aliasing */ return NULL; } cbdata.size = size; flatview_for_each_range(fv, find_rom_cb, &cbdata); return cbdata.rom; } HumanReadableText *qmp_x_query_roms(Error **errp) { Rom *rom; g_autoptr(GString) buf = g_string_new(""); QTAILQ_FOREACH(rom, &roms, next) { if (rom->mr) { g_string_append_printf(buf, "%s" " size=0x%06zx name=\"%s\"\n", memory_region_name(rom->mr), rom->romsize, rom->name); } else if (!rom->fw_file) { g_string_append_printf(buf, "addr=" HWADDR_FMT_plx " size=0x%06zx mem=%s name=\"%s\"\n", rom->addr, rom->romsize, rom->isrom ? "rom" : "ram", rom->name); } else { g_string_append_printf(buf, "fw=%s/%s" " size=0x%06zx name=\"%s\"\n", rom->fw_dir, rom->fw_file, rom->romsize, rom->name); } } return human_readable_text_from_str(buf); } typedef enum HexRecord HexRecord; enum HexRecord { DATA_RECORD = 0, EOF_RECORD, EXT_SEG_ADDR_RECORD, START_SEG_ADDR_RECORD, EXT_LINEAR_ADDR_RECORD, START_LINEAR_ADDR_RECORD, }; /* Each record contains a 16-bit address which is combined with the upper 16 * bits of the implicit "next address" to form a 32-bit address. */ #define NEXT_ADDR_MASK 0xffff0000 #define DATA_FIELD_MAX_LEN 0xff #define LEN_EXCEPT_DATA 0x5 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + * sizeof(checksum) */ typedef struct { uint8_t byte_count; uint16_t address; uint8_t record_type; uint8_t data[DATA_FIELD_MAX_LEN]; uint8_t checksum; } HexLine; /* return 0 or -1 if error */ static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, uint32_t *index, const bool in_process) { /* +-------+---------------+-------+---------------------+--------+ * | byte | |record | | | * | count | address | type | data |checksum| * +-------+---------------+-------+---------------------+--------+ * ^ ^ ^ ^ ^ ^ * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | */ uint8_t value = 0; uint32_t idx = *index; /* ignore space */ if (g_ascii_isspace(c)) { return true; } if (!g_ascii_isxdigit(c) || !in_process) { return false; } value = g_ascii_xdigit_value(c); value = (idx & 0x1) ? (value & 0xf) : (value << 4); if (idx < 2) { line->byte_count |= value; } else if (2 <= idx && idx < 6) { line->address <<= 4; line->address += g_ascii_xdigit_value(c); } else if (6 <= idx && idx < 8) { line->record_type |= value; } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { line->data[(idx - 8) >> 1] |= value; } else if (8 + 2 * line->byte_count <= idx && idx < 10 + 2 * line->byte_count) { line->checksum |= value; } else { return false; } *our_checksum += value; ++(*index); return true; } typedef struct { const char *filename; HexLine line; uint8_t *bin_buf; hwaddr *start_addr; int total_size; uint32_t next_address_to_write; uint32_t current_address; uint32_t current_rom_index; uint32_t rom_start_address; AddressSpace *as; bool complete; } HexParser; /* return size or -1 if error */ static int handle_record_type(HexParser *parser) { HexLine *line = &(parser->line); switch (line->record_type) { case DATA_RECORD: parser->current_address = (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; /* verify this is a contiguous block of memory */ if (parser->current_address != parser->next_address_to_write) { if (parser->current_rom_index != 0) { rom_add_blob_fixed_as(parser->filename, parser->bin_buf, parser->current_rom_index, parser->rom_start_address, parser->as); } parser->rom_start_address = parser->current_address; parser->current_rom_index = 0; } /* copy from line buffer to output bin_buf */ memcpy(parser->bin_buf + parser->current_rom_index, line->data, line->byte_count); parser->current_rom_index += line->byte_count; parser->total_size += line->byte_count; /* save next address to write */ parser->next_address_to_write = parser->current_address + line->byte_count; break; case EOF_RECORD: if (parser->current_rom_index != 0) { rom_add_blob_fixed_as(parser->filename, parser->bin_buf, parser->current_rom_index, parser->rom_start_address, parser->as); } parser->complete = true; return parser->total_size; case EXT_SEG_ADDR_RECORD: case EXT_LINEAR_ADDR_RECORD: if (line->byte_count != 2 && line->address != 0) { return -1; } if (parser->current_rom_index != 0) { rom_add_blob_fixed_as(parser->filename, parser->bin_buf, parser->current_rom_index, parser->rom_start_address, parser->as); } /* save next address to write, * in case of non-contiguous block of memory */ parser->next_address_to_write = (line->data[0] << 12) | (line->data[1] << 4); if (line->record_type == EXT_LINEAR_ADDR_RECORD) { parser->next_address_to_write <<= 12; } parser->rom_start_address = parser->next_address_to_write; parser->current_rom_index = 0; break; case START_SEG_ADDR_RECORD: if (line->byte_count != 4 && line->address != 0) { return -1; } /* x86 16-bit CS:IP segmented addressing */ *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + ((line->data[2] << 8) | line->data[3]); break; case START_LINEAR_ADDR_RECORD: if (line->byte_count != 4 && line->address != 0) { return -1; } *(parser->start_addr) = ldl_be_p(line->data); break; default: return -1; } return parser->total_size; } /* return size or -1 if error */ static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, size_t hex_blob_size, AddressSpace *as) { bool in_process = false; /* avoid re-enter and * check whether record begin with ':' */ uint8_t *end = hex_blob + hex_blob_size; uint8_t our_checksum = 0; uint32_t record_index = 0; HexParser parser = { .filename = filename, .bin_buf = g_malloc(hex_blob_size), .start_addr = addr, .as = as, .complete = false }; rom_transaction_begin(); for (; hex_blob < end && !parser.complete; ++hex_blob) { switch (*hex_blob) { case '\r': case '\n': if (!in_process) { break; } in_process = false; if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != record_index || our_checksum != 0) { parser.total_size = -1; goto out; } if (handle_record_type(&parser) == -1) { parser.total_size = -1; goto out; } break; /* start of a new record. */ case ':': memset(&parser.line, 0, sizeof(HexLine)); in_process = true; record_index = 0; break; /* decoding lines */ default: if (!parse_record(&parser.line, &our_checksum, *hex_blob, &record_index, in_process)) { parser.total_size = -1; goto out; } break; } } out: g_free(parser.bin_buf); rom_transaction_end(parser.total_size != -1); return parser.total_size; } /* return size or -1 if error */ ssize_t load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as) { gsize hex_blob_size; gchar *hex_blob; ssize_t total_size = 0; if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { return -1; } total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, hex_blob_size, as); g_free(hex_blob); return total_size; }