/* * STM32L4X5 USART (Universal Synchronous Asynchronous Receiver Transmitter) * * Copyright (c) 2023 Arnaud Minier * Copyright (c) 2023 Inès Varhol * * SPDX-License-Identifier: GPL-2.0-or-later * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * * The STM32L4X5 USART is heavily inspired by the stm32f2xx_usart * by Alistair Francis. * The reference used is the STMicroElectronics RM0351 Reference manual * for STM32L4x5 and STM32L4x6 advanced Arm ® -based 32-bit MCUs. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qemu/module.h" #include "qapi/error.h" #include "chardev/char-fe.h" #include "chardev/char-serial.h" #include "migration/vmstate.h" #include "hw/char/stm32l4x5_usart.h" #include "hw/clock.h" #include "hw/irq.h" #include "hw/qdev-clock.h" #include "hw/qdev-properties.h" #include "hw/qdev-properties-system.h" #include "hw/registerfields.h" #include "trace.h" REG32(CR1, 0x00) FIELD(CR1, M1, 28, 1) /* Word length (part 2, see M0) */ FIELD(CR1, EOBIE, 27, 1) /* End of Block interrupt enable */ FIELD(CR1, RTOIE, 26, 1) /* Receiver timeout interrupt enable */ FIELD(CR1, DEAT, 21, 5) /* Driver Enable assertion time */ FIELD(CR1, DEDT, 16, 5) /* Driver Enable de-assertion time */ FIELD(CR1, OVER8, 15, 1) /* Oversampling mode */ FIELD(CR1, CMIE, 14, 1) /* Character match interrupt enable */ FIELD(CR1, MME, 13, 1) /* Mute mode enable */ FIELD(CR1, M0, 12, 1) /* Word length (part 1, see M1) */ FIELD(CR1, WAKE, 11, 1) /* Receiver wakeup method */ FIELD(CR1, PCE, 10, 1) /* Parity control enable */ FIELD(CR1, PS, 9, 1) /* Parity selection */ FIELD(CR1, PEIE, 8, 1) /* PE interrupt enable */ FIELD(CR1, TXEIE, 7, 1) /* TXE interrupt enable */ FIELD(CR1, TCIE, 6, 1) /* Transmission complete interrupt enable */ FIELD(CR1, RXNEIE, 5, 1) /* RXNE interrupt enable */ FIELD(CR1, IDLEIE, 4, 1) /* IDLE interrupt enable */ FIELD(CR1, TE, 3, 1) /* Transmitter enable */ FIELD(CR1, RE, 2, 1) /* Receiver enable */ FIELD(CR1, UESM, 1, 1) /* USART enable in Stop mode */ FIELD(CR1, UE, 0, 1) /* USART enable */ REG32(CR2, 0x04) FIELD(CR2, ADD_1, 28, 4) /* ADD[7:4] */ FIELD(CR2, ADD_0, 24, 1) /* ADD[3:0] */ FIELD(CR2, RTOEN, 23, 1) /* Receiver timeout enable */ FIELD(CR2, ABRMOD, 21, 2) /* Auto baud rate mode */ FIELD(CR2, ABREN, 20, 1) /* Auto baud rate enable */ FIELD(CR2, MSBFIRST, 19, 1) /* Most significant bit first */ FIELD(CR2, DATAINV, 18, 1) /* Binary data inversion */ FIELD(CR2, TXINV, 17, 1) /* TX pin active level inversion */ FIELD(CR2, RXINV, 16, 1) /* RX pin active level inversion */ FIELD(CR2, SWAP, 15, 1) /* Swap RX/TX pins */ FIELD(CR2, LINEN, 14, 1) /* LIN mode enable */ FIELD(CR2, STOP, 12, 2) /* STOP bits */ FIELD(CR2, CLKEN, 11, 1) /* Clock enable */ FIELD(CR2, CPOL, 10, 1) /* Clock polarity */ FIELD(CR2, CPHA, 9, 1) /* Clock phase */ FIELD(CR2, LBCL, 8, 1) /* Last bit clock pulse */ FIELD(CR2, LBDIE, 6, 1) /* LIN break detection interrupt enable */ FIELD(CR2, LBDL, 5, 1) /* LIN break detection length */ FIELD(CR2, ADDM7, 4, 1) /* 7-bit / 4-bit Address Detection */ REG32(CR3, 0x08) /* TCBGTIE only on STM32L496xx/4A6xx devices */ FIELD(CR3, UCESM, 23, 1) /* USART Clock Enable in Stop Mode */ FIELD(CR3, WUFIE, 22, 1) /* Wakeup from Stop mode interrupt enable */ FIELD(CR3, WUS, 20, 2) /* Wakeup from Stop mode interrupt flag selection */ FIELD(CR3, SCARCNT, 17, 3) /* Smartcard auto-retry count */ FIELD(CR3, DEP, 15, 1) /* Driver enable polarity selection */ FIELD(CR3, DEM, 14, 1) /* Driver enable mode */ FIELD(CR3, DDRE, 13, 1) /* DMA Disable on Reception Error */ FIELD(CR3, OVRDIS, 12, 1) /* Overrun Disable */ FIELD(CR3, ONEBIT, 11, 1) /* One sample bit method enable */ FIELD(CR3, CTSIE, 10, 1) /* CTS interrupt enable */ FIELD(CR3, CTSE, 9, 1) /* CTS enable */ FIELD(CR3, RTSE, 8, 1) /* RTS enable */ FIELD(CR3, DMAT, 7, 1) /* DMA enable transmitter */ FIELD(CR3, DMAR, 6, 1) /* DMA enable receiver */ FIELD(CR3, SCEN, 5, 1) /* Smartcard mode enable */ FIELD(CR3, NACK, 4, 1) /* Smartcard NACK enable */ FIELD(CR3, HDSEL, 3, 1) /* Half-duplex selection */ FIELD(CR3, IRLP, 2, 1) /* IrDA low-power */ FIELD(CR3, IREN, 1, 1) /* IrDA mode enable */ FIELD(CR3, EIE, 0, 1) /* Error interrupt enable */ REG32(BRR, 0x0C) FIELD(BRR, BRR, 0, 16) REG32(GTPR, 0x10) FIELD(GTPR, GT, 8, 8) /* Guard time value */ FIELD(GTPR, PSC, 0, 8) /* Prescaler value */ REG32(RTOR, 0x14) FIELD(RTOR, BLEN, 24, 8) /* Block Length */ FIELD(RTOR, RTO, 0, 24) /* Receiver timeout value */ REG32(RQR, 0x18) FIELD(RQR, TXFRQ, 4, 1) /* Transmit data flush request */ FIELD(RQR, RXFRQ, 3, 1) /* Receive data flush request */ FIELD(RQR, MMRQ, 2, 1) /* Mute mode request */ FIELD(RQR, SBKRQ, 1, 1) /* Send break request */ FIELD(RQR, ABBRRQ, 0, 1) /* Auto baud rate request */ REG32(ISR, 0x1C) /* TCBGT only for STM32L475xx/476xx/486xx devices */ FIELD(ISR, REACK, 22, 1) /* Receive enable acknowledge flag */ FIELD(ISR, TEACK, 21, 1) /* Transmit enable acknowledge flag */ FIELD(ISR, WUF, 20, 1) /* Wakeup from Stop mode flag */ FIELD(ISR, RWU, 19, 1) /* Receiver wakeup from Mute mode */ FIELD(ISR, SBKF, 18, 1) /* Send break flag */ FIELD(ISR, CMF, 17, 1) /* Character match flag */ FIELD(ISR, BUSY, 16, 1) /* Busy flag */ FIELD(ISR, ABRF, 15, 1) /* Auto Baud rate flag */ FIELD(ISR, ABRE, 14, 1) /* Auto Baud rate error */ FIELD(ISR, EOBF, 12, 1) /* End of block flag */ FIELD(ISR, RTOF, 11, 1) /* Receiver timeout */ FIELD(ISR, CTS, 10, 1) /* CTS flag */ FIELD(ISR, CTSIF, 9, 1) /* CTS interrupt flag */ FIELD(ISR, LBDF, 8, 1) /* LIN break detection flag */ FIELD(ISR, TXE, 7, 1) /* Transmit data register empty */ FIELD(ISR, TC, 6, 1) /* Transmission complete */ FIELD(ISR, RXNE, 5, 1) /* Read data register not empty */ FIELD(ISR, IDLE, 4, 1) /* Idle line detected */ FIELD(ISR, ORE, 3, 1) /* Overrun error */ FIELD(ISR, NF, 2, 1) /* START bit Noise detection flag */ FIELD(ISR, FE, 1, 1) /* Framing Error */ FIELD(ISR, PE, 0, 1) /* Parity Error */ REG32(ICR, 0x20) FIELD(ICR, WUCF, 20, 1) /* Wakeup from Stop mode clear flag */ FIELD(ICR, CMCF, 17, 1) /* Character match clear flag */ FIELD(ICR, EOBCF, 12, 1) /* End of block clear flag */ FIELD(ICR, RTOCF, 11, 1) /* Receiver timeout clear flag */ FIELD(ICR, CTSCF, 9, 1) /* CTS clear flag */ FIELD(ICR, LBDCF, 8, 1) /* LIN break detection clear flag */ /* TCBGTCF only on STM32L496xx/4A6xx devices */ FIELD(ICR, TCCF, 6, 1) /* Transmission complete clear flag */ FIELD(ICR, IDLECF, 4, 1) /* Idle line detected clear flag */ FIELD(ICR, ORECF, 3, 1) /* Overrun error clear flag */ FIELD(ICR, NCF, 2, 1) /* Noise detected clear flag */ FIELD(ICR, FECF, 1, 1) /* Framing error clear flag */ FIELD(ICR, PECF, 0, 1) /* Parity error clear flag */ REG32(RDR, 0x24) FIELD(RDR, RDR, 0, 9) REG32(TDR, 0x28) FIELD(TDR, TDR, 0, 9) static void stm32l4x5_update_irq(Stm32l4x5UsartBaseState *s) { if (((s->isr & R_ISR_WUF_MASK) && (s->cr3 & R_CR3_WUFIE_MASK)) || ((s->isr & R_ISR_CMF_MASK) && (s->cr1 & R_CR1_CMIE_MASK)) || ((s->isr & R_ISR_ABRF_MASK) && (s->cr1 & R_CR1_RXNEIE_MASK)) || ((s->isr & R_ISR_EOBF_MASK) && (s->cr1 & R_CR1_EOBIE_MASK)) || ((s->isr & R_ISR_RTOF_MASK) && (s->cr1 & R_CR1_RTOIE_MASK)) || ((s->isr & R_ISR_CTSIF_MASK) && (s->cr3 & R_CR3_CTSIE_MASK)) || ((s->isr & R_ISR_LBDF_MASK) && (s->cr2 & R_CR2_LBDIE_MASK)) || ((s->isr & R_ISR_TXE_MASK) && (s->cr1 & R_CR1_TXEIE_MASK)) || ((s->isr & R_ISR_TC_MASK) && (s->cr1 & R_CR1_TCIE_MASK)) || ((s->isr & R_ISR_RXNE_MASK) && (s->cr1 & R_CR1_RXNEIE_MASK)) || ((s->isr & R_ISR_IDLE_MASK) && (s->cr1 & R_CR1_IDLEIE_MASK)) || ((s->isr & R_ISR_ORE_MASK) && ((s->cr1 & R_CR1_RXNEIE_MASK) || (s->cr3 & R_CR3_EIE_MASK))) || /* TODO: Handle NF ? */ ((s->isr & R_ISR_FE_MASK) && (s->cr3 & R_CR3_EIE_MASK)) || ((s->isr & R_ISR_PE_MASK) && (s->cr1 & R_CR1_PEIE_MASK))) { qemu_irq_raise(s->irq); trace_stm32l4x5_usart_irq_raised(s->isr); } else { qemu_irq_lower(s->irq); trace_stm32l4x5_usart_irq_lowered(); } } static int stm32l4x5_usart_base_can_receive(void *opaque) { Stm32l4x5UsartBaseState *s = opaque; if (!(s->isr & R_ISR_RXNE_MASK)) { return 1; } return 0; } static void stm32l4x5_usart_base_receive(void *opaque, const uint8_t *buf, int size) { Stm32l4x5UsartBaseState *s = opaque; if (!((s->cr1 & R_CR1_UE_MASK) && (s->cr1 & R_CR1_RE_MASK))) { trace_stm32l4x5_usart_receiver_not_enabled( FIELD_EX32(s->cr1, CR1, UE), FIELD_EX32(s->cr1, CR1, RE)); return; } /* Check if overrun detection is enabled and if there is an overrun */ if (!(s->cr3 & R_CR3_OVRDIS_MASK) && (s->isr & R_ISR_RXNE_MASK)) { /* * A character has been received while * the previous has not been read = Overrun. */ s->isr |= R_ISR_ORE_MASK; trace_stm32l4x5_usart_overrun_detected(s->rdr, *buf); } else { /* No overrun */ s->rdr = *buf; s->isr |= R_ISR_RXNE_MASK; trace_stm32l4x5_usart_rx(s->rdr); } stm32l4x5_update_irq(s); } /* * Try to send tx data, and arrange to be called back later if * we can't (ie the char backend is busy/blocking). */ static gboolean usart_transmit(void *do_not_use, GIOCondition cond, void *opaque) { Stm32l4x5UsartBaseState *s = STM32L4X5_USART_BASE(opaque); int ret; /* TODO: Handle 9 bits transmission */ uint8_t ch = s->tdr; s->watch_tag = 0; if (!(s->cr1 & R_CR1_TE_MASK) || (s->isr & R_ISR_TXE_MASK)) { return G_SOURCE_REMOVE; } ret = qemu_chr_fe_write(&s->chr, &ch, 1); if (ret <= 0) { s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP, usart_transmit, s); if (!s->watch_tag) { /* * Most common reason to be here is "no chardev backend": * just insta-drain the buffer, so the serial output * goes into a void, rather than blocking the guest. */ goto buffer_drained; } /* Transmit pending */ trace_stm32l4x5_usart_tx_pending(); return G_SOURCE_REMOVE; } buffer_drained: /* Character successfully sent */ trace_stm32l4x5_usart_tx(ch); s->isr |= R_ISR_TC_MASK | R_ISR_TXE_MASK; stm32l4x5_update_irq(s); return G_SOURCE_REMOVE; } static void usart_cancel_transmit(Stm32l4x5UsartBaseState *s) { if (s->watch_tag) { g_source_remove(s->watch_tag); s->watch_tag = 0; } } static void stm32l4x5_update_params(Stm32l4x5UsartBaseState *s) { int speed, parity, data_bits, stop_bits; uint32_t value, usart_div; QEMUSerialSetParams ssp; /* Select the parity type */ if (s->cr1 & R_CR1_PCE_MASK) { if (s->cr1 & R_CR1_PS_MASK) { parity = 'O'; } else { parity = 'E'; } } else { parity = 'N'; } /* Select the number of stop bits */ switch (FIELD_EX32(s->cr2, CR2, STOP)) { case 0: stop_bits = 1; break; case 2: stop_bits = 2; break; default: qemu_log_mask(LOG_UNIMP, "UNIMPLEMENTED: fractionnal stop bits; CR2[13:12] = %u", FIELD_EX32(s->cr2, CR2, STOP)); return; } /* Select the length of the word */ switch ((FIELD_EX32(s->cr1, CR1, M1) << 1) | FIELD_EX32(s->cr1, CR1, M0)) { case 0: data_bits = 8; break; case 1: data_bits = 9; break; case 2: data_bits = 7; break; default: qemu_log_mask(LOG_GUEST_ERROR, "UNDEFINED: invalid word length, CR1.M = 0b11"); return; } /* Select the baud rate */ value = FIELD_EX32(s->brr, BRR, BRR); if (value < 16) { qemu_log_mask(LOG_GUEST_ERROR, "UNDEFINED: BRR less than 16: %u", value); return; } if (FIELD_EX32(s->cr1, CR1, OVER8) == 0) { /* * Oversampling by 16 * BRR = USARTDIV */ usart_div = value; } else { /* * Oversampling by 8 * - BRR[2:0] = USARTDIV[3:0] shifted 1 bit to the right. * - BRR[3] must be kept cleared. * - BRR[15:4] = USARTDIV[15:4] * - The frequency is multiplied by 2 */ usart_div = ((value & 0xFFF0) | ((value & 0x0007) << 1)) / 2; } speed = clock_get_hz(s->clk) / usart_div; ssp.speed = speed; ssp.parity = parity; ssp.data_bits = data_bits; ssp.stop_bits = stop_bits; qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp); trace_stm32l4x5_usart_update_params(speed, parity, data_bits, stop_bits); } static void stm32l4x5_usart_base_reset_hold(Object *obj, ResetType type) { Stm32l4x5UsartBaseState *s = STM32L4X5_USART_BASE(obj); s->cr1 = 0x00000000; s->cr2 = 0x00000000; s->cr3 = 0x00000000; s->brr = 0x00000000; s->gtpr = 0x00000000; s->rtor = 0x00000000; s->isr = 0x020000C0; s->rdr = 0x00000000; s->tdr = 0x00000000; usart_cancel_transmit(s); stm32l4x5_update_irq(s); } static void usart_update_rqr(Stm32l4x5UsartBaseState *s, uint32_t value) { /* TXFRQ */ /* Reset RXNE flag */ if (value & R_RQR_RXFRQ_MASK) { s->isr &= ~R_ISR_RXNE_MASK; } /* MMRQ */ /* SBKRQ */ /* ABRRQ */ stm32l4x5_update_irq(s); } static uint64_t stm32l4x5_usart_base_read(void *opaque, hwaddr addr, unsigned int size) { Stm32l4x5UsartBaseState *s = opaque; uint64_t retvalue = 0; switch (addr) { case A_CR1: retvalue = s->cr1; break; case A_CR2: retvalue = s->cr2; break; case A_CR3: retvalue = s->cr3; break; case A_BRR: retvalue = FIELD_EX32(s->brr, BRR, BRR); break; case A_GTPR: retvalue = s->gtpr; break; case A_RTOR: retvalue = s->rtor; break; case A_RQR: /* RQR is a write only register */ retvalue = 0x00000000; break; case A_ISR: retvalue = s->isr; break; case A_ICR: /* ICR is a clear register */ retvalue = 0x00000000; break; case A_RDR: retvalue = FIELD_EX32(s->rdr, RDR, RDR); /* Reset RXNE flag */ s->isr &= ~R_ISR_RXNE_MASK; stm32l4x5_update_irq(s); break; case A_TDR: retvalue = FIELD_EX32(s->tdr, TDR, TDR); break; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr); break; } trace_stm32l4x5_usart_read(addr, retvalue); return retvalue; } static void stm32l4x5_usart_base_write(void *opaque, hwaddr addr, uint64_t val64, unsigned int size) { Stm32l4x5UsartBaseState *s = opaque; const uint32_t value = val64; trace_stm32l4x5_usart_write(addr, value); switch (addr) { case A_CR1: s->cr1 = value; stm32l4x5_update_params(s); stm32l4x5_update_irq(s); return; case A_CR2: s->cr2 = value; stm32l4x5_update_params(s); return; case A_CR3: s->cr3 = value; return; case A_BRR: s->brr = value; stm32l4x5_update_params(s); return; case A_GTPR: s->gtpr = value; return; case A_RTOR: s->rtor = value; return; case A_RQR: usart_update_rqr(s, value); return; case A_ISR: qemu_log_mask(LOG_GUEST_ERROR, "%s: ISR is read only !\n", __func__); return; case A_ICR: /* Clear the status flags */ s->isr &= ~value; stm32l4x5_update_irq(s); return; case A_RDR: qemu_log_mask(LOG_GUEST_ERROR, "%s: RDR is read only !\n", __func__); return; case A_TDR: s->tdr = value; s->isr &= ~R_ISR_TXE_MASK; usart_transmit(NULL, G_IO_OUT, s); return; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr); } } static const MemoryRegionOps stm32l4x5_usart_base_ops = { .read = stm32l4x5_usart_base_read, .write = stm32l4x5_usart_base_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .max_access_size = 4, .min_access_size = 4, .unaligned = false }, .impl = { .max_access_size = 4, .min_access_size = 4, .unaligned = false }, }; static Property stm32l4x5_usart_base_properties[] = { DEFINE_PROP_CHR("chardev", Stm32l4x5UsartBaseState, chr), DEFINE_PROP_END_OF_LIST(), }; static void stm32l4x5_usart_base_init(Object *obj) { Stm32l4x5UsartBaseState *s = STM32L4X5_USART_BASE(obj); sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq); memory_region_init_io(&s->mmio, obj, &stm32l4x5_usart_base_ops, s, TYPE_STM32L4X5_USART_BASE, 0x400); sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio); s->clk = qdev_init_clock_in(DEVICE(s), "clk", NULL, s, 0); } static int stm32l4x5_usart_base_post_load(void *opaque, int version_id) { Stm32l4x5UsartBaseState *s = (Stm32l4x5UsartBaseState *)opaque; stm32l4x5_update_params(s); return 0; } static const VMStateDescription vmstate_stm32l4x5_usart_base = { .name = TYPE_STM32L4X5_USART_BASE, .version_id = 1, .minimum_version_id = 1, .post_load = stm32l4x5_usart_base_post_load, .fields = (VMStateField[]) { VMSTATE_UINT32(cr1, Stm32l4x5UsartBaseState), VMSTATE_UINT32(cr2, Stm32l4x5UsartBaseState), VMSTATE_UINT32(cr3, Stm32l4x5UsartBaseState), VMSTATE_UINT32(brr, Stm32l4x5UsartBaseState), VMSTATE_UINT32(gtpr, Stm32l4x5UsartBaseState), VMSTATE_UINT32(rtor, Stm32l4x5UsartBaseState), VMSTATE_UINT32(isr, Stm32l4x5UsartBaseState), VMSTATE_UINT32(rdr, Stm32l4x5UsartBaseState), VMSTATE_UINT32(tdr, Stm32l4x5UsartBaseState), VMSTATE_CLOCK(clk, Stm32l4x5UsartBaseState), VMSTATE_END_OF_LIST() } }; static void stm32l4x5_usart_base_realize(DeviceState *dev, Error **errp) { ERRP_GUARD(); Stm32l4x5UsartBaseState *s = STM32L4X5_USART_BASE(dev); if (!clock_has_source(s->clk)) { error_setg(errp, "USART clock must be wired up by SoC code"); return; } qemu_chr_fe_set_handlers(&s->chr, stm32l4x5_usart_base_can_receive, stm32l4x5_usart_base_receive, NULL, NULL, s, NULL, true); } static void stm32l4x5_usart_base_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); ResettableClass *rc = RESETTABLE_CLASS(klass); rc->phases.hold = stm32l4x5_usart_base_reset_hold; device_class_set_props(dc, stm32l4x5_usart_base_properties); dc->realize = stm32l4x5_usart_base_realize; dc->vmsd = &vmstate_stm32l4x5_usart_base; } static void stm32l4x5_usart_class_init(ObjectClass *oc, void *data) { Stm32l4x5UsartBaseClass *subc = STM32L4X5_USART_BASE_CLASS(oc); subc->type = STM32L4x5_USART; } static void stm32l4x5_uart_class_init(ObjectClass *oc, void *data) { Stm32l4x5UsartBaseClass *subc = STM32L4X5_USART_BASE_CLASS(oc); subc->type = STM32L4x5_UART; } static void stm32l4x5_lpuart_class_init(ObjectClass *oc, void *data) { Stm32l4x5UsartBaseClass *subc = STM32L4X5_USART_BASE_CLASS(oc); subc->type = STM32L4x5_LPUART; } static const TypeInfo stm32l4x5_usart_types[] = { { .name = TYPE_STM32L4X5_USART_BASE, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(Stm32l4x5UsartBaseState), .instance_init = stm32l4x5_usart_base_init, .class_init = stm32l4x5_usart_base_class_init, .abstract = true, }, { .name = TYPE_STM32L4X5_USART, .parent = TYPE_STM32L4X5_USART_BASE, .class_init = stm32l4x5_usart_class_init, }, { .name = TYPE_STM32L4X5_UART, .parent = TYPE_STM32L4X5_USART_BASE, .class_init = stm32l4x5_uart_class_init, }, { .name = TYPE_STM32L4X5_LPUART, .parent = TYPE_STM32L4X5_USART_BASE, .class_init = stm32l4x5_lpuart_class_init, } }; DEFINE_TYPES(stm32l4x5_usart_types)