/* * QEMU lowRISC Ibex UART device * * Copyright (c) 2020 Western Digital * * For details check the documentation here: * https://docs.opentitan.org/hw/ip/uart/doc/ * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "hw/char/ibex_uart.h" #include "hw/irq.h" #include "hw/qdev-clock.h" #include "hw/qdev-properties.h" #include "hw/qdev-properties-system.h" #include "hw/registerfields.h" #include "migration/vmstate.h" #include "qemu/log.h" #include "qemu/module.h" REG32(INTR_STATE, 0x00) FIELD(INTR_STATE, TX_WATERMARK, 0, 1) FIELD(INTR_STATE, RX_WATERMARK, 1, 1) FIELD(INTR_STATE, TX_EMPTY, 2, 1) FIELD(INTR_STATE, RX_OVERFLOW, 3, 1) REG32(INTR_ENABLE, 0x04) REG32(INTR_TEST, 0x08) REG32(ALERT_TEST, 0x0C) REG32(CTRL, 0x10) FIELD(CTRL, TX_ENABLE, 0, 1) FIELD(CTRL, RX_ENABLE, 1, 1) FIELD(CTRL, NF, 2, 1) FIELD(CTRL, SLPBK, 4, 1) FIELD(CTRL, LLPBK, 5, 1) FIELD(CTRL, PARITY_EN, 6, 1) FIELD(CTRL, PARITY_ODD, 7, 1) FIELD(CTRL, RXBLVL, 8, 2) FIELD(CTRL, NCO, 16, 16) REG32(STATUS, 0x14) FIELD(STATUS, TXFULL, 0, 1) FIELD(STATUS, RXFULL, 1, 1) FIELD(STATUS, TXEMPTY, 2, 1) FIELD(STATUS, RXIDLE, 4, 1) FIELD(STATUS, RXEMPTY, 5, 1) REG32(RDATA, 0x18) REG32(WDATA, 0x1C) REG32(FIFO_CTRL, 0x20) FIELD(FIFO_CTRL, RXRST, 0, 1) FIELD(FIFO_CTRL, TXRST, 1, 1) FIELD(FIFO_CTRL, RXILVL, 2, 3) FIELD(FIFO_CTRL, TXILVL, 5, 2) REG32(FIFO_STATUS, 0x24) FIELD(FIFO_STATUS, TXLVL, 0, 5) FIELD(FIFO_STATUS, RXLVL, 16, 5) REG32(OVRD, 0x28) REG32(VAL, 0x2C) REG32(TIMEOUT_CTRL, 0x30) static void ibex_uart_update_irqs(IbexUartState *s) { if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_TX_WATERMARK_MASK) { qemu_set_irq(s->tx_watermark, 1); } else { qemu_set_irq(s->tx_watermark, 0); } if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_RX_WATERMARK_MASK) { qemu_set_irq(s->rx_watermark, 1); } else { qemu_set_irq(s->rx_watermark, 0); } if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_TX_EMPTY_MASK) { qemu_set_irq(s->tx_empty, 1); } else { qemu_set_irq(s->tx_empty, 0); } if (s->uart_intr_state & s->uart_intr_enable & R_INTR_STATE_RX_OVERFLOW_MASK) { qemu_set_irq(s->rx_overflow, 1); } else { qemu_set_irq(s->rx_overflow, 0); } } static int ibex_uart_can_receive(void *opaque) { IbexUartState *s = opaque; if ((s->uart_ctrl & R_CTRL_RX_ENABLE_MASK) && !(s->uart_status & R_STATUS_RXFULL_MASK)) { return 1; } return 0; } static void ibex_uart_receive(void *opaque, const uint8_t *buf, int size) { IbexUartState *s = opaque; uint8_t rx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_RXILVL_MASK) >> R_FIFO_CTRL_RXILVL_SHIFT; s->uart_rdata = *buf; s->uart_status &= ~R_STATUS_RXIDLE_MASK; s->uart_status &= ~R_STATUS_RXEMPTY_MASK; /* The RXFULL is set after receiving a single byte * as the FIFO buffers are not yet implemented. */ s->uart_status |= R_STATUS_RXFULL_MASK; s->rx_level += 1; if (size > rx_fifo_level) { s->uart_intr_state |= R_INTR_STATE_RX_WATERMARK_MASK; } ibex_uart_update_irqs(s); } static gboolean ibex_uart_xmit(void *do_not_use, GIOCondition cond, void *opaque) { IbexUartState *s = opaque; uint8_t tx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_TXILVL_MASK) >> R_FIFO_CTRL_TXILVL_SHIFT; int ret; /* instant drain the fifo when there's no back-end */ if (!qemu_chr_fe_backend_connected(&s->chr)) { s->tx_level = 0; return G_SOURCE_REMOVE; } if (!s->tx_level) { s->uart_status &= ~R_STATUS_TXFULL_MASK; s->uart_status |= R_STATUS_TXEMPTY_MASK; s->uart_intr_state |= R_INTR_STATE_TX_EMPTY_MASK; s->uart_intr_state &= ~R_INTR_STATE_TX_WATERMARK_MASK; ibex_uart_update_irqs(s); return G_SOURCE_REMOVE; } ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_level); if (ret >= 0) { s->tx_level -= ret; memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_level); } if (s->tx_level) { guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP, ibex_uart_xmit, s); if (!r) { s->tx_level = 0; return G_SOURCE_REMOVE; } } /* Clear the TX Full bit */ if (s->tx_level != IBEX_UART_TX_FIFO_SIZE) { s->uart_status &= ~R_STATUS_TXFULL_MASK; } /* Disable the TX_WATERMARK IRQ */ if (s->tx_level < tx_fifo_level) { s->uart_intr_state &= ~R_INTR_STATE_TX_WATERMARK_MASK; } /* Set TX empty */ if (s->tx_level == 0) { s->uart_status |= R_STATUS_TXEMPTY_MASK; s->uart_intr_state |= R_INTR_STATE_TX_EMPTY_MASK; } ibex_uart_update_irqs(s); return G_SOURCE_REMOVE; } static void uart_write_tx_fifo(IbexUartState *s, const uint8_t *buf, int size) { uint64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); uint8_t tx_fifo_level = (s->uart_fifo_ctrl & R_FIFO_CTRL_TXILVL_MASK) >> R_FIFO_CTRL_TXILVL_SHIFT; if (size > IBEX_UART_TX_FIFO_SIZE - s->tx_level) { size = IBEX_UART_TX_FIFO_SIZE - s->tx_level; qemu_log_mask(LOG_GUEST_ERROR, "ibex_uart: TX FIFO overflow"); } memcpy(s->tx_fifo + s->tx_level, buf, size); s->tx_level += size; if (s->tx_level > 0) { s->uart_status &= ~R_STATUS_TXEMPTY_MASK; } if (s->tx_level >= tx_fifo_level) { s->uart_intr_state |= R_INTR_STATE_TX_WATERMARK_MASK; ibex_uart_update_irqs(s); } if (s->tx_level == IBEX_UART_TX_FIFO_SIZE) { s->uart_status |= R_STATUS_TXFULL_MASK; } timer_mod(s->fifo_trigger_handle, current_time + (s->char_tx_time * 4)); } static void ibex_uart_reset(DeviceState *dev) { IbexUartState *s = IBEX_UART(dev); s->uart_intr_state = 0x00000000; s->uart_intr_state = 0x00000000; s->uart_intr_enable = 0x00000000; s->uart_ctrl = 0x00000000; s->uart_status = 0x0000003c; s->uart_rdata = 0x00000000; s->uart_fifo_ctrl = 0x00000000; s->uart_fifo_status = 0x00000000; s->uart_ovrd = 0x00000000; s->uart_val = 0x00000000; s->uart_timeout_ctrl = 0x00000000; s->tx_level = 0; s->rx_level = 0; s->char_tx_time = (NANOSECONDS_PER_SECOND / 230400) * 10; ibex_uart_update_irqs(s); } static uint64_t ibex_uart_get_baud(IbexUartState *s) { uint64_t baud; baud = ((s->uart_ctrl & R_CTRL_NCO_MASK) >> 16); baud *= clock_get_hz(s->f_clk); baud >>= 20; return baud; } static uint64_t ibex_uart_read(void *opaque, hwaddr addr, unsigned int size) { IbexUartState *s = opaque; uint64_t retvalue = 0; switch (addr >> 2) { case R_INTR_STATE: retvalue = s->uart_intr_state; break; case R_INTR_ENABLE: retvalue = s->uart_intr_enable; break; case R_INTR_TEST: qemu_log_mask(LOG_GUEST_ERROR, "%s: wdata is write only\n", __func__); break; case R_CTRL: retvalue = s->uart_ctrl; break; case R_STATUS: retvalue = s->uart_status; break; case R_RDATA: retvalue = s->uart_rdata; if ((s->uart_ctrl & R_CTRL_RX_ENABLE_MASK) && (s->rx_level > 0)) { qemu_chr_fe_accept_input(&s->chr); s->rx_level -= 1; s->uart_status &= ~R_STATUS_RXFULL_MASK; if (s->rx_level == 0) { s->uart_status |= R_STATUS_RXIDLE_MASK; s->uart_status |= R_STATUS_RXEMPTY_MASK; } } break; case R_WDATA: qemu_log_mask(LOG_GUEST_ERROR, "%s: wdata is write only\n", __func__); break; case R_FIFO_CTRL: retvalue = s->uart_fifo_ctrl; break; case R_FIFO_STATUS: retvalue = s->uart_fifo_status; retvalue |= (s->rx_level & 0x1F) << R_FIFO_STATUS_RXLVL_SHIFT; retvalue |= (s->tx_level & 0x1F) << R_FIFO_STATUS_TXLVL_SHIFT; qemu_log_mask(LOG_UNIMP, "%s: RX fifos are not supported\n", __func__); break; case R_OVRD: retvalue = s->uart_ovrd; qemu_log_mask(LOG_UNIMP, "%s: ovrd is not supported\n", __func__); break; case R_VAL: retvalue = s->uart_val; qemu_log_mask(LOG_UNIMP, "%s: val is not supported\n", __func__); break; case R_TIMEOUT_CTRL: retvalue = s->uart_timeout_ctrl; qemu_log_mask(LOG_UNIMP, "%s: timeout_ctrl is not supported\n", __func__); break; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr); return 0; } return retvalue; } static void ibex_uart_write(void *opaque, hwaddr addr, uint64_t val64, unsigned int size) { IbexUartState *s = opaque; uint32_t value = val64; switch (addr >> 2) { case R_INTR_STATE: /* Write 1 clear */ s->uart_intr_state &= ~value; ibex_uart_update_irqs(s); break; case R_INTR_ENABLE: s->uart_intr_enable = value; ibex_uart_update_irqs(s); break; case R_INTR_TEST: s->uart_intr_state |= value; ibex_uart_update_irqs(s); break; case R_CTRL: s->uart_ctrl = value; if (value & R_CTRL_NF_MASK) { qemu_log_mask(LOG_UNIMP, "%s: UART_CTRL_NF is not supported\n", __func__); } if (value & R_CTRL_SLPBK_MASK) { qemu_log_mask(LOG_UNIMP, "%s: UART_CTRL_SLPBK is not supported\n", __func__); } if (value & R_CTRL_LLPBK_MASK) { qemu_log_mask(LOG_UNIMP, "%s: UART_CTRL_LLPBK is not supported\n", __func__); } if (value & R_CTRL_PARITY_EN_MASK) { qemu_log_mask(LOG_UNIMP, "%s: UART_CTRL_PARITY_EN is not supported\n", __func__); } if (value & R_CTRL_PARITY_ODD_MASK) { qemu_log_mask(LOG_UNIMP, "%s: UART_CTRL_PARITY_ODD is not supported\n", __func__); } if (value & R_CTRL_RXBLVL_MASK) { qemu_log_mask(LOG_UNIMP, "%s: UART_CTRL_RXBLVL is not supported\n", __func__); } if (value & R_CTRL_NCO_MASK) { uint64_t baud = ibex_uart_get_baud(s); s->char_tx_time = (NANOSECONDS_PER_SECOND / baud) * 10; } break; case R_STATUS: qemu_log_mask(LOG_GUEST_ERROR, "%s: status is read only\n", __func__); break; case R_RDATA: qemu_log_mask(LOG_GUEST_ERROR, "%s: rdata is read only\n", __func__); break; case R_WDATA: uart_write_tx_fifo(s, (uint8_t *) &value, 1); break; case R_FIFO_CTRL: s->uart_fifo_ctrl = value; if (value & R_FIFO_CTRL_RXRST_MASK) { s->rx_level = 0; qemu_log_mask(LOG_UNIMP, "%s: RX fifos are not supported\n", __func__); } if (value & R_FIFO_CTRL_TXRST_MASK) { s->tx_level = 0; } break; case R_FIFO_STATUS: qemu_log_mask(LOG_GUEST_ERROR, "%s: fifo_status is read only\n", __func__); break; case R_OVRD: s->uart_ovrd = value; qemu_log_mask(LOG_UNIMP, "%s: ovrd is not supported\n", __func__); break; case R_VAL: qemu_log_mask(LOG_GUEST_ERROR, "%s: val is read only\n", __func__); break; case R_TIMEOUT_CTRL: s->uart_timeout_ctrl = value; qemu_log_mask(LOG_UNIMP, "%s: timeout_ctrl is not supported\n", __func__); break; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr); } } static void ibex_uart_clk_update(void *opaque, ClockEvent event) { IbexUartState *s = opaque; /* recompute uart's speed on clock change */ uint64_t baud = ibex_uart_get_baud(s); s->char_tx_time = (NANOSECONDS_PER_SECOND / baud) * 10; } static void fifo_trigger_update(void *opaque) { IbexUartState *s = opaque; if (s->uart_ctrl & R_CTRL_TX_ENABLE_MASK) { ibex_uart_xmit(NULL, G_IO_OUT, s); } } static const MemoryRegionOps ibex_uart_ops = { .read = ibex_uart_read, .write = ibex_uart_write, .endianness = DEVICE_NATIVE_ENDIAN, .impl.min_access_size = 4, .impl.max_access_size = 4, }; static int ibex_uart_post_load(void *opaque, int version_id) { IbexUartState *s = opaque; ibex_uart_update_irqs(s); return 0; } static const VMStateDescription vmstate_ibex_uart = { .name = TYPE_IBEX_UART, .version_id = 1, .minimum_version_id = 1, .post_load = ibex_uart_post_load, .fields = (const VMStateField[]) { VMSTATE_UINT8_ARRAY(tx_fifo, IbexUartState, IBEX_UART_TX_FIFO_SIZE), VMSTATE_UINT32(tx_level, IbexUartState), VMSTATE_UINT64(char_tx_time, IbexUartState), VMSTATE_TIMER_PTR(fifo_trigger_handle, IbexUartState), VMSTATE_UINT32(uart_intr_state, IbexUartState), VMSTATE_UINT32(uart_intr_enable, IbexUartState), VMSTATE_UINT32(uart_ctrl, IbexUartState), VMSTATE_UINT32(uart_status, IbexUartState), VMSTATE_UINT32(uart_rdata, IbexUartState), VMSTATE_UINT32(uart_fifo_ctrl, IbexUartState), VMSTATE_UINT32(uart_fifo_status, IbexUartState), VMSTATE_UINT32(uart_ovrd, IbexUartState), VMSTATE_UINT32(uart_val, IbexUartState), VMSTATE_UINT32(uart_timeout_ctrl, IbexUartState), VMSTATE_END_OF_LIST() } }; static Property ibex_uart_properties[] = { DEFINE_PROP_CHR("chardev", IbexUartState, chr), DEFINE_PROP_END_OF_LIST(), }; static void ibex_uart_init(Object *obj) { IbexUartState *s = IBEX_UART(obj); s->f_clk = qdev_init_clock_in(DEVICE(obj), "f_clock", ibex_uart_clk_update, s, ClockUpdate); clock_set_hz(s->f_clk, IBEX_UART_CLOCK); sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->tx_watermark); sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->rx_watermark); sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->tx_empty); sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->rx_overflow); memory_region_init_io(&s->mmio, obj, &ibex_uart_ops, s, TYPE_IBEX_UART, 0x400); sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio); } static void ibex_uart_realize(DeviceState *dev, Error **errp) { IbexUartState *s = IBEX_UART(dev); s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL, fifo_trigger_update, s); qemu_chr_fe_set_handlers(&s->chr, ibex_uart_can_receive, ibex_uart_receive, NULL, NULL, s, NULL, true); } static void ibex_uart_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); device_class_set_legacy_reset(dc, ibex_uart_reset); dc->realize = ibex_uart_realize; dc->vmsd = &vmstate_ibex_uart; device_class_set_props(dc, ibex_uart_properties); set_bit(DEVICE_CATEGORY_INPUT, dc->categories); } static const TypeInfo ibex_uart_info = { .name = TYPE_IBEX_UART, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(IbexUartState), .instance_init = ibex_uart_init, .class_init = ibex_uart_class_init, }; static void ibex_uart_register_types(void) { type_register_static(&ibex_uart_info); } type_init(ibex_uart_register_types)