/* * Xilinx Versal Virtual board. * * Copyright (c) 2018 Xilinx Inc. * Written by Edgar E. Iglesias * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 or * (at your option) any later version. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qemu/error-report.h" #include "qapi/error.h" #include "sysemu/device_tree.h" #include "exec/address-spaces.h" #include "hw/boards.h" #include "hw/sysbus.h" #include "hw/arm/sysbus-fdt.h" #include "hw/arm/fdt.h" #include "cpu.h" #include "hw/qdev-properties.h" #include "hw/arm/xlnx-versal.h" #define TYPE_XLNX_VERSAL_VIRT_MACHINE MACHINE_TYPE_NAME("xlnx-versal-virt") #define XLNX_VERSAL_VIRT_MACHINE(obj) \ OBJECT_CHECK(VersalVirt, (obj), TYPE_XLNX_VERSAL_VIRT_MACHINE) typedef struct VersalVirt { MachineState parent_obj; Versal soc; void *fdt; int fdt_size; struct { uint32_t gic; uint32_t ethernet_phy[2]; uint32_t clk_125Mhz; uint32_t clk_25Mhz; } phandle; struct arm_boot_info binfo; struct { bool secure; } cfg; } VersalVirt; static void fdt_create(VersalVirt *s) { MachineClass *mc = MACHINE_GET_CLASS(s); int i; s->fdt = create_device_tree(&s->fdt_size); if (!s->fdt) { error_report("create_device_tree() failed"); exit(1); } /* Allocate all phandles. */ s->phandle.gic = qemu_fdt_alloc_phandle(s->fdt); for (i = 0; i < ARRAY_SIZE(s->phandle.ethernet_phy); i++) { s->phandle.ethernet_phy[i] = qemu_fdt_alloc_phandle(s->fdt); } s->phandle.clk_25Mhz = qemu_fdt_alloc_phandle(s->fdt); s->phandle.clk_125Mhz = qemu_fdt_alloc_phandle(s->fdt); /* Create /chosen node for load_dtb. */ qemu_fdt_add_subnode(s->fdt, "/chosen"); /* Header */ qemu_fdt_setprop_cell(s->fdt, "/", "interrupt-parent", s->phandle.gic); qemu_fdt_setprop_cell(s->fdt, "/", "#size-cells", 0x2); qemu_fdt_setprop_cell(s->fdt, "/", "#address-cells", 0x2); qemu_fdt_setprop_string(s->fdt, "/", "model", mc->desc); qemu_fdt_setprop_string(s->fdt, "/", "compatible", "xlnx-versal-virt"); } static void fdt_add_clk_node(VersalVirt *s, const char *name, unsigned int freq_hz, uint32_t phandle) { qemu_fdt_add_subnode(s->fdt, name); qemu_fdt_setprop_cell(s->fdt, name, "phandle", phandle); qemu_fdt_setprop_cell(s->fdt, name, "clock-frequency", freq_hz); qemu_fdt_setprop_cell(s->fdt, name, "#clock-cells", 0x0); qemu_fdt_setprop_string(s->fdt, name, "compatible", "fixed-clock"); qemu_fdt_setprop(s->fdt, name, "u-boot,dm-pre-reloc", NULL, 0); } static void fdt_add_cpu_nodes(VersalVirt *s, uint32_t psci_conduit) { int i; qemu_fdt_add_subnode(s->fdt, "/cpus"); qemu_fdt_setprop_cell(s->fdt, "/cpus", "#size-cells", 0x0); qemu_fdt_setprop_cell(s->fdt, "/cpus", "#address-cells", 1); for (i = XLNX_VERSAL_NR_ACPUS - 1; i >= 0; i--) { char *name = g_strdup_printf("/cpus/cpu@%d", i); ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(i)); qemu_fdt_add_subnode(s->fdt, name); qemu_fdt_setprop_cell(s->fdt, name, "reg", armcpu->mp_affinity); if (psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) { qemu_fdt_setprop_string(s->fdt, name, "enable-method", "psci"); } qemu_fdt_setprop_string(s->fdt, name, "device_type", "cpu"); qemu_fdt_setprop_string(s->fdt, name, "compatible", armcpu->dtb_compatible); g_free(name); } } static void fdt_add_gic_nodes(VersalVirt *s) { char *nodename; nodename = g_strdup_printf("/gic@%x", MM_GIC_APU_DIST_MAIN); qemu_fdt_add_subnode(s->fdt, nodename); qemu_fdt_setprop_cell(s->fdt, nodename, "phandle", s->phandle.gic); qemu_fdt_setprop_cells(s->fdt, nodename, "interrupts", GIC_FDT_IRQ_TYPE_PPI, VERSAL_GIC_MAINT_IRQ, GIC_FDT_IRQ_FLAGS_LEVEL_HI); qemu_fdt_setprop(s->fdt, nodename, "interrupt-controller", NULL, 0); qemu_fdt_setprop_sized_cells(s->fdt, nodename, "reg", 2, MM_GIC_APU_DIST_MAIN, 2, MM_GIC_APU_DIST_MAIN_SIZE, 2, MM_GIC_APU_REDIST_0, 2, MM_GIC_APU_REDIST_0_SIZE); qemu_fdt_setprop_cell(s->fdt, nodename, "#interrupt-cells", 3); qemu_fdt_setprop_string(s->fdt, nodename, "compatible", "arm,gic-v3"); g_free(nodename); } static void fdt_add_timer_nodes(VersalVirt *s) { const char compat[] = "arm,armv8-timer"; uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; qemu_fdt_add_subnode(s->fdt, "/timer"); qemu_fdt_setprop_cells(s->fdt, "/timer", "interrupts", GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_S_EL1_IRQ, irqflags, GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_NS_EL1_IRQ, irqflags, GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_VIRT_IRQ, irqflags, GIC_FDT_IRQ_TYPE_PPI, VERSAL_TIMER_NS_EL2_IRQ, irqflags); qemu_fdt_setprop(s->fdt, "/timer", "compatible", compat, sizeof(compat)); } static void fdt_add_uart_nodes(VersalVirt *s) { uint64_t addrs[] = { MM_UART1, MM_UART0 }; unsigned int irqs[] = { VERSAL_UART1_IRQ_0, VERSAL_UART0_IRQ_0 }; const char compat[] = "arm,pl011\0arm,sbsa-uart"; const char clocknames[] = "uartclk\0apb_pclk"; int i; for (i = 0; i < ARRAY_SIZE(addrs); i++) { char *name = g_strdup_printf("/uart@%" PRIx64, addrs[i]); qemu_fdt_add_subnode(s->fdt, name); qemu_fdt_setprop_cell(s->fdt, name, "current-speed", 115200); qemu_fdt_setprop_cells(s->fdt, name, "clocks", s->phandle.clk_125Mhz, s->phandle.clk_125Mhz); qemu_fdt_setprop(s->fdt, name, "clock-names", clocknames, sizeof(clocknames)); qemu_fdt_setprop_cells(s->fdt, name, "interrupts", GIC_FDT_IRQ_TYPE_SPI, irqs[i], GIC_FDT_IRQ_FLAGS_LEVEL_HI); qemu_fdt_setprop_sized_cells(s->fdt, name, "reg", 2, addrs[i], 2, 0x1000); qemu_fdt_setprop(s->fdt, name, "compatible", compat, sizeof(compat)); qemu_fdt_setprop(s->fdt, name, "u-boot,dm-pre-reloc", NULL, 0); if (addrs[i] == MM_UART0) { /* Select UART0. */ qemu_fdt_setprop_string(s->fdt, "/chosen", "stdout-path", name); } g_free(name); } } static void fdt_add_fixed_link_nodes(VersalVirt *s, char *gemname, uint32_t phandle) { char *name = g_strdup_printf("%s/fixed-link", gemname); qemu_fdt_add_subnode(s->fdt, name); qemu_fdt_setprop_cell(s->fdt, name, "phandle", phandle); qemu_fdt_setprop(s->fdt, name, "full-duplex", NULL, 0); qemu_fdt_setprop_cell(s->fdt, name, "speed", 1000); g_free(name); } static void fdt_add_gem_nodes(VersalVirt *s) { uint64_t addrs[] = { MM_GEM1, MM_GEM0 }; unsigned int irqs[] = { VERSAL_GEM1_IRQ_0, VERSAL_GEM0_IRQ_0 }; const char clocknames[] = "pclk\0hclk\0tx_clk\0rx_clk"; const char compat_gem[] = "cdns,zynqmp-gem\0cdns,gem"; int i; for (i = 0; i < ARRAY_SIZE(addrs); i++) { char *name = g_strdup_printf("/ethernet@%" PRIx64, addrs[i]); qemu_fdt_add_subnode(s->fdt, name); fdt_add_fixed_link_nodes(s, name, s->phandle.ethernet_phy[i]); qemu_fdt_setprop_string(s->fdt, name, "phy-mode", "rgmii-id"); qemu_fdt_setprop_cell(s->fdt, name, "phy-handle", s->phandle.ethernet_phy[i]); qemu_fdt_setprop_cells(s->fdt, name, "clocks", s->phandle.clk_25Mhz, s->phandle.clk_25Mhz, s->phandle.clk_25Mhz, s->phandle.clk_25Mhz); qemu_fdt_setprop(s->fdt, name, "clock-names", clocknames, sizeof(clocknames)); qemu_fdt_setprop_cells(s->fdt, name, "interrupts", GIC_FDT_IRQ_TYPE_SPI, irqs[i], GIC_FDT_IRQ_FLAGS_LEVEL_HI, GIC_FDT_IRQ_TYPE_SPI, irqs[i], GIC_FDT_IRQ_FLAGS_LEVEL_HI); qemu_fdt_setprop_sized_cells(s->fdt, name, "reg", 2, addrs[i], 2, 0x1000); qemu_fdt_setprop(s->fdt, name, "compatible", compat_gem, sizeof(compat_gem)); qemu_fdt_setprop_cell(s->fdt, name, "#address-cells", 1); qemu_fdt_setprop_cell(s->fdt, name, "#size-cells", 0); g_free(name); } } static void fdt_add_zdma_nodes(VersalVirt *s) { const char clocknames[] = "clk_main\0clk_apb"; const char compat[] = "xlnx,zynqmp-dma-1.0"; int i; for (i = XLNX_VERSAL_NR_ADMAS - 1; i >= 0; i--) { uint64_t addr = MM_ADMA_CH0 + MM_ADMA_CH0_SIZE * i; char *name = g_strdup_printf("/dma@%" PRIx64, addr); qemu_fdt_add_subnode(s->fdt, name); qemu_fdt_setprop_cell(s->fdt, name, "xlnx,bus-width", 64); qemu_fdt_setprop_cells(s->fdt, name, "clocks", s->phandle.clk_25Mhz, s->phandle.clk_25Mhz); qemu_fdt_setprop(s->fdt, name, "clock-names", clocknames, sizeof(clocknames)); qemu_fdt_setprop_cells(s->fdt, name, "interrupts", GIC_FDT_IRQ_TYPE_SPI, VERSAL_ADMA_IRQ_0 + i, GIC_FDT_IRQ_FLAGS_LEVEL_HI); qemu_fdt_setprop_sized_cells(s->fdt, name, "reg", 2, addr, 2, 0x1000); qemu_fdt_setprop(s->fdt, name, "compatible", compat, sizeof(compat)); g_free(name); } } static void fdt_add_sd_nodes(VersalVirt *s) { const char clocknames[] = "clk_xin\0clk_ahb"; const char compat[] = "arasan,sdhci-8.9a"; int i; for (i = ARRAY_SIZE(s->soc.pmc.iou.sd) - 1; i >= 0; i--) { uint64_t addr = MM_PMC_SD0 + MM_PMC_SD0_SIZE * i; char *name = g_strdup_printf("/sdhci@%" PRIx64, addr); qemu_fdt_add_subnode(s->fdt, name); qemu_fdt_setprop_cells(s->fdt, name, "clocks", s->phandle.clk_25Mhz, s->phandle.clk_25Mhz); qemu_fdt_setprop(s->fdt, name, "clock-names", clocknames, sizeof(clocknames)); qemu_fdt_setprop_cells(s->fdt, name, "interrupts", GIC_FDT_IRQ_TYPE_SPI, VERSAL_SD0_IRQ_0 + i * 2, GIC_FDT_IRQ_FLAGS_LEVEL_HI); qemu_fdt_setprop_sized_cells(s->fdt, name, "reg", 2, addr, 2, MM_PMC_SD0_SIZE); qemu_fdt_setprop(s->fdt, name, "compatible", compat, sizeof(compat)); g_free(name); } } static void fdt_add_rtc_node(VersalVirt *s) { const char compat[] = "xlnx,zynqmp-rtc"; const char interrupt_names[] = "alarm\0sec"; char *name = g_strdup_printf("/rtc@%x", MM_PMC_RTC); qemu_fdt_add_subnode(s->fdt, name); qemu_fdt_setprop_cells(s->fdt, name, "interrupts", GIC_FDT_IRQ_TYPE_SPI, VERSAL_RTC_ALARM_IRQ, GIC_FDT_IRQ_FLAGS_LEVEL_HI, GIC_FDT_IRQ_TYPE_SPI, VERSAL_RTC_SECONDS_IRQ, GIC_FDT_IRQ_FLAGS_LEVEL_HI); qemu_fdt_setprop(s->fdt, name, "interrupt-names", interrupt_names, sizeof(interrupt_names)); qemu_fdt_setprop_sized_cells(s->fdt, name, "reg", 2, MM_PMC_RTC, 2, MM_PMC_RTC_SIZE); qemu_fdt_setprop(s->fdt, name, "compatible", compat, sizeof(compat)); g_free(name); } static void fdt_nop_memory_nodes(void *fdt, Error **errp) { Error *err = NULL; char **node_path; int n = 0; node_path = qemu_fdt_node_unit_path(fdt, "memory", &err); if (err) { error_propagate(errp, err); return; } while (node_path[n]) { if (g_str_has_prefix(node_path[n], "/memory")) { qemu_fdt_nop_node(fdt, node_path[n]); } n++; } g_strfreev(node_path); } static void fdt_add_memory_nodes(VersalVirt *s, void *fdt, uint64_t ram_size) { /* Describes the various split DDR access regions. */ static const struct { uint64_t base; uint64_t size; } addr_ranges[] = { { MM_TOP_DDR, MM_TOP_DDR_SIZE }, { MM_TOP_DDR_2, MM_TOP_DDR_2_SIZE }, { MM_TOP_DDR_3, MM_TOP_DDR_3_SIZE }, { MM_TOP_DDR_4, MM_TOP_DDR_4_SIZE } }; uint64_t mem_reg_prop[8] = {0}; uint64_t size = ram_size; Error *err = NULL; char *name; int i; fdt_nop_memory_nodes(fdt, &err); if (err) { error_report_err(err); return; } name = g_strdup_printf("/memory@%x", MM_TOP_DDR); for (i = 0; i < ARRAY_SIZE(addr_ranges) && size; i++) { uint64_t mapsize; mapsize = size < addr_ranges[i].size ? size : addr_ranges[i].size; mem_reg_prop[i * 2] = addr_ranges[i].base; mem_reg_prop[i * 2 + 1] = mapsize; size -= mapsize; } qemu_fdt_add_subnode(fdt, name); qemu_fdt_setprop_string(fdt, name, "device_type", "memory"); switch (i) { case 1: qemu_fdt_setprop_sized_cells(fdt, name, "reg", 2, mem_reg_prop[0], 2, mem_reg_prop[1]); break; case 2: qemu_fdt_setprop_sized_cells(fdt, name, "reg", 2, mem_reg_prop[0], 2, mem_reg_prop[1], 2, mem_reg_prop[2], 2, mem_reg_prop[3]); break; case 3: qemu_fdt_setprop_sized_cells(fdt, name, "reg", 2, mem_reg_prop[0], 2, mem_reg_prop[1], 2, mem_reg_prop[2], 2, mem_reg_prop[3], 2, mem_reg_prop[4], 2, mem_reg_prop[5]); break; case 4: qemu_fdt_setprop_sized_cells(fdt, name, "reg", 2, mem_reg_prop[0], 2, mem_reg_prop[1], 2, mem_reg_prop[2], 2, mem_reg_prop[3], 2, mem_reg_prop[4], 2, mem_reg_prop[5], 2, mem_reg_prop[6], 2, mem_reg_prop[7]); break; default: g_assert_not_reached(); } g_free(name); } static void versal_virt_modify_dtb(const struct arm_boot_info *binfo, void *fdt) { VersalVirt *s = container_of(binfo, VersalVirt, binfo); fdt_add_memory_nodes(s, fdt, binfo->ram_size); } static void *versal_virt_get_dtb(const struct arm_boot_info *binfo, int *fdt_size) { const VersalVirt *board = container_of(binfo, VersalVirt, binfo); *fdt_size = board->fdt_size; return board->fdt; } #define NUM_VIRTIO_TRANSPORT 8 static void create_virtio_regions(VersalVirt *s) { int virtio_mmio_size = 0x200; int i; for (i = 0; i < NUM_VIRTIO_TRANSPORT; i++) { char *name = g_strdup_printf("virtio%d", i); hwaddr base = MM_TOP_RSVD + i * virtio_mmio_size; int irq = VERSAL_RSVD_IRQ_FIRST + i; MemoryRegion *mr; DeviceState *dev; qemu_irq pic_irq; pic_irq = qdev_get_gpio_in(DEVICE(&s->soc.fpd.apu.gic), irq); dev = qdev_create(NULL, "virtio-mmio"); object_property_add_child(OBJECT(&s->soc), name, OBJECT(dev), &error_fatal); qdev_init_nofail(dev); sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, pic_irq); mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); memory_region_add_subregion(&s->soc.mr_ps, base, mr); g_free(name); } for (i = 0; i < NUM_VIRTIO_TRANSPORT; i++) { hwaddr base = MM_TOP_RSVD + i * virtio_mmio_size; int irq = VERSAL_RSVD_IRQ_FIRST + i; char *name = g_strdup_printf("/virtio_mmio@%" PRIx64, base); qemu_fdt_add_subnode(s->fdt, name); qemu_fdt_setprop(s->fdt, name, "dma-coherent", NULL, 0); qemu_fdt_setprop_cells(s->fdt, name, "interrupts", GIC_FDT_IRQ_TYPE_SPI, irq, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); qemu_fdt_setprop_sized_cells(s->fdt, name, "reg", 2, base, 2, virtio_mmio_size); qemu_fdt_setprop_string(s->fdt, name, "compatible", "virtio,mmio"); g_free(name); } } static void sd_plugin_card(SDHCIState *sd, DriveInfo *di) { BlockBackend *blk = di ? blk_by_legacy_dinfo(di) : NULL; DeviceState *card; card = qdev_create(qdev_get_child_bus(DEVICE(sd), "sd-bus"), TYPE_SD_CARD); object_property_add_child(OBJECT(sd), "card[*]", OBJECT(card), &error_fatal); qdev_prop_set_drive(card, "drive", blk, &error_fatal); object_property_set_bool(OBJECT(card), true, "realized", &error_fatal); } static void versal_virt_init(MachineState *machine) { VersalVirt *s = XLNX_VERSAL_VIRT_MACHINE(machine); int psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; int i; /* * If the user provides an Operating System to be loaded, we expect them * to use the -kernel command line option. * * Users can load firmware or boot-loaders with the -device loader options. * * When loading an OS, we generate a dtb and let arm_load_kernel() select * where it gets loaded. This dtb will be passed to the kernel in x0. * * If there's no -kernel option, we generate a DTB and place it at 0x1000 * for the bootloaders or firmware to pick up. * * If users want to provide their own DTB, they can use the -dtb option. * These dtb's will have their memory nodes modified to match QEMU's * selected ram_size option before they get passed to the kernel or fw. * * When loading an OS, we turn on QEMU's PSCI implementation with SMC * as the PSCI conduit. When there's no -kernel, we assume the user * provides EL3 firmware to handle PSCI. */ if (machine->kernel_filename) { psci_conduit = QEMU_PSCI_CONDUIT_SMC; } sysbus_init_child_obj(OBJECT(machine), "xlnx-versal", &s->soc, sizeof(s->soc), TYPE_XLNX_VERSAL); object_property_set_link(OBJECT(&s->soc), OBJECT(machine->ram), "ddr", &error_abort); object_property_set_int(OBJECT(&s->soc), psci_conduit, "psci-conduit", &error_abort); object_property_set_bool(OBJECT(&s->soc), true, "realized", &error_fatal); fdt_create(s); create_virtio_regions(s); fdt_add_gem_nodes(s); fdt_add_uart_nodes(s); fdt_add_gic_nodes(s); fdt_add_timer_nodes(s); fdt_add_zdma_nodes(s); fdt_add_sd_nodes(s); fdt_add_rtc_node(s); fdt_add_cpu_nodes(s, psci_conduit); fdt_add_clk_node(s, "/clk125", 125000000, s->phandle.clk_125Mhz); fdt_add_clk_node(s, "/clk25", 25000000, s->phandle.clk_25Mhz); /* Make the APU cpu address space visible to virtio and other * modules unaware of muliple address-spaces. */ memory_region_add_subregion_overlap(get_system_memory(), 0, &s->soc.fpd.apu.mr, 0); /* Plugin SD cards. */ for (i = 0; i < ARRAY_SIZE(s->soc.pmc.iou.sd); i++) { sd_plugin_card(&s->soc.pmc.iou.sd[i], drive_get_next(IF_SD)); } s->binfo.ram_size = machine->ram_size; s->binfo.loader_start = 0x0; s->binfo.get_dtb = versal_virt_get_dtb; s->binfo.modify_dtb = versal_virt_modify_dtb; if (machine->kernel_filename) { arm_load_kernel(&s->soc.fpd.apu.cpu[0], machine, &s->binfo); } else { AddressSpace *as = arm_boot_address_space(&s->soc.fpd.apu.cpu[0], &s->binfo); /* Some boot-loaders (e.g u-boot) don't like blobs at address 0 (NULL). * Offset things by 4K. */ s->binfo.loader_start = 0x1000; s->binfo.dtb_limit = 0x1000000; if (arm_load_dtb(s->binfo.loader_start, &s->binfo, s->binfo.dtb_limit, as, machine) < 0) { exit(EXIT_FAILURE); } } } static void versal_virt_machine_instance_init(Object *obj) { } static void versal_virt_machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "Xilinx Versal Virtual development board"; mc->init = versal_virt_init; mc->max_cpus = XLNX_VERSAL_NR_ACPUS; mc->default_cpus = XLNX_VERSAL_NR_ACPUS; mc->no_cdrom = true; mc->default_ram_id = "ddr"; } static const TypeInfo versal_virt_machine_init_typeinfo = { .name = TYPE_XLNX_VERSAL_VIRT_MACHINE, .parent = TYPE_MACHINE, .class_init = versal_virt_machine_class_init, .instance_init = versal_virt_machine_instance_init, .instance_size = sizeof(VersalVirt), }; static void versal_virt_machine_init_register_types(void) { type_register_static(&versal_virt_machine_init_typeinfo); } type_init(versal_virt_machine_init_register_types)