/* * ARM mach-virt emulation * * Copyright (c) 2013 Linaro Limited * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . * * Emulate a virtual board which works by passing Linux all the information * it needs about what devices are present via the device tree. * There are some restrictions about what we can do here: * + we can only present devices whose Linux drivers will work based * purely on the device tree with no platform data at all * + we want to present a very stripped-down minimalist platform, * both because this reduces the security attack surface from the guest * and also because it reduces our exposure to being broken when * the kernel updates its device tree bindings and requires further * information in a device binding that we aren't providing. * This is essentially the same approach kvmtool uses. */ #include "qemu/osdep.h" #include "qapi/error.h" #include "hw/sysbus.h" #include "hw/arm/arm.h" #include "hw/arm/primecell.h" #include "hw/arm/virt.h" #include "hw/vfio/vfio-calxeda-xgmac.h" #include "hw/vfio/vfio-amd-xgbe.h" #include "hw/devices.h" #include "net/net.h" #include "sysemu/block-backend.h" #include "sysemu/device_tree.h" #include "sysemu/numa.h" #include "sysemu/sysemu.h" #include "sysemu/kvm.h" #include "hw/compat.h" #include "hw/loader.h" #include "exec/address-spaces.h" #include "qemu/bitops.h" #include "qemu/error-report.h" #include "hw/pci-host/gpex.h" #include "hw/arm/sysbus-fdt.h" #include "hw/platform-bus.h" #include "hw/arm/fdt.h" #include "hw/intc/arm_gic.h" #include "hw/intc/arm_gicv3_common.h" #include "kvm_arm.h" #include "hw/smbios/smbios.h" #include "qapi/visitor.h" #include "standard-headers/linux/input.h" #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ void *data) \ { \ MachineClass *mc = MACHINE_CLASS(oc); \ virt_machine_##major##_##minor##_options(mc); \ mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ if (latest) { \ mc->alias = "virt"; \ } \ } \ static const TypeInfo machvirt_##major##_##minor##_info = { \ .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ .parent = TYPE_VIRT_MACHINE, \ .instance_init = virt_##major##_##minor##_instance_init, \ .class_init = virt_##major##_##minor##_class_init, \ }; \ static void machvirt_machine_##major##_##minor##_init(void) \ { \ type_register_static(&machvirt_##major##_##minor##_info); \ } \ type_init(machvirt_machine_##major##_##minor##_init); #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ DEFINE_VIRT_MACHINE_LATEST(major, minor, true) #define DEFINE_VIRT_MACHINE(major, minor) \ DEFINE_VIRT_MACHINE_LATEST(major, minor, false) /* Number of external interrupt lines to configure the GIC with */ #define NUM_IRQS 256 #define PLATFORM_BUS_NUM_IRQS 64 static ARMPlatformBusSystemParams platform_bus_params; /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means * RAM can go up to the 256GB mark, leaving 256GB of the physical * address space unallocated and free for future use between 256G and 512G. * If we need to provide more RAM to VMs in the future then we need to: * * allocate a second bank of RAM starting at 2TB and working up * * fix the DT and ACPI table generation code in QEMU to correctly * report two split lumps of RAM to the guest * * fix KVM in the host kernel to allow guests with >40 bit address spaces * (We don't want to fill all the way up to 512GB with RAM because * we might want it for non-RAM purposes later. Conversely it seems * reasonable to assume that anybody configuring a VM with a quarter * of a terabyte of RAM will be doing it on a host with more than a * terabyte of physical address space.) */ #define RAMLIMIT_GB 255 #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024) /* Addresses and sizes of our components. * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. * 128MB..256MB is used for miscellaneous device I/O. * 256MB..1GB is reserved for possible future PCI support (ie where the * PCI memory window will go if we add a PCI host controller). * 1GB and up is RAM (which may happily spill over into the * high memory region beyond 4GB). * This represents a compromise between how much RAM can be given to * a 32 bit VM and leaving space for expansion and in particular for PCI. * Note that devices should generally be placed at multiples of 0x10000, * to accommodate guests using 64K pages. */ static const MemMapEntry a15memmap[] = { /* Space up to 0x8000000 is reserved for a boot ROM */ [VIRT_FLASH] = { 0, 0x08000000 }, [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, /* This redistributor space allows up to 2*64kB*123 CPUs */ [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, [VIRT_UART] = { 0x09000000, 0x00001000 }, [VIRT_RTC] = { 0x09010000, 0x00001000 }, [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, [VIRT_GPIO] = { 0x09030000, 0x00001000 }, [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 }, [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES }, /* Second PCIe window, 512GB wide at the 512GB boundary */ [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL }, }; static const int a15irqmap[] = { [VIRT_UART] = 1, [VIRT_RTC] = 2, [VIRT_PCIE] = 3, /* ... to 6 */ [VIRT_GPIO] = 7, [VIRT_SECURE_UART] = 8, [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ }; static const char *valid_cpus[] = { ARM_CPU_TYPE_NAME("cortex-a15"), ARM_CPU_TYPE_NAME("cortex-a53"), ARM_CPU_TYPE_NAME("cortex-a57"), ARM_CPU_TYPE_NAME("host"), ARM_CPU_TYPE_NAME("max"), }; static bool cpu_type_valid(const char *cpu) { int i; for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { if (strcmp(cpu, valid_cpus[i]) == 0) { return true; } } return false; } static void create_fdt(VirtMachineState *vms) { void *fdt = create_device_tree(&vms->fdt_size); if (!fdt) { error_report("create_device_tree() failed"); exit(1); } vms->fdt = fdt; /* Header */ qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); /* * /chosen and /memory nodes must exist for load_dtb * to fill in necessary properties later */ qemu_fdt_add_subnode(fdt, "/chosen"); qemu_fdt_add_subnode(fdt, "/memory"); qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); /* Clock node, for the benefit of the UART. The kernel device tree * binding documentation claims the PL011 node clock properties are * optional but in practice if you omit them the kernel refuses to * probe for the device. */ vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); qemu_fdt_add_subnode(fdt, "/apb-pclk"); qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", "clk24mhz"); qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); if (have_numa_distance) { int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); uint32_t *matrix = g_malloc0(size); int idx, i, j; for (i = 0; i < nb_numa_nodes; i++) { for (j = 0; j < nb_numa_nodes; j++) { idx = (i * nb_numa_nodes + j) * 3; matrix[idx + 0] = cpu_to_be32(i); matrix[idx + 1] = cpu_to_be32(j); matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]); } } qemu_fdt_add_subnode(fdt, "/distance-map"); qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", "numa-distance-map-v1"); qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", matrix, size); g_free(matrix); } } static void fdt_add_timer_nodes(const VirtMachineState *vms) { /* On real hardware these interrupts are level-triggered. * On KVM they were edge-triggered before host kernel version 4.4, * and level-triggered afterwards. * On emulated QEMU they are level-triggered. * * Getting the DTB info about them wrong is awkward for some * guest kernels: * pre-4.8 ignore the DT and leave the interrupt configured * with whatever the GIC reset value (or the bootloader) left it at * 4.8 before rc6 honour the incorrect data by programming it back * into the GIC, causing problems * 4.8rc6 and later ignore the DT and always write "level triggered" * into the GIC * * For backwards-compatibility, virt-2.8 and earlier will continue * to say these are edge-triggered, but later machines will report * the correct information. */ ARMCPU *armcpu; VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; if (vmc->claim_edge_triggered_timers) { irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; } if (vms->gic_version == 2) { irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vms->smp_cpus) - 1); } qemu_fdt_add_subnode(vms->fdt, "/timer"); armcpu = ARM_CPU(qemu_get_cpu(0)); if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; qemu_fdt_setprop(vms->fdt, "/timer", "compatible", compat, sizeof(compat)); } else { qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible", "arm,armv7-timer"); } qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0); qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts", GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags, GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags, GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags, GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags); } static void fdt_add_cpu_nodes(const VirtMachineState *vms) { int cpu; int addr_cells = 1; const MachineState *ms = MACHINE(vms); /* * From Documentation/devicetree/bindings/arm/cpus.txt * On ARM v8 64-bit systems value should be set to 2, * that corresponds to the MPIDR_EL1 register size. * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs * in the system, #address-cells can be set to 1, since * MPIDR_EL1[63:32] bits are not used for CPUs * identification. * * Here we actually don't know whether our system is 32- or 64-bit one. * The simplest way to go is to examine affinity IDs of all our CPUs. If * at least one of them has Aff3 populated, we set #address-cells to 2. */ for (cpu = 0; cpu < vms->smp_cpus; cpu++) { ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); if (armcpu->mp_affinity & ARM_AFF3_MASK) { addr_cells = 2; break; } } qemu_fdt_add_subnode(vms->fdt, "/cpus"); qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells); qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0); for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) { char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); CPUState *cs = CPU(armcpu); qemu_fdt_add_subnode(vms->fdt, nodename); qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu"); qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", armcpu->dtb_compatible); if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && vms->smp_cpus > 1) { qemu_fdt_setprop_string(vms->fdt, nodename, "enable-method", "psci"); } if (addr_cells == 2) { qemu_fdt_setprop_u64(vms->fdt, nodename, "reg", armcpu->mp_affinity); } else { qemu_fdt_setprop_cell(vms->fdt, nodename, "reg", armcpu->mp_affinity); } if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", ms->possible_cpus->cpus[cs->cpu_index].props.node_id); } g_free(nodename); } } static void fdt_add_its_gic_node(VirtMachineState *vms) { vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); qemu_fdt_add_subnode(vms->fdt, "/intc/its"); qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible", "arm,gic-v3-its"); qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0); qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg", 2, vms->memmap[VIRT_GIC_ITS].base, 2, vms->memmap[VIRT_GIC_ITS].size); qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle); } static void fdt_add_v2m_gic_node(VirtMachineState *vms) { vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt); qemu_fdt_add_subnode(vms->fdt, "/intc/v2m"); qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible", "arm,gic-v2m-frame"); qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0); qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg", 2, vms->memmap[VIRT_GIC_V2M].base, 2, vms->memmap[VIRT_GIC_V2M].size); qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle); } static void fdt_add_gic_node(VirtMachineState *vms) { vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt); qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle); qemu_fdt_add_subnode(vms->fdt, "/intc"); qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3); qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0); qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2); qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2); qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0); if (vms->gic_version == 3) { qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible", "arm,gic-v3"); qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg", 2, vms->memmap[VIRT_GIC_DIST].base, 2, vms->memmap[VIRT_GIC_DIST].size, 2, vms->memmap[VIRT_GIC_REDIST].base, 2, vms->memmap[VIRT_GIC_REDIST].size); if (vms->virt) { qemu_fdt_setprop_cells(vms->fdt, "/intc", "interrupts", GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ, GIC_FDT_IRQ_FLAGS_LEVEL_HI); } } else { /* 'cortex-a15-gic' means 'GIC v2' */ qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible", "arm,cortex-a15-gic"); qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg", 2, vms->memmap[VIRT_GIC_DIST].base, 2, vms->memmap[VIRT_GIC_DIST].size, 2, vms->memmap[VIRT_GIC_CPU].base, 2, vms->memmap[VIRT_GIC_CPU].size); } qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle); } static void fdt_add_pmu_nodes(const VirtMachineState *vms) { CPUState *cpu; ARMCPU *armcpu; uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; CPU_FOREACH(cpu) { armcpu = ARM_CPU(cpu); if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { return; } if (kvm_enabled()) { if (kvm_irqchip_in_kernel()) { kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ)); } kvm_arm_pmu_init(cpu); } } if (vms->gic_version == 2) { irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vms->smp_cpus) - 1); } armcpu = ARM_CPU(qemu_get_cpu(0)); qemu_fdt_add_subnode(vms->fdt, "/pmu"); if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { const char compat[] = "arm,armv8-pmuv3"; qemu_fdt_setprop(vms->fdt, "/pmu", "compatible", compat, sizeof(compat)); qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts", GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags); } } static void create_its(VirtMachineState *vms, DeviceState *gicdev) { const char *itsclass = its_class_name(); DeviceState *dev; if (!itsclass) { /* Do nothing if not supported */ return; } dev = qdev_create(NULL, itsclass); object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3", &error_abort); qdev_init_nofail(dev); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); fdt_add_its_gic_node(vms); } static void create_v2m(VirtMachineState *vms, qemu_irq *pic) { int i; int irq = vms->irqmap[VIRT_GIC_V2M]; DeviceState *dev; dev = qdev_create(NULL, "arm-gicv2m"); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); qdev_prop_set_uint32(dev, "base-spi", irq); qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); qdev_init_nofail(dev); for (i = 0; i < NUM_GICV2M_SPIS; i++) { sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); } fdt_add_v2m_gic_node(vms); } static void create_gic(VirtMachineState *vms, qemu_irq *pic) { /* We create a standalone GIC */ DeviceState *gicdev; SysBusDevice *gicbusdev; const char *gictype; int type = vms->gic_version, i; gictype = (type == 3) ? gicv3_class_name() : gic_class_name(); gicdev = qdev_create(NULL, gictype); qdev_prop_set_uint32(gicdev, "revision", type); qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus); /* Note that the num-irq property counts both internal and external * interrupts; there are always 32 of the former (mandated by GIC spec). */ qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32); if (!kvm_irqchip_in_kernel()) { qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure); } qdev_init_nofail(gicdev); gicbusdev = SYS_BUS_DEVICE(gicdev); sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); if (type == 3) { sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); } else { sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); } /* Wire the outputs from each CPU's generic timer and the GICv3 * maintenance interrupt signal to the appropriate GIC PPI inputs, * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. */ for (i = 0; i < smp_cpus; i++) { DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; int irq; /* Mapping from the output timer irq lines from the CPU to the * GIC PPI inputs we use for the virt board. */ const int timer_irq[] = { [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, }; for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { qdev_connect_gpio_out(cpudev, irq, qdev_get_gpio_in(gicdev, ppibase + timer_irq[irq])); } qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0, qdev_get_gpio_in(gicdev, ppibase + ARCH_GICV3_MAINT_IRQ)); qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, qdev_get_gpio_in(gicdev, ppibase + VIRTUAL_PMU_IRQ)); sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); sysbus_connect_irq(gicbusdev, i + smp_cpus, qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); } for (i = 0; i < NUM_IRQS; i++) { pic[i] = qdev_get_gpio_in(gicdev, i); } fdt_add_gic_node(vms); if (type == 3 && vms->its) { create_its(vms, gicdev); } else if (type == 2) { create_v2m(vms, pic); } } static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart, MemoryRegion *mem, Chardev *chr) { char *nodename; hwaddr base = vms->memmap[uart].base; hwaddr size = vms->memmap[uart].size; int irq = vms->irqmap[uart]; const char compat[] = "arm,pl011\0arm,primecell"; const char clocknames[] = "uartclk\0apb_pclk"; DeviceState *dev = qdev_create(NULL, "pl011"); SysBusDevice *s = SYS_BUS_DEVICE(dev); qdev_prop_set_chr(dev, "chardev", chr); qdev_init_nofail(dev); memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0)); sysbus_connect_irq(s, 0, pic[irq]); nodename = g_strdup_printf("/pl011@%" PRIx64, base); qemu_fdt_add_subnode(vms->fdt, nodename); /* Note that we can't use setprop_string because of the embedded NUL */ qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size); qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", GIC_FDT_IRQ_TYPE_SPI, irq, GIC_FDT_IRQ_FLAGS_LEVEL_HI); qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks", vms->clock_phandle, vms->clock_phandle); qemu_fdt_setprop(vms->fdt, nodename, "clock-names", clocknames, sizeof(clocknames)); if (uart == VIRT_UART) { qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename); } else { /* Mark as not usable by the normal world */ qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); } g_free(nodename); } static void create_rtc(const VirtMachineState *vms, qemu_irq *pic) { char *nodename; hwaddr base = vms->memmap[VIRT_RTC].base; hwaddr size = vms->memmap[VIRT_RTC].size; int irq = vms->irqmap[VIRT_RTC]; const char compat[] = "arm,pl031\0arm,primecell"; sysbus_create_simple("pl031", base, pic[irq]); nodename = g_strdup_printf("/pl031@%" PRIx64, base); qemu_fdt_add_subnode(vms->fdt, nodename); qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size); qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", GIC_FDT_IRQ_TYPE_SPI, irq, GIC_FDT_IRQ_FLAGS_LEVEL_HI); qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); g_free(nodename); } static DeviceState *gpio_key_dev; static void virt_powerdown_req(Notifier *n, void *opaque) { /* use gpio Pin 3 for power button event */ qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); } static Notifier virt_system_powerdown_notifier = { .notify = virt_powerdown_req }; static void create_gpio(const VirtMachineState *vms, qemu_irq *pic) { char *nodename; DeviceState *pl061_dev; hwaddr base = vms->memmap[VIRT_GPIO].base; hwaddr size = vms->memmap[VIRT_GPIO].size; int irq = vms->irqmap[VIRT_GPIO]; const char compat[] = "arm,pl061\0arm,primecell"; pl061_dev = sysbus_create_simple("pl061", base, pic[irq]); uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt); nodename = g_strdup_printf("/pl061@%" PRIx64, base); qemu_fdt_add_subnode(vms->fdt, nodename); qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size); qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat)); qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2); qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0); qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", GIC_FDT_IRQ_TYPE_SPI, irq, GIC_FDT_IRQ_FLAGS_LEVEL_HI); qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle); qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk"); qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle); gpio_key_dev = sysbus_create_simple("gpio-key", -1, qdev_get_gpio_in(pl061_dev, 3)); qemu_fdt_add_subnode(vms->fdt, "/gpio-keys"); qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys"); qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0); qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1); qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff"); qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff", "label", "GPIO Key Poweroff"); qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code", KEY_POWER); qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff", "gpios", phandle, 3, 0); /* connect powerdown request */ qemu_register_powerdown_notifier(&virt_system_powerdown_notifier); g_free(nodename); } static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic) { int i; hwaddr size = vms->memmap[VIRT_MMIO].size; /* We create the transports in forwards order. Since qbus_realize() * prepends (not appends) new child buses, the incrementing loop below will * create a list of virtio-mmio buses with decreasing base addresses. * * When a -device option is processed from the command line, * qbus_find_recursive() picks the next free virtio-mmio bus in forwards * order. The upshot is that -device options in increasing command line * order are mapped to virtio-mmio buses with decreasing base addresses. * * When this code was originally written, that arrangement ensured that the * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to * the first -device on the command line. (The end-to-end order is a * function of this loop, qbus_realize(), qbus_find_recursive(), and the * guest kernel's name-to-address assignment strategy.) * * Meanwhile, the kernel's traversal seems to have been reversed; see eg. * the message, if not necessarily the code, of commit 70161ff336. * Therefore the loop now establishes the inverse of the original intent. * * Unfortunately, we can't counteract the kernel change by reversing the * loop; it would break existing command lines. * * In any case, the kernel makes no guarantee about the stability of * enumeration order of virtio devices (as demonstrated by it changing * between kernel versions). For reliable and stable identification * of disks users must use UUIDs or similar mechanisms. */ for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { int irq = vms->irqmap[VIRT_MMIO] + i; hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; sysbus_create_simple("virtio-mmio", base, pic[irq]); } /* We add dtb nodes in reverse order so that they appear in the finished * device tree lowest address first. * * Note that this mapping is independent of the loop above. The previous * loop influences virtio device to virtio transport assignment, whereas * this loop controls how virtio transports are laid out in the dtb. */ for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { char *nodename; int irq = vms->irqmap[VIRT_MMIO] + i; hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); qemu_fdt_add_subnode(vms->fdt, nodename); qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "virtio,mmio"); qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size); qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", GIC_FDT_IRQ_TYPE_SPI, irq, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); g_free(nodename); } } static void create_one_flash(const char *name, hwaddr flashbase, hwaddr flashsize, const char *file, MemoryRegion *sysmem) { /* Create and map a single flash device. We use the same * parameters as the flash devices on the Versatile Express board. */ DriveInfo *dinfo = drive_get_next(IF_PFLASH); DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); SysBusDevice *sbd = SYS_BUS_DEVICE(dev); const uint64_t sectorlength = 256 * 1024; if (dinfo) { qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), &error_abort); } qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); qdev_prop_set_uint64(dev, "sector-length", sectorlength); qdev_prop_set_uint8(dev, "width", 4); qdev_prop_set_uint8(dev, "device-width", 2); qdev_prop_set_bit(dev, "big-endian", false); qdev_prop_set_uint16(dev, "id0", 0x89); qdev_prop_set_uint16(dev, "id1", 0x18); qdev_prop_set_uint16(dev, "id2", 0x00); qdev_prop_set_uint16(dev, "id3", 0x00); qdev_prop_set_string(dev, "name", name); qdev_init_nofail(dev); memory_region_add_subregion(sysmem, flashbase, sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0)); if (file) { char *fn; int image_size; if (drive_get(IF_PFLASH, 0, 0)) { error_report("The contents of the first flash device may be " "specified with -bios or with -drive if=pflash... " "but you cannot use both options at once"); exit(1); } fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file); if (!fn) { error_report("Could not find ROM image '%s'", file); exit(1); } image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0)); g_free(fn); if (image_size < 0) { error_report("Could not load ROM image '%s'", file); exit(1); } } } static void create_flash(const VirtMachineState *vms, MemoryRegion *sysmem, MemoryRegion *secure_sysmem) { /* Create two flash devices to fill the VIRT_FLASH space in the memmap. * Any file passed via -bios goes in the first of these. * sysmem is the system memory space. secure_sysmem is the secure view * of the system, and the first flash device should be made visible only * there. The second flash device is visible to both secure and nonsecure. * If sysmem == secure_sysmem this means there is no separate Secure * address space and both flash devices are generally visible. */ hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; hwaddr flashbase = vms->memmap[VIRT_FLASH].base; char *nodename; create_one_flash("virt.flash0", flashbase, flashsize, bios_name, secure_sysmem); create_one_flash("virt.flash1", flashbase + flashsize, flashsize, NULL, sysmem); if (sysmem == secure_sysmem) { /* Report both flash devices as a single node in the DT */ nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); qemu_fdt_add_subnode(vms->fdt, nodename); qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, flashbase, 2, flashsize, 2, flashbase + flashsize, 2, flashsize); qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); g_free(nodename); } else { /* Report the devices as separate nodes so we can mark one as * only visible to the secure world. */ nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); qemu_fdt_add_subnode(vms->fdt, nodename); qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, flashbase, 2, flashsize); qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); g_free(nodename); nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); qemu_fdt_add_subnode(vms->fdt, nodename); qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash"); qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, flashbase + flashsize, 2, flashsize); qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4); g_free(nodename); } } static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) { hwaddr base = vms->memmap[VIRT_FW_CFG].base; hwaddr size = vms->memmap[VIRT_FW_CFG].size; FWCfgState *fw_cfg; char *nodename; fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus); nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); qemu_fdt_add_subnode(vms->fdt, nodename); qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "qemu,fw-cfg-mmio"); qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size); qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); g_free(nodename); return fw_cfg; } static void create_pcie_irq_map(const VirtMachineState *vms, uint32_t gic_phandle, int first_irq, const char *nodename) { int devfn, pin; uint32_t full_irq_map[4 * 4 * 10] = { 0 }; uint32_t *irq_map = full_irq_map; for (devfn = 0; devfn <= 0x18; devfn += 0x8) { for (pin = 0; pin < 4; pin++) { int irq_type = GIC_FDT_IRQ_TYPE_SPI; int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; int i; uint32_t map[] = { devfn << 8, 0, 0, /* devfn */ pin + 1, /* PCI pin */ gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ /* Convert map to big endian */ for (i = 0; i < 10; i++) { irq_map[i] = cpu_to_be32(map[i]); } irq_map += 10; } } qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map", full_irq_map, sizeof(full_irq_map)); qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask", 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */ 0x7 /* PCI irq */); } static void create_pcie(const VirtMachineState *vms, qemu_irq *pic) { hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base; hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size; hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base; hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size; hwaddr base = base_mmio; int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; int irq = vms->irqmap[VIRT_PCIE]; MemoryRegion *mmio_alias; MemoryRegion *mmio_reg; MemoryRegion *ecam_alias; MemoryRegion *ecam_reg; DeviceState *dev; char *nodename; int i; PCIHostState *pci; dev = qdev_create(NULL, TYPE_GPEX_HOST); qdev_init_nofail(dev); /* Map only the first size_ecam bytes of ECAM space */ ecam_alias = g_new0(MemoryRegion, 1); ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", ecam_reg, 0, size_ecam); memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); /* Map the MMIO window into system address space so as to expose * the section of PCI MMIO space which starts at the same base address * (ie 1:1 mapping for that part of PCI MMIO space visible through * the window). */ mmio_alias = g_new0(MemoryRegion, 1); mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", mmio_reg, base_mmio, size_mmio); memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); if (vms->highmem) { /* Map high MMIO space */ MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", mmio_reg, base_mmio_high, size_mmio_high); memory_region_add_subregion(get_system_memory(), base_mmio_high, high_mmio_alias); } /* Map IO port space */ sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); for (i = 0; i < GPEX_NUM_IRQS; i++) { sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]); gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); } pci = PCI_HOST_BRIDGE(dev); if (pci->bus) { for (i = 0; i < nb_nics; i++) { NICInfo *nd = &nd_table[i]; if (!nd->model) { nd->model = g_strdup("virtio"); } pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); } } nodename = g_strdup_printf("/pcie@%" PRIx64, base); qemu_fdt_add_subnode(vms->fdt, nodename); qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "pci-host-ecam-generic"); qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci"); qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3); qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2); qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0, nr_pcie_buses - 1); qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0); if (vms->msi_phandle) { qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent", vms->msi_phandle); } qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base_ecam, 2, size_ecam); if (vms->highmem) { qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1, FDT_PCI_RANGE_IOPORT, 2, 0, 2, base_pio, 2, size_pio, 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 2, base_mmio, 2, size_mmio, 1, FDT_PCI_RANGE_MMIO_64BIT, 2, base_mmio_high, 2, base_mmio_high, 2, size_mmio_high); } else { qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges", 1, FDT_PCI_RANGE_IOPORT, 2, 0, 2, base_pio, 2, size_pio, 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 2, base_mmio, 2, size_mmio); } qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1); create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename); g_free(nodename); } static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic) { DeviceState *dev; SysBusDevice *s; int i; ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1); MemoryRegion *sysmem = get_system_memory(); platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base; platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size; platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS]; platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS; fdt_params->system_params = &platform_bus_params; fdt_params->binfo = &vms->bootinfo; fdt_params->intc = "/intc"; /* * register a machine init done notifier that creates the device tree * nodes of the platform bus and its children dynamic sysbus devices */ arm_register_platform_bus_fdt_creator(fdt_params); dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE); dev->id = TYPE_PLATFORM_BUS_DEVICE; qdev_prop_set_uint32(dev, "num_irqs", platform_bus_params.platform_bus_num_irqs); qdev_prop_set_uint32(dev, "mmio_size", platform_bus_params.platform_bus_size); qdev_init_nofail(dev); s = SYS_BUS_DEVICE(dev); for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) { int irqn = platform_bus_params.platform_bus_first_irq + i; sysbus_connect_irq(s, i, pic[irqn]); } memory_region_add_subregion(sysmem, platform_bus_params.platform_bus_base, sysbus_mmio_get_region(s, 0)); } static void create_secure_ram(VirtMachineState *vms, MemoryRegion *secure_sysmem) { MemoryRegion *secram = g_new(MemoryRegion, 1); char *nodename; hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal); memory_region_add_subregion(secure_sysmem, base, secram); nodename = g_strdup_printf("/secram@%" PRIx64, base); qemu_fdt_add_subnode(vms->fdt, nodename); qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory"); qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size); qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled"); qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay"); g_free(nodename); } static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) { const VirtMachineState *board = container_of(binfo, VirtMachineState, bootinfo); *fdt_size = board->fdt_size; return board->fdt; } static void virt_build_smbios(VirtMachineState *vms) { MachineClass *mc = MACHINE_GET_CLASS(vms); VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); uint8_t *smbios_tables, *smbios_anchor; size_t smbios_tables_len, smbios_anchor_len; const char *product = "QEMU Virtual Machine"; if (!vms->fw_cfg) { return; } if (kvm_enabled()) { product = "KVM Virtual Machine"; } smbios_set_defaults("QEMU", product, vmc->smbios_old_sys_ver ? "1.0" : mc->name, false, true, SMBIOS_ENTRY_POINT_30); smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len, &smbios_anchor, &smbios_anchor_len); if (smbios_anchor) { fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", smbios_tables, smbios_tables_len); fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", smbios_anchor, smbios_anchor_len); } } static void virt_machine_done(Notifier *notifier, void *data) { VirtMachineState *vms = container_of(notifier, VirtMachineState, machine_done); virt_acpi_setup(vms); virt_build_smbios(vms); } static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) { uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); if (!vmc->disallow_affinity_adjustment) { /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the * GIC's target-list limitations. 32-bit KVM hosts currently * always create clusters of 4 CPUs, but that is expected to * change when they gain support for gicv3. When KVM is enabled * it will override the changes we make here, therefore our * purposes are to make TCG consistent (with 64-bit KVM hosts) * and to improve SGI efficiency. */ if (vms->gic_version == 3) { clustersz = GICV3_TARGETLIST_BITS; } else { clustersz = GIC_TARGETLIST_BITS; } } return arm_cpu_mp_affinity(idx, clustersz); } static void machvirt_init(MachineState *machine) { VirtMachineState *vms = VIRT_MACHINE(machine); VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); MachineClass *mc = MACHINE_GET_CLASS(machine); const CPUArchIdList *possible_cpus; qemu_irq pic[NUM_IRQS]; MemoryRegion *sysmem = get_system_memory(); MemoryRegion *secure_sysmem = NULL; int n, virt_max_cpus; MemoryRegion *ram = g_new(MemoryRegion, 1); bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0); /* We can probe only here because during property set * KVM is not available yet */ if (vms->gic_version <= 0) { /* "host" or "max" */ if (!kvm_enabled()) { if (vms->gic_version == 0) { error_report("gic-version=host requires KVM"); exit(1); } else { /* "max": currently means 3 for TCG */ vms->gic_version = 3; } } else { vms->gic_version = kvm_arm_vgic_probe(); if (!vms->gic_version) { error_report( "Unable to determine GIC version supported by host"); exit(1); } } } if (!cpu_type_valid(machine->cpu_type)) { error_report("mach-virt: CPU type %s not supported", machine->cpu_type); exit(1); } /* If we have an EL3 boot ROM then the assumption is that it will * implement PSCI itself, so disable QEMU's internal implementation * so it doesn't get in the way. Instead of starting secondary * CPUs in PSCI powerdown state we will start them all running and * let the boot ROM sort them out. * The usual case is that we do use QEMU's PSCI implementation; * if the guest has EL2 then we will use SMC as the conduit, * and otherwise we will use HVC (for backwards compatibility and * because if we're using KVM then we must use HVC). */ if (vms->secure && firmware_loaded) { vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; } else if (vms->virt) { vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; } else { vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; } /* The maximum number of CPUs depends on the GIC version, or on how * many redistributors we can fit into the memory map. */ if (vms->gic_version == 3) { virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000; } else { virt_max_cpus = GIC_NCPU; } if (max_cpus > virt_max_cpus) { error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " "supported by machine 'mach-virt' (%d)", max_cpus, virt_max_cpus); exit(1); } vms->smp_cpus = smp_cpus; if (machine->ram_size > vms->memmap[VIRT_MEM].size) { error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB); exit(1); } if (vms->virt && kvm_enabled()) { error_report("mach-virt: KVM does not support providing " "Virtualization extensions to the guest CPU"); exit(1); } if (vms->secure) { if (kvm_enabled()) { error_report("mach-virt: KVM does not support Security extensions"); exit(1); } /* The Secure view of the world is the same as the NonSecure, * but with a few extra devices. Create it as a container region * containing the system memory at low priority; any secure-only * devices go in at higher priority and take precedence. */ secure_sysmem = g_new(MemoryRegion, 1); memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", UINT64_MAX); memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); } create_fdt(vms); possible_cpus = mc->possible_cpu_arch_ids(machine); for (n = 0; n < possible_cpus->len; n++) { Object *cpuobj; CPUState *cs; if (n >= smp_cpus) { break; } cpuobj = object_new(possible_cpus->cpus[n].type); object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id, "mp-affinity", NULL); cs = CPU(cpuobj); cs->cpu_index = n; numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), &error_fatal); if (!vms->secure) { object_property_set_bool(cpuobj, false, "has_el3", NULL); } if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) { object_property_set_bool(cpuobj, false, "has_el2", NULL); } if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) { object_property_set_int(cpuobj, vms->psci_conduit, "psci-conduit", NULL); /* Secondary CPUs start in PSCI powered-down state */ if (n > 0) { object_property_set_bool(cpuobj, true, "start-powered-off", NULL); } } if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) { object_property_set_bool(cpuobj, false, "pmu", NULL); } if (object_property_find(cpuobj, "reset-cbar", NULL)) { object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base, "reset-cbar", &error_abort); } object_property_set_link(cpuobj, OBJECT(sysmem), "memory", &error_abort); if (vms->secure) { object_property_set_link(cpuobj, OBJECT(secure_sysmem), "secure-memory", &error_abort); } object_property_set_bool(cpuobj, true, "realized", &error_fatal); object_unref(cpuobj); } fdt_add_timer_nodes(vms); fdt_add_cpu_nodes(vms); memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram", machine->ram_size); memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram); create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem); create_gic(vms, pic); fdt_add_pmu_nodes(vms); create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]); if (vms->secure) { create_secure_ram(vms, secure_sysmem); create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]); } create_rtc(vms, pic); create_pcie(vms, pic); create_gpio(vms, pic); /* Create mmio transports, so the user can create virtio backends * (which will be automatically plugged in to the transports). If * no backend is created the transport will just sit harmlessly idle. */ create_virtio_devices(vms, pic); vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); rom_set_fw(vms->fw_cfg); vms->machine_done.notify = virt_machine_done; qemu_add_machine_init_done_notifier(&vms->machine_done); vms->bootinfo.ram_size = machine->ram_size; vms->bootinfo.kernel_filename = machine->kernel_filename; vms->bootinfo.kernel_cmdline = machine->kernel_cmdline; vms->bootinfo.initrd_filename = machine->initrd_filename; vms->bootinfo.nb_cpus = smp_cpus; vms->bootinfo.board_id = -1; vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; vms->bootinfo.get_dtb = machvirt_dtb; vms->bootinfo.firmware_loaded = firmware_loaded; arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo); /* * arm_load_kernel machine init done notifier registration must * happen before the platform_bus_create call. In this latter, * another notifier is registered which adds platform bus nodes. * Notifiers are executed in registration reverse order. */ create_platform_bus(vms, pic); } static bool virt_get_secure(Object *obj, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); return vms->secure; } static void virt_set_secure(Object *obj, bool value, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); vms->secure = value; } static bool virt_get_virt(Object *obj, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); return vms->virt; } static void virt_set_virt(Object *obj, bool value, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); vms->virt = value; } static bool virt_get_highmem(Object *obj, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); return vms->highmem; } static void virt_set_highmem(Object *obj, bool value, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); vms->highmem = value; } static bool virt_get_its(Object *obj, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); return vms->its; } static void virt_set_its(Object *obj, bool value, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); vms->its = value; } static char *virt_get_gic_version(Object *obj, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); const char *val = vms->gic_version == 3 ? "3" : "2"; return g_strdup(val); } static void virt_set_gic_version(Object *obj, const char *value, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); if (!strcmp(value, "3")) { vms->gic_version = 3; } else if (!strcmp(value, "2")) { vms->gic_version = 2; } else if (!strcmp(value, "host")) { vms->gic_version = 0; /* Will probe later */ } else if (!strcmp(value, "max")) { vms->gic_version = -1; /* Will probe later */ } else { error_setg(errp, "Invalid gic-version value"); error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); } } static CpuInstanceProperties virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) { MachineClass *mc = MACHINE_GET_CLASS(ms); const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); assert(cpu_index < possible_cpus->len); return possible_cpus->cpus[cpu_index].props; } static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) { return idx % nb_numa_nodes; } static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) { int n; VirtMachineState *vms = VIRT_MACHINE(ms); if (ms->possible_cpus) { assert(ms->possible_cpus->len == max_cpus); return ms->possible_cpus; } ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + sizeof(CPUArchId) * max_cpus); ms->possible_cpus->len = max_cpus; for (n = 0; n < ms->possible_cpus->len; n++) { ms->possible_cpus->cpus[n].type = ms->cpu_type; ms->possible_cpus->cpus[n].arch_id = virt_cpu_mp_affinity(vms, n); ms->possible_cpus->cpus[n].props.has_thread_id = true; ms->possible_cpus->cpus[n].props.thread_id = n; } return ms->possible_cpus; } static void virt_machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->init = machvirt_init; /* Start max_cpus at the maximum QEMU supports. We'll further restrict * it later in machvirt_init, where we have more information about the * configuration of the particular instance. */ mc->max_cpus = 255; machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); mc->block_default_type = IF_VIRTIO; mc->no_cdrom = 1; mc->pci_allow_0_address = true; /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ mc->minimum_page_bits = 12; mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; mc->cpu_index_to_instance_props = virt_cpu_index_to_props; mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; } static const TypeInfo virt_machine_info = { .name = TYPE_VIRT_MACHINE, .parent = TYPE_MACHINE, .abstract = true, .instance_size = sizeof(VirtMachineState), .class_size = sizeof(VirtMachineClass), .class_init = virt_machine_class_init, }; static void machvirt_machine_init(void) { type_register_static(&virt_machine_info); } type_init(machvirt_machine_init); static void virt_2_12_instance_init(Object *obj) { VirtMachineState *vms = VIRT_MACHINE(obj); VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); /* EL3 is disabled by default on virt: this makes us consistent * between KVM and TCG for this board, and it also allows us to * boot UEFI blobs which assume no TrustZone support. */ vms->secure = false; object_property_add_bool(obj, "secure", virt_get_secure, virt_set_secure, NULL); object_property_set_description(obj, "secure", "Set on/off to enable/disable the ARM " "Security Extensions (TrustZone)", NULL); /* EL2 is also disabled by default, for similar reasons */ vms->virt = false; object_property_add_bool(obj, "virtualization", virt_get_virt, virt_set_virt, NULL); object_property_set_description(obj, "virtualization", "Set on/off to enable/disable emulating a " "guest CPU which implements the ARM " "Virtualization Extensions", NULL); /* High memory is enabled by default */ vms->highmem = true; object_property_add_bool(obj, "highmem", virt_get_highmem, virt_set_highmem, NULL); object_property_set_description(obj, "highmem", "Set on/off to enable/disable using " "physical address space above 32 bits", NULL); /* Default GIC type is v2 */ vms->gic_version = 2; object_property_add_str(obj, "gic-version", virt_get_gic_version, virt_set_gic_version, NULL); object_property_set_description(obj, "gic-version", "Set GIC version. " "Valid values are 2, 3 and host", NULL); if (vmc->no_its) { vms->its = false; } else { /* Default allows ITS instantiation */ vms->its = true; object_property_add_bool(obj, "its", virt_get_its, virt_set_its, NULL); object_property_set_description(obj, "its", "Set on/off to enable/disable " "ITS instantiation", NULL); } vms->memmap = a15memmap; vms->irqmap = a15irqmap; } static void virt_machine_2_12_options(MachineClass *mc) { } DEFINE_VIRT_MACHINE_AS_LATEST(2, 12) #define VIRT_COMPAT_2_11 \ HW_COMPAT_2_11 static void virt_2_11_instance_init(Object *obj) { virt_2_12_instance_init(obj); } static void virt_machine_2_11_options(MachineClass *mc) { VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); virt_machine_2_12_options(mc); SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_11); vmc->smbios_old_sys_ver = true; } DEFINE_VIRT_MACHINE(2, 11) #define VIRT_COMPAT_2_10 \ HW_COMPAT_2_10 static void virt_2_10_instance_init(Object *obj) { virt_2_11_instance_init(obj); } static void virt_machine_2_10_options(MachineClass *mc) { virt_machine_2_11_options(mc); SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_10); } DEFINE_VIRT_MACHINE(2, 10) #define VIRT_COMPAT_2_9 \ HW_COMPAT_2_9 static void virt_2_9_instance_init(Object *obj) { virt_2_10_instance_init(obj); } static void virt_machine_2_9_options(MachineClass *mc) { virt_machine_2_10_options(mc); SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_9); } DEFINE_VIRT_MACHINE(2, 9) #define VIRT_COMPAT_2_8 \ HW_COMPAT_2_8 static void virt_2_8_instance_init(Object *obj) { virt_2_9_instance_init(obj); } static void virt_machine_2_8_options(MachineClass *mc) { VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); virt_machine_2_9_options(mc); SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8); /* For 2.8 and earlier we falsely claimed in the DT that * our timers were edge-triggered, not level-triggered. */ vmc->claim_edge_triggered_timers = true; } DEFINE_VIRT_MACHINE(2, 8) #define VIRT_COMPAT_2_7 \ HW_COMPAT_2_7 static void virt_2_7_instance_init(Object *obj) { virt_2_8_instance_init(obj); } static void virt_machine_2_7_options(MachineClass *mc) { VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); virt_machine_2_8_options(mc); SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7); /* ITS was introduced with 2.8 */ vmc->no_its = true; /* Stick with 1K pages for migration compatibility */ mc->minimum_page_bits = 0; } DEFINE_VIRT_MACHINE(2, 7) #define VIRT_COMPAT_2_6 \ HW_COMPAT_2_6 static void virt_2_6_instance_init(Object *obj) { virt_2_7_instance_init(obj); } static void virt_machine_2_6_options(MachineClass *mc) { VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); virt_machine_2_7_options(mc); SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6); vmc->disallow_affinity_adjustment = true; /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ vmc->no_pmu = true; } DEFINE_VIRT_MACHINE(2, 6)