/* * ARM mach-virt emulation * * Copyright (c) 2013 Linaro Limited * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . * * Emulate a virtual board which works by passing Linux all the information * it needs about what devices are present via the device tree. * There are some restrictions about what we can do here: * + we can only present devices whose Linux drivers will work based * purely on the device tree with no platform data at all * + we want to present a very stripped-down minimalist platform, * both because this reduces the security attack surface from the guest * and also because it reduces our exposure to being broken when * the kernel updates its device tree bindings and requires further * information in a device binding that we aren't providing. * This is essentially the same approach kvmtool uses. */ #include "qemu/osdep.h" #include "qemu/datadir.h" #include "qemu/units.h" #include "qemu/option.h" #include "monitor/qdev.h" #include "hw/sysbus.h" #include "hw/arm/boot.h" #include "hw/arm/primecell.h" #include "hw/arm/virt.h" #include "hw/block/flash.h" #include "hw/vfio/vfio-calxeda-xgmac.h" #include "hw/vfio/vfio-amd-xgbe.h" #include "hw/display/ramfb.h" #include "net/net.h" #include "sysemu/device_tree.h" #include "sysemu/numa.h" #include "sysemu/runstate.h" #include "sysemu/tpm.h" #include "sysemu/tcg.h" #include "sysemu/kvm.h" #include "sysemu/hvf.h" #include "sysemu/qtest.h" #include "hw/loader.h" #include "qapi/error.h" #include "qemu/bitops.h" #include "qemu/error-report.h" #include "qemu/module.h" #include "hw/pci-host/gpex.h" #include "hw/virtio/virtio-pci.h" #include "hw/core/sysbus-fdt.h" #include "hw/platform-bus.h" #include "hw/qdev-properties.h" #include "hw/arm/fdt.h" #include "hw/intc/arm_gic.h" #include "hw/intc/arm_gicv3_common.h" #include "hw/intc/arm_gicv3_its_common.h" #include "hw/irq.h" #include "kvm_arm.h" #include "hw/firmware/smbios.h" #include "qapi/visitor.h" #include "qapi/qapi-visit-common.h" #include "qapi/qmp/qlist.h" #include "standard-headers/linux/input.h" #include "hw/arm/smmuv3.h" #include "hw/acpi/acpi.h" #include "target/arm/cpu-qom.h" #include "target/arm/internals.h" #include "target/arm/multiprocessing.h" #include "target/arm/gtimer.h" #include "hw/mem/pc-dimm.h" #include "hw/mem/nvdimm.h" #include "hw/acpi/generic_event_device.h" #include "hw/virtio/virtio-md-pci.h" #include "hw/virtio/virtio-iommu.h" #include "hw/char/pl011.h" #include "qemu/guest-random.h" static GlobalProperty arm_virt_compat[] = { { TYPE_VIRTIO_IOMMU_PCI, "aw-bits", "48" }, }; static const size_t arm_virt_compat_len = G_N_ELEMENTS(arm_virt_compat); /* * This cannot be called from the virt_machine_class_init() because * TYPE_VIRT_MACHINE is abstract and mc->compat_props g_ptr_array_new() * only is called on virt non abstract class init. */ static void arm_virt_compat_set(MachineClass *mc) { compat_props_add(mc->compat_props, arm_virt_compat, arm_virt_compat_len); } #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \ static void virt_##major##_##minor##_class_init(ObjectClass *oc, \ void *data) \ { \ MachineClass *mc = MACHINE_CLASS(oc); \ arm_virt_compat_set(mc); \ virt_machine_##major##_##minor##_options(mc); \ mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \ if (latest) { \ mc->alias = "virt"; \ } \ } \ static const TypeInfo machvirt_##major##_##minor##_info = { \ .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \ .parent = TYPE_VIRT_MACHINE, \ .class_init = virt_##major##_##minor##_class_init, \ }; \ static void machvirt_machine_##major##_##minor##_init(void) \ { \ type_register_static(&machvirt_##major##_##minor##_info); \ } \ type_init(machvirt_machine_##major##_##minor##_init); #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \ DEFINE_VIRT_MACHINE_LATEST(major, minor, true) #define DEFINE_VIRT_MACHINE(major, minor) \ DEFINE_VIRT_MACHINE_LATEST(major, minor, false) /* Number of external interrupt lines to configure the GIC with */ #define NUM_IRQS 256 #define PLATFORM_BUS_NUM_IRQS 64 /* Legacy RAM limit in GB (< version 4.0) */ #define LEGACY_RAMLIMIT_GB 255 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB) /* Addresses and sizes of our components. * 0..128MB is space for a flash device so we can run bootrom code such as UEFI. * 128MB..256MB is used for miscellaneous device I/O. * 256MB..1GB is reserved for possible future PCI support (ie where the * PCI memory window will go if we add a PCI host controller). * 1GB and up is RAM (which may happily spill over into the * high memory region beyond 4GB). * This represents a compromise between how much RAM can be given to * a 32 bit VM and leaving space for expansion and in particular for PCI. * Note that devices should generally be placed at multiples of 0x10000, * to accommodate guests using 64K pages. */ static const MemMapEntry base_memmap[] = { /* Space up to 0x8000000 is reserved for a boot ROM */ [VIRT_FLASH] = { 0, 0x08000000 }, [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 }, /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */ [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 }, [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 }, /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, /* This redistributor space allows up to 2*64kB*123 CPUs */ [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 }, [VIRT_UART0] = { 0x09000000, 0x00001000 }, [VIRT_RTC] = { 0x09010000, 0x00001000 }, [VIRT_FW_CFG] = { 0x09020000, 0x00000018 }, [VIRT_GPIO] = { 0x09030000, 0x00001000 }, [VIRT_UART1] = { 0x09040000, 0x00001000 }, [VIRT_SMMU] = { 0x09050000, 0x00020000 }, [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN }, [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN }, [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN}, [VIRT_PVTIME] = { 0x090a0000, 0x00010000 }, [VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 }, [VIRT_MMIO] = { 0x0a000000, 0x00000200 }, /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */ [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 }, [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 }, [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 }, [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 }, [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 }, /* Actual RAM size depends on initial RAM and device memory settings */ [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES }, }; /* * Highmem IO Regions: This memory map is floating, located after the RAM. * Each MemMapEntry base (GPA) will be dynamically computed, depending on the * top of the RAM, so that its base get the same alignment as the size, * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is * less than 256GiB of RAM, the floating area starts at the 256GiB mark. * Note the extended_memmap is sized so that it eventually also includes the * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last * index of base_memmap). * * The memory map for these Highmem IO Regions can be in legacy or compact * layout, depending on 'compact-highmem' property. With legacy layout, the * PA space for one specific region is always reserved, even if the region * has been disabled or doesn't fit into the PA space. However, the PA space * for the region won't be reserved in these circumstances with compact layout. */ static MemMapEntry extended_memmap[] = { /* Additional 64 MB redist region (can contain up to 512 redistributors) */ [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB }, [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB }, /* Second PCIe window */ [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB }, }; static const int a15irqmap[] = { [VIRT_UART0] = 1, [VIRT_RTC] = 2, [VIRT_PCIE] = 3, /* ... to 6 */ [VIRT_GPIO] = 7, [VIRT_UART1] = 8, [VIRT_ACPI_GED] = 9, [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */ [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */ [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */ [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */ }; static void create_randomness(MachineState *ms, const char *node) { struct { uint64_t kaslr; uint8_t rng[32]; } seed; if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) { return; } qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr); qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng)); } /* * The CPU object always exposes the NS EL2 virt timer IRQ line, * but we don't want to advertise it to the guest in the dtb or ACPI * table unless it's really going to do something. */ static bool ns_el2_virt_timer_present(void) { ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0)); CPUARMState *env = &cpu->env; return arm_feature(env, ARM_FEATURE_AARCH64) && arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu); } static void create_fdt(VirtMachineState *vms) { MachineState *ms = MACHINE(vms); int nb_numa_nodes = ms->numa_state->num_nodes; void *fdt = create_device_tree(&vms->fdt_size); if (!fdt) { error_report("create_device_tree() failed"); exit(1); } ms->fdt = fdt; /* Header */ qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt"); qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt"); /* * For QEMU, all DMA is coherent. Advertising this in the root node * has two benefits: * * - It avoids potential bugs where we forget to mark a DMA * capable device as being dma-coherent * - It avoids spurious warnings from the Linux kernel about * devices which can't do DMA at all */ qemu_fdt_setprop(fdt, "/", "dma-coherent", NULL, 0); /* /chosen must exist for load_dtb to fill in necessary properties later */ qemu_fdt_add_subnode(fdt, "/chosen"); if (vms->dtb_randomness) { create_randomness(ms, "/chosen"); } if (vms->secure) { qemu_fdt_add_subnode(fdt, "/secure-chosen"); if (vms->dtb_randomness) { create_randomness(ms, "/secure-chosen"); } } qemu_fdt_add_subnode(fdt, "/aliases"); /* Clock node, for the benefit of the UART. The kernel device tree * binding documentation claims the PL011 node clock properties are * optional but in practice if you omit them the kernel refuses to * probe for the device. */ vms->clock_phandle = qemu_fdt_alloc_phandle(fdt); qemu_fdt_add_subnode(fdt, "/apb-pclk"); qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock"); qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0); qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000); qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names", "clk24mhz"); qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle); if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) { int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); uint32_t *matrix = g_malloc0(size); int idx, i, j; for (i = 0; i < nb_numa_nodes; i++) { for (j = 0; j < nb_numa_nodes; j++) { idx = (i * nb_numa_nodes + j) * 3; matrix[idx + 0] = cpu_to_be32(i); matrix[idx + 1] = cpu_to_be32(j); matrix[idx + 2] = cpu_to_be32(ms->numa_state->nodes[i].distance[j]); } } qemu_fdt_add_subnode(fdt, "/distance-map"); qemu_fdt_setprop_string(fdt, "/distance-map", "compatible", "numa-distance-map-v1"); qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", matrix, size); g_free(matrix); } } static void fdt_add_timer_nodes(const VirtMachineState *vms) { /* On real hardware these interrupts are level-triggered. * On KVM they were edge-triggered before host kernel version 4.4, * and level-triggered afterwards. * On emulated QEMU they are level-triggered. * * Getting the DTB info about them wrong is awkward for some * guest kernels: * pre-4.8 ignore the DT and leave the interrupt configured * with whatever the GIC reset value (or the bootloader) left it at * 4.8 before rc6 honour the incorrect data by programming it back * into the GIC, causing problems * 4.8rc6 and later ignore the DT and always write "level triggered" * into the GIC * * For backwards-compatibility, virt-2.8 and earlier will continue * to say these are edge-triggered, but later machines will report * the correct information. */ ARMCPU *armcpu; VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; MachineState *ms = MACHINE(vms); if (vmc->claim_edge_triggered_timers) { irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI; } if (vms->gic_version == VIRT_GIC_VERSION_2) { irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << MACHINE(vms)->smp.cpus) - 1); } qemu_fdt_add_subnode(ms->fdt, "/timer"); armcpu = ARM_CPU(qemu_get_cpu(0)); if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { const char compat[] = "arm,armv8-timer\0arm,armv7-timer"; qemu_fdt_setprop(ms->fdt, "/timer", "compatible", compat, sizeof(compat)); } else { qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible", "arm,armv7-timer"); } qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0); if (vms->ns_el2_virt_timer_irq) { qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", GIC_FDT_IRQ_TYPE_PPI, INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags, GIC_FDT_IRQ_TYPE_PPI, INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags, GIC_FDT_IRQ_TYPE_PPI, INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags, GIC_FDT_IRQ_TYPE_PPI, INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags, GIC_FDT_IRQ_TYPE_PPI, INTID_TO_PPI(ARCH_TIMER_NS_EL2_VIRT_IRQ), irqflags); } else { qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts", GIC_FDT_IRQ_TYPE_PPI, INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags, GIC_FDT_IRQ_TYPE_PPI, INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags, GIC_FDT_IRQ_TYPE_PPI, INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags, GIC_FDT_IRQ_TYPE_PPI, INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags); } } static void fdt_add_cpu_nodes(const VirtMachineState *vms) { int cpu; int addr_cells = 1; const MachineState *ms = MACHINE(vms); const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); int smp_cpus = ms->smp.cpus; /* * See Linux Documentation/devicetree/bindings/arm/cpus.yaml * On ARM v8 64-bit systems value should be set to 2, * that corresponds to the MPIDR_EL1 register size. * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs * in the system, #address-cells can be set to 1, since * MPIDR_EL1[63:32] bits are not used for CPUs * identification. * * Here we actually don't know whether our system is 32- or 64-bit one. * The simplest way to go is to examine affinity IDs of all our CPUs. If * at least one of them has Aff3 populated, we set #address-cells to 2. */ for (cpu = 0; cpu < smp_cpus; cpu++) { ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); if (arm_cpu_mp_affinity(armcpu) & ARM_AFF3_MASK) { addr_cells = 2; break; } } qemu_fdt_add_subnode(ms->fdt, "/cpus"); qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells); qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0); for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); CPUState *cs = CPU(armcpu); qemu_fdt_add_subnode(ms->fdt, nodename); qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu"); qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", armcpu->dtb_compatible); if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) { qemu_fdt_setprop_string(ms->fdt, nodename, "enable-method", "psci"); } if (addr_cells == 2) { qemu_fdt_setprop_u64(ms->fdt, nodename, "reg", arm_cpu_mp_affinity(armcpu)); } else { qemu_fdt_setprop_cell(ms->fdt, nodename, "reg", arm_cpu_mp_affinity(armcpu)); } if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id", ms->possible_cpus->cpus[cs->cpu_index].props.node_id); } if (!vmc->no_cpu_topology) { qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", qemu_fdt_alloc_phandle(ms->fdt)); } g_free(nodename); } if (!vmc->no_cpu_topology) { /* * Add vCPU topology description through fdt node cpu-map. * * See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt * In a SMP system, the hierarchy of CPUs can be defined through * four entities that are used to describe the layout of CPUs in * the system: socket/cluster/core/thread. * * A socket node represents the boundary of system physical package * and its child nodes must be one or more cluster nodes. A system * can contain several layers of clustering within a single physical * package and cluster nodes can be contained in parent cluster nodes. * * Note: currently we only support one layer of clustering within * each physical package. */ qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map"); for (cpu = smp_cpus - 1; cpu >= 0; cpu--) { char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu); char *map_path; if (ms->smp.threads > 1) { map_path = g_strdup_printf( "/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d", cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads), (cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters, (cpu / ms->smp.threads) % ms->smp.cores, cpu % ms->smp.threads); } else { map_path = g_strdup_printf( "/cpus/cpu-map/socket%d/cluster%d/core%d", cpu / (ms->smp.clusters * ms->smp.cores), (cpu / ms->smp.cores) % ms->smp.clusters, cpu % ms->smp.cores); } qemu_fdt_add_path(ms->fdt, map_path); qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path); g_free(map_path); g_free(cpu_path); } } } static void fdt_add_its_gic_node(VirtMachineState *vms) { char *nodename; MachineState *ms = MACHINE(vms); vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); nodename = g_strdup_printf("/intc/its@%" PRIx64, vms->memmap[VIRT_GIC_ITS].base); qemu_fdt_add_subnode(ms->fdt, nodename); qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "arm,gic-v3-its"); qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1); qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, vms->memmap[VIRT_GIC_ITS].base, 2, vms->memmap[VIRT_GIC_ITS].size); qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); g_free(nodename); } static void fdt_add_v2m_gic_node(VirtMachineState *vms) { MachineState *ms = MACHINE(vms); char *nodename; nodename = g_strdup_printf("/intc/v2m@%" PRIx64, vms->memmap[VIRT_GIC_V2M].base); vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt); qemu_fdt_add_subnode(ms->fdt, nodename); qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "arm,gic-v2m-frame"); qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0); qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, vms->memmap[VIRT_GIC_V2M].base, 2, vms->memmap[VIRT_GIC_V2M].size); qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle); g_free(nodename); } static void fdt_add_gic_node(VirtMachineState *vms) { MachineState *ms = MACHINE(vms); char *nodename; vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt); qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle); nodename = g_strdup_printf("/intc@%" PRIx64, vms->memmap[VIRT_GIC_DIST].base); qemu_fdt_add_subnode(ms->fdt, nodename); qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3); qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0); qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2); qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2); qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0); if (vms->gic_version != VIRT_GIC_VERSION_2) { int nb_redist_regions = virt_gicv3_redist_region_count(vms); qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "arm,gic-v3"); qemu_fdt_setprop_cell(ms->fdt, nodename, "#redistributor-regions", nb_redist_regions); if (nb_redist_regions == 1) { qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, vms->memmap[VIRT_GIC_DIST].base, 2, vms->memmap[VIRT_GIC_DIST].size, 2, vms->memmap[VIRT_GIC_REDIST].base, 2, vms->memmap[VIRT_GIC_REDIST].size); } else { qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, vms->memmap[VIRT_GIC_DIST].base, 2, vms->memmap[VIRT_GIC_DIST].size, 2, vms->memmap[VIRT_GIC_REDIST].base, 2, vms->memmap[VIRT_GIC_REDIST].size, 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base, 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size); } if (vms->virt) { qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", GIC_FDT_IRQ_TYPE_PPI, INTID_TO_PPI(ARCH_GIC_MAINT_IRQ), GIC_FDT_IRQ_FLAGS_LEVEL_HI); } } else { /* 'cortex-a15-gic' means 'GIC v2' */ qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "arm,cortex-a15-gic"); if (!vms->virt) { qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, vms->memmap[VIRT_GIC_DIST].base, 2, vms->memmap[VIRT_GIC_DIST].size, 2, vms->memmap[VIRT_GIC_CPU].base, 2, vms->memmap[VIRT_GIC_CPU].size); } else { qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, vms->memmap[VIRT_GIC_DIST].base, 2, vms->memmap[VIRT_GIC_DIST].size, 2, vms->memmap[VIRT_GIC_CPU].base, 2, vms->memmap[VIRT_GIC_CPU].size, 2, vms->memmap[VIRT_GIC_HYP].base, 2, vms->memmap[VIRT_GIC_HYP].size, 2, vms->memmap[VIRT_GIC_VCPU].base, 2, vms->memmap[VIRT_GIC_VCPU].size); qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", GIC_FDT_IRQ_TYPE_PPI, INTID_TO_PPI(ARCH_GIC_MAINT_IRQ), GIC_FDT_IRQ_FLAGS_LEVEL_HI); } } qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle); g_free(nodename); } static void fdt_add_pmu_nodes(const VirtMachineState *vms) { ARMCPU *armcpu = ARM_CPU(first_cpu); uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI; MachineState *ms = MACHINE(vms); if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL)); return; } if (vms->gic_version == VIRT_GIC_VERSION_2) { irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START, GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << MACHINE(vms)->smp.cpus) - 1); } qemu_fdt_add_subnode(ms->fdt, "/pmu"); if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) { const char compat[] = "arm,armv8-pmuv3"; qemu_fdt_setprop(ms->fdt, "/pmu", "compatible", compat, sizeof(compat)); qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts", GIC_FDT_IRQ_TYPE_PPI, INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags); } } static inline DeviceState *create_acpi_ged(VirtMachineState *vms) { DeviceState *dev; MachineState *ms = MACHINE(vms); int irq = vms->irqmap[VIRT_ACPI_GED]; uint32_t event = ACPI_GED_PWR_DOWN_EVT; if (ms->ram_slots) { event |= ACPI_GED_MEM_HOTPLUG_EVT; } if (ms->nvdimms_state->is_enabled) { event |= ACPI_GED_NVDIMM_HOTPLUG_EVT; } dev = qdev_new(TYPE_ACPI_GED); qdev_prop_set_uint32(dev, "ged-event", event); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base); sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq)); return dev; } static void create_its(VirtMachineState *vms) { const char *itsclass = its_class_name(); DeviceState *dev; if (!strcmp(itsclass, "arm-gicv3-its")) { if (!vms->tcg_its) { itsclass = NULL; } } if (!itsclass) { /* Do nothing if not supported */ return; } dev = qdev_new(itsclass); object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic), &error_abort); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base); fdt_add_its_gic_node(vms); vms->msi_controller = VIRT_MSI_CTRL_ITS; } static void create_v2m(VirtMachineState *vms) { int i; int irq = vms->irqmap[VIRT_GIC_V2M]; DeviceState *dev; dev = qdev_new("arm-gicv2m"); qdev_prop_set_uint32(dev, "base-spi", irq); qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base); for (i = 0; i < NUM_GICV2M_SPIS; i++) { sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, qdev_get_gpio_in(vms->gic, irq + i)); } fdt_add_v2m_gic_node(vms); vms->msi_controller = VIRT_MSI_CTRL_GICV2M; } /* * If the CPU has FEAT_NMI, then turn on the NMI support in the GICv3 too. * It's permitted to have a configuration with NMI in the CPU (and thus the * GICv3 CPU interface) but not in the distributor/redistributors, but it's * not very useful. */ static bool gicv3_nmi_present(VirtMachineState *vms) { ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0)); return tcg_enabled() && cpu_isar_feature(aa64_nmi, cpu) && (vms->gic_version != VIRT_GIC_VERSION_2); } static void create_gic(VirtMachineState *vms, MemoryRegion *mem) { MachineState *ms = MACHINE(vms); /* We create a standalone GIC */ SysBusDevice *gicbusdev; const char *gictype; int i; unsigned int smp_cpus = ms->smp.cpus; uint32_t nb_redist_regions = 0; int revision; if (vms->gic_version == VIRT_GIC_VERSION_2) { gictype = gic_class_name(); } else { gictype = gicv3_class_name(); } switch (vms->gic_version) { case VIRT_GIC_VERSION_2: revision = 2; break; case VIRT_GIC_VERSION_3: revision = 3; break; case VIRT_GIC_VERSION_4: revision = 4; break; default: g_assert_not_reached(); } vms->gic = qdev_new(gictype); qdev_prop_set_uint32(vms->gic, "revision", revision); qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus); /* Note that the num-irq property counts both internal and external * interrupts; there are always 32 of the former (mandated by GIC spec). */ qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32); if (!kvm_irqchip_in_kernel()) { qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure); } if (vms->gic_version != VIRT_GIC_VERSION_2) { QList *redist_region_count; uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST); uint32_t redist0_count = MIN(smp_cpus, redist0_capacity); nb_redist_regions = virt_gicv3_redist_region_count(vms); redist_region_count = qlist_new(); qlist_append_int(redist_region_count, redist0_count); if (nb_redist_regions == 2) { uint32_t redist1_capacity = virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); qlist_append_int(redist_region_count, MIN(smp_cpus - redist0_count, redist1_capacity)); } qdev_prop_set_array(vms->gic, "redist-region-count", redist_region_count); if (!kvm_irqchip_in_kernel()) { if (vms->tcg_its) { object_property_set_link(OBJECT(vms->gic), "sysmem", OBJECT(mem), &error_fatal); qdev_prop_set_bit(vms->gic, "has-lpi", true); } } } else { if (!kvm_irqchip_in_kernel()) { qdev_prop_set_bit(vms->gic, "has-virtualization-extensions", vms->virt); } } if (gicv3_nmi_present(vms)) { qdev_prop_set_bit(vms->gic, "has-nmi", true); } gicbusdev = SYS_BUS_DEVICE(vms->gic); sysbus_realize_and_unref(gicbusdev, &error_fatal); sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base); if (vms->gic_version != VIRT_GIC_VERSION_2) { sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base); if (nb_redist_regions == 2) { sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base); } } else { sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); if (vms->virt) { sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base); sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base); } } /* Wire the outputs from each CPU's generic timer and the GICv3 * maintenance interrupt signal to the appropriate GIC PPI inputs, * and the GIC's IRQ/FIQ/VIRQ/VFIQ/NMI/VINMI interrupt outputs to the * CPU's inputs. */ for (i = 0; i < smp_cpus; i++) { DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); int intidbase = NUM_IRQS + i * GIC_INTERNAL; /* Mapping from the output timer irq lines from the CPU to the * GIC PPI inputs we use for the virt board. */ const int timer_irq[] = { [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, [GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ, }; for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { qdev_connect_gpio_out(cpudev, irq, qdev_get_gpio_in(vms->gic, intidbase + timer_irq[irq])); } if (vms->gic_version != VIRT_GIC_VERSION_2) { qemu_irq irq = qdev_get_gpio_in(vms->gic, intidbase + ARCH_GIC_MAINT_IRQ); qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0, irq); } else if (vms->virt) { qemu_irq irq = qdev_get_gpio_in(vms->gic, intidbase + ARCH_GIC_MAINT_IRQ); sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq); } qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, qdev_get_gpio_in(vms->gic, intidbase + VIRTUAL_PMU_IRQ)); sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); sysbus_connect_irq(gicbusdev, i + smp_cpus, qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); if (vms->gic_version != VIRT_GIC_VERSION_2) { sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, qdev_get_gpio_in(cpudev, ARM_CPU_NMI)); sysbus_connect_irq(gicbusdev, i + 5 * smp_cpus, qdev_get_gpio_in(cpudev, ARM_CPU_VINMI)); } } fdt_add_gic_node(vms); if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) { create_its(vms); } else if (vms->gic_version == VIRT_GIC_VERSION_2) { create_v2m(vms); } } static void create_uart(const VirtMachineState *vms, int uart, MemoryRegion *mem, Chardev *chr, bool secure) { char *nodename; hwaddr base = vms->memmap[uart].base; hwaddr size = vms->memmap[uart].size; int irq = vms->irqmap[uart]; const char compat[] = "arm,pl011\0arm,primecell"; const char clocknames[] = "uartclk\0apb_pclk"; DeviceState *dev = qdev_new(TYPE_PL011); SysBusDevice *s = SYS_BUS_DEVICE(dev); MachineState *ms = MACHINE(vms); qdev_prop_set_chr(dev, "chardev", chr); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0)); sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); nodename = g_strdup_printf("/pl011@%" PRIx64, base); qemu_fdt_add_subnode(ms->fdt, nodename); /* Note that we can't use setprop_string because of the embedded NUL */ qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size); qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", GIC_FDT_IRQ_TYPE_SPI, irq, GIC_FDT_IRQ_FLAGS_LEVEL_HI); qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks", vms->clock_phandle, vms->clock_phandle); qemu_fdt_setprop(ms->fdt, nodename, "clock-names", clocknames, sizeof(clocknames)); if (uart == VIRT_UART0) { qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename); qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial0", nodename); } else { qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial1", nodename); } if (secure) { /* Mark as not usable by the normal world */ qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path", nodename); } g_free(nodename); } static void create_rtc(const VirtMachineState *vms) { char *nodename; hwaddr base = vms->memmap[VIRT_RTC].base; hwaddr size = vms->memmap[VIRT_RTC].size; int irq = vms->irqmap[VIRT_RTC]; const char compat[] = "arm,pl031\0arm,primecell"; MachineState *ms = MACHINE(vms); sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq)); nodename = g_strdup_printf("/pl031@%" PRIx64, base); qemu_fdt_add_subnode(ms->fdt, nodename); qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size); qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", GIC_FDT_IRQ_TYPE_SPI, irq, GIC_FDT_IRQ_FLAGS_LEVEL_HI); qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); g_free(nodename); } static DeviceState *gpio_key_dev; static void virt_powerdown_req(Notifier *n, void *opaque) { VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier); if (s->acpi_dev) { acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS); } else { /* use gpio Pin 3 for power button event */ qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); } } static void create_gpio_keys(char *fdt, DeviceState *pl061_dev, uint32_t phandle) { gpio_key_dev = sysbus_create_simple("gpio-key", -1, qdev_get_gpio_in(pl061_dev, 3)); qemu_fdt_add_subnode(fdt, "/gpio-keys"); qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys"); qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff"); qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff", "label", "GPIO Key Poweroff"); qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code", KEY_POWER); qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff", "gpios", phandle, 3, 0); } #define SECURE_GPIO_POWEROFF 0 #define SECURE_GPIO_RESET 1 static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev, uint32_t phandle) { DeviceState *gpio_pwr_dev; /* gpio-pwr */ gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL); /* connect secure pl061 to gpio-pwr */ qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET, qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0)); qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF, qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0)); qemu_fdt_add_subnode(fdt, "/gpio-poweroff"); qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible", "gpio-poweroff"); qemu_fdt_setprop_cells(fdt, "/gpio-poweroff", "gpios", phandle, SECURE_GPIO_POWEROFF, 0); qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled"); qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status", "okay"); qemu_fdt_add_subnode(fdt, "/gpio-restart"); qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible", "gpio-restart"); qemu_fdt_setprop_cells(fdt, "/gpio-restart", "gpios", phandle, SECURE_GPIO_RESET, 0); qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled"); qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status", "okay"); } static void create_gpio_devices(const VirtMachineState *vms, int gpio, MemoryRegion *mem) { char *nodename; DeviceState *pl061_dev; hwaddr base = vms->memmap[gpio].base; hwaddr size = vms->memmap[gpio].size; int irq = vms->irqmap[gpio]; const char compat[] = "arm,pl061\0arm,primecell"; SysBusDevice *s; MachineState *ms = MACHINE(vms); pl061_dev = qdev_new("pl061"); /* Pull lines down to 0 if not driven by the PL061 */ qdev_prop_set_uint32(pl061_dev, "pullups", 0); qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff); s = SYS_BUS_DEVICE(pl061_dev); sysbus_realize_and_unref(s, &error_fatal); memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0)); sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq)); uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt); nodename = g_strdup_printf("/pl061@%" PRIx64, base); qemu_fdt_add_subnode(ms->fdt, nodename); qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size); qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat)); qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2); qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0); qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", GIC_FDT_IRQ_TYPE_SPI, irq, GIC_FDT_IRQ_FLAGS_LEVEL_HI); qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle); qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk"); qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle); if (gpio != VIRT_GPIO) { /* Mark as not usable by the normal world */ qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); } g_free(nodename); /* Child gpio devices */ if (gpio == VIRT_GPIO) { create_gpio_keys(ms->fdt, pl061_dev, phandle); } else { create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle); } } static void create_virtio_devices(const VirtMachineState *vms) { int i; hwaddr size = vms->memmap[VIRT_MMIO].size; MachineState *ms = MACHINE(vms); /* We create the transports in forwards order. Since qbus_realize() * prepends (not appends) new child buses, the incrementing loop below will * create a list of virtio-mmio buses with decreasing base addresses. * * When a -device option is processed from the command line, * qbus_find_recursive() picks the next free virtio-mmio bus in forwards * order. The upshot is that -device options in increasing command line * order are mapped to virtio-mmio buses with decreasing base addresses. * * When this code was originally written, that arrangement ensured that the * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to * the first -device on the command line. (The end-to-end order is a * function of this loop, qbus_realize(), qbus_find_recursive(), and the * guest kernel's name-to-address assignment strategy.) * * Meanwhile, the kernel's traversal seems to have been reversed; see eg. * the message, if not necessarily the code, of commit 70161ff336. * Therefore the loop now establishes the inverse of the original intent. * * Unfortunately, we can't counteract the kernel change by reversing the * loop; it would break existing command lines. * * In any case, the kernel makes no guarantee about the stability of * enumeration order of virtio devices (as demonstrated by it changing * between kernel versions). For reliable and stable identification * of disks users must use UUIDs or similar mechanisms. */ for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) { int irq = vms->irqmap[VIRT_MMIO] + i; hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; sysbus_create_simple("virtio-mmio", base, qdev_get_gpio_in(vms->gic, irq)); } /* We add dtb nodes in reverse order so that they appear in the finished * device tree lowest address first. * * Note that this mapping is independent of the loop above. The previous * loop influences virtio device to virtio transport assignment, whereas * this loop controls how virtio transports are laid out in the dtb. */ for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) { char *nodename; int irq = vms->irqmap[VIRT_MMIO] + i; hwaddr base = vms->memmap[VIRT_MMIO].base + i * size; nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base); qemu_fdt_add_subnode(ms->fdt, nodename); qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "virtio,mmio"); qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size); qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts", GIC_FDT_IRQ_TYPE_SPI, irq, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); g_free(nodename); } } #define VIRT_FLASH_SECTOR_SIZE (256 * KiB) static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms, const char *name, const char *alias_prop_name) { /* * Create a single flash device. We use the same parameters as * the flash devices on the Versatile Express board. */ DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE); qdev_prop_set_uint8(dev, "width", 4); qdev_prop_set_uint8(dev, "device-width", 2); qdev_prop_set_bit(dev, "big-endian", false); qdev_prop_set_uint16(dev, "id0", 0x89); qdev_prop_set_uint16(dev, "id1", 0x18); qdev_prop_set_uint16(dev, "id2", 0x00); qdev_prop_set_uint16(dev, "id3", 0x00); qdev_prop_set_string(dev, "name", name); object_property_add_child(OBJECT(vms), name, OBJECT(dev)); object_property_add_alias(OBJECT(vms), alias_prop_name, OBJECT(dev), "drive"); return PFLASH_CFI01(dev); } static void virt_flash_create(VirtMachineState *vms) { vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0"); vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1"); } static void virt_flash_map1(PFlashCFI01 *flash, hwaddr base, hwaddr size, MemoryRegion *sysmem) { DeviceState *dev = DEVICE(flash); assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE)); assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX); qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); memory_region_add_subregion(sysmem, base, sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0)); } static void virt_flash_map(VirtMachineState *vms, MemoryRegion *sysmem, MemoryRegion *secure_sysmem) { /* * Map two flash devices to fill the VIRT_FLASH space in the memmap. * sysmem is the system memory space. secure_sysmem is the secure view * of the system, and the first flash device should be made visible only * there. The second flash device is visible to both secure and nonsecure. * If sysmem == secure_sysmem this means there is no separate Secure * address space and both flash devices are generally visible. */ hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; hwaddr flashbase = vms->memmap[VIRT_FLASH].base; virt_flash_map1(vms->flash[0], flashbase, flashsize, secure_sysmem); virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize, sysmem); } static void virt_flash_fdt(VirtMachineState *vms, MemoryRegion *sysmem, MemoryRegion *secure_sysmem) { hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2; hwaddr flashbase = vms->memmap[VIRT_FLASH].base; MachineState *ms = MACHINE(vms); char *nodename; if (sysmem == secure_sysmem) { /* Report both flash devices as a single node in the DT */ nodename = g_strdup_printf("/flash@%" PRIx64, flashbase); qemu_fdt_add_subnode(ms->fdt, nodename); qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, flashbase, 2, flashsize, 2, flashbase + flashsize, 2, flashsize); qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); g_free(nodename); } else { /* * Report the devices as separate nodes so we can mark one as * only visible to the secure world. */ nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase); qemu_fdt_add_subnode(ms->fdt, nodename); qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, flashbase, 2, flashsize); qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); g_free(nodename); nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize); qemu_fdt_add_subnode(ms->fdt, nodename); qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash"); qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, flashbase + flashsize, 2, flashsize); qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4); g_free(nodename); } } static bool virt_firmware_init(VirtMachineState *vms, MemoryRegion *sysmem, MemoryRegion *secure_sysmem) { int i; const char *bios_name; BlockBackend *pflash_blk0; /* Map legacy -drive if=pflash to machine properties */ for (i = 0; i < ARRAY_SIZE(vms->flash); i++) { pflash_cfi01_legacy_drive(vms->flash[i], drive_get(IF_PFLASH, 0, i)); } virt_flash_map(vms, sysmem, secure_sysmem); pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]); bios_name = MACHINE(vms)->firmware; if (bios_name) { char *fname; MemoryRegion *mr; int image_size; if (pflash_blk0) { error_report("The contents of the first flash device may be " "specified with -bios or with -drive if=pflash... " "but you cannot use both options at once"); exit(1); } /* Fall back to -bios */ fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); if (!fname) { error_report("Could not find ROM image '%s'", bios_name); exit(1); } mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0); image_size = load_image_mr(fname, mr); g_free(fname); if (image_size < 0) { error_report("Could not load ROM image '%s'", bios_name); exit(1); } } return pflash_blk0 || bios_name; } static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as) { MachineState *ms = MACHINE(vms); hwaddr base = vms->memmap[VIRT_FW_CFG].base; hwaddr size = vms->memmap[VIRT_FW_CFG].size; FWCfgState *fw_cfg; char *nodename; fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as); fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus); nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base); qemu_fdt_add_subnode(ms->fdt, nodename); qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "qemu,fw-cfg-mmio"); qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size); qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); g_free(nodename); return fw_cfg; } static void create_pcie_irq_map(const MachineState *ms, uint32_t gic_phandle, int first_irq, const char *nodename) { int devfn, pin; uint32_t full_irq_map[4 * 4 * 10] = { 0 }; uint32_t *irq_map = full_irq_map; for (devfn = 0; devfn <= 0x18; devfn += 0x8) { for (pin = 0; pin < 4; pin++) { int irq_type = GIC_FDT_IRQ_TYPE_SPI; int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS); int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI; int i; uint32_t map[] = { devfn << 8, 0, 0, /* devfn */ pin + 1, /* PCI pin */ gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */ /* Convert map to big endian */ for (i = 0; i < 10; i++) { irq_map[i] = cpu_to_be32(map[i]); } irq_map += 10; } } qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map", full_irq_map, sizeof(full_irq_map)); qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask", cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */ 0, 0, 0x7 /* PCI irq */); } static void create_smmu(const VirtMachineState *vms, PCIBus *bus) { char *node; const char compat[] = "arm,smmu-v3"; int irq = vms->irqmap[VIRT_SMMU]; int i; hwaddr base = vms->memmap[VIRT_SMMU].base; hwaddr size = vms->memmap[VIRT_SMMU].size; const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror"; DeviceState *dev; MachineState *ms = MACHINE(vms); if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) { return; } dev = qdev_new(TYPE_ARM_SMMUV3); object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), &error_abort); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); for (i = 0; i < NUM_SMMU_IRQS; i++) { sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, qdev_get_gpio_in(vms->gic, irq + i)); } node = g_strdup_printf("/smmuv3@%" PRIx64, base); qemu_fdt_add_subnode(ms->fdt, node); qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size); qemu_fdt_setprop_cells(ms->fdt, node, "interrupts", GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI, GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI); qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names, sizeof(irq_names)); qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0); qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); g_free(node); } static void create_virtio_iommu_dt_bindings(VirtMachineState *vms) { const char compat[] = "virtio,pci-iommu\0pci1af4,1057"; uint16_t bdf = vms->virtio_iommu_bdf; MachineState *ms = MACHINE(vms); char *node; vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename, PCI_SLOT(bdf), PCI_FUNC(bdf)); qemu_fdt_add_subnode(ms->fdt, node); qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat)); qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 1, bdf << 8, 1, 0, 1, 0, 1, 0, 1, 0); qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1); qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle); g_free(node); qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map", 0x0, vms->iommu_phandle, 0x0, bdf, bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf); } static void create_pcie(VirtMachineState *vms) { hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base; hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size; hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base; hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size; hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base; hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size; hwaddr base_ecam, size_ecam; hwaddr base = base_mmio; int nr_pcie_buses; int irq = vms->irqmap[VIRT_PCIE]; MemoryRegion *mmio_alias; MemoryRegion *mmio_reg; MemoryRegion *ecam_alias; MemoryRegion *ecam_reg; DeviceState *dev; char *nodename; int i, ecam_id; PCIHostState *pci; MachineState *ms = MACHINE(vms); MachineClass *mc = MACHINE_GET_CLASS(ms); dev = qdev_new(TYPE_GPEX_HOST); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); ecam_id = VIRT_ECAM_ID(vms->highmem_ecam); base_ecam = vms->memmap[ecam_id].base; size_ecam = vms->memmap[ecam_id].size; nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN; /* Map only the first size_ecam bytes of ECAM space */ ecam_alias = g_new0(MemoryRegion, 1); ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", ecam_reg, 0, size_ecam); memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); /* Map the MMIO window into system address space so as to expose * the section of PCI MMIO space which starts at the same base address * (ie 1:1 mapping for that part of PCI MMIO space visible through * the window). */ mmio_alias = g_new0(MemoryRegion, 1); mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", mmio_reg, base_mmio, size_mmio); memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); if (vms->highmem_mmio) { /* Map high MMIO space */ MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1); memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high", mmio_reg, base_mmio_high, size_mmio_high); memory_region_add_subregion(get_system_memory(), base_mmio_high, high_mmio_alias); } /* Map IO port space */ sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); for (i = 0; i < GPEX_NUM_IRQS; i++) { sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, qdev_get_gpio_in(vms->gic, irq + i)); gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); } pci = PCI_HOST_BRIDGE(dev); pci->bypass_iommu = vms->default_bus_bypass_iommu; vms->bus = pci->bus; if (vms->bus) { pci_init_nic_devices(pci->bus, mc->default_nic); } nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base); qemu_fdt_add_subnode(ms->fdt, nodename); qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "pci-host-ecam-generic"); qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci"); qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3); qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2); qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0); qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0, nr_pcie_buses - 1); qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0); if (vms->msi_phandle) { qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map", 0, vms->msi_phandle, 0, 0x10000); } qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base_ecam, 2, size_ecam); if (vms->highmem_mmio) { qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1, FDT_PCI_RANGE_IOPORT, 2, 0, 2, base_pio, 2, size_pio, 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 2, base_mmio, 2, size_mmio, 1, FDT_PCI_RANGE_MMIO_64BIT, 2, base_mmio_high, 2, base_mmio_high, 2, size_mmio_high); } else { qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges", 1, FDT_PCI_RANGE_IOPORT, 2, 0, 2, base_pio, 2, size_pio, 1, FDT_PCI_RANGE_MMIO, 2, base_mmio, 2, base_mmio, 2, size_mmio); } qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1); create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename); if (vms->iommu) { vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt); switch (vms->iommu) { case VIRT_IOMMU_SMMUV3: create_smmu(vms, vms->bus); qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map", 0x0, vms->iommu_phandle, 0x0, 0x10000); break; default: g_assert_not_reached(); } } } static void create_platform_bus(VirtMachineState *vms) { DeviceState *dev; SysBusDevice *s; int i; MemoryRegion *sysmem = get_system_memory(); dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE); dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE); qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS); qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); vms->platform_bus_dev = dev; s = SYS_BUS_DEVICE(dev); for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) { int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i; sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq)); } memory_region_add_subregion(sysmem, vms->memmap[VIRT_PLATFORM_BUS].base, sysbus_mmio_get_region(s, 0)); } static void create_tag_ram(MemoryRegion *tag_sysmem, hwaddr base, hwaddr size, const char *name) { MemoryRegion *tagram = g_new(MemoryRegion, 1); memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal); memory_region_add_subregion(tag_sysmem, base / 32, tagram); } static void create_secure_ram(VirtMachineState *vms, MemoryRegion *secure_sysmem, MemoryRegion *secure_tag_sysmem) { MemoryRegion *secram = g_new(MemoryRegion, 1); char *nodename; hwaddr base = vms->memmap[VIRT_SECURE_MEM].base; hwaddr size = vms->memmap[VIRT_SECURE_MEM].size; MachineState *ms = MACHINE(vms); memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal); memory_region_add_subregion(secure_sysmem, base, secram); nodename = g_strdup_printf("/secram@%" PRIx64, base); qemu_fdt_add_subnode(ms->fdt, nodename); qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory"); qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size); qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled"); qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay"); if (secure_tag_sysmem) { create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag"); } g_free(nodename); } static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size) { const VirtMachineState *board = container_of(binfo, VirtMachineState, bootinfo); MachineState *ms = MACHINE(board); *fdt_size = board->fdt_size; return ms->fdt; } static void virt_build_smbios(VirtMachineState *vms) { MachineClass *mc = MACHINE_GET_CLASS(vms); MachineState *ms = MACHINE(vms); VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); uint8_t *smbios_tables, *smbios_anchor; size_t smbios_tables_len, smbios_anchor_len; struct smbios_phys_mem_area mem_array; const char *product = "QEMU Virtual Machine"; if (kvm_enabled()) { product = "KVM Virtual Machine"; } smbios_set_defaults("QEMU", product, vmc->smbios_old_sys_ver ? "1.0" : mc->name); /* build the array of physical mem area from base_memmap */ mem_array.address = vms->memmap[VIRT_MEM].base; mem_array.length = ms->ram_size; smbios_get_tables(ms, SMBIOS_ENTRY_POINT_TYPE_64, &mem_array, 1, &smbios_tables, &smbios_tables_len, &smbios_anchor, &smbios_anchor_len, &error_fatal); if (smbios_anchor) { fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables", smbios_tables, smbios_tables_len); fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor", smbios_anchor, smbios_anchor_len); } } static void virt_machine_done(Notifier *notifier, void *data) { VirtMachineState *vms = container_of(notifier, VirtMachineState, machine_done); MachineState *ms = MACHINE(vms); ARMCPU *cpu = ARM_CPU(first_cpu); struct arm_boot_info *info = &vms->bootinfo; AddressSpace *as = arm_boot_address_space(cpu, info); /* * If the user provided a dtb, we assume the dynamic sysbus nodes * already are integrated there. This corresponds to a use case where * the dynamic sysbus nodes are complex and their generation is not yet * supported. In that case the user can take charge of the guest dt * while qemu takes charge of the qom stuff. */ if (info->dtb_filename == NULL) { platform_bus_add_all_fdt_nodes(ms->fdt, "/intc", vms->memmap[VIRT_PLATFORM_BUS].base, vms->memmap[VIRT_PLATFORM_BUS].size, vms->irqmap[VIRT_PLATFORM_BUS]); } if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) { exit(1); } fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg); virt_acpi_setup(vms); virt_build_smbios(vms); } static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx) { uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); if (!vmc->disallow_affinity_adjustment) { /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the * GIC's target-list limitations. 32-bit KVM hosts currently * always create clusters of 4 CPUs, but that is expected to * change when they gain support for gicv3. When KVM is enabled * it will override the changes we make here, therefore our * purposes are to make TCG consistent (with 64-bit KVM hosts) * and to improve SGI efficiency. */ if (vms->gic_version == VIRT_GIC_VERSION_2) { clustersz = GIC_TARGETLIST_BITS; } else { clustersz = GICV3_TARGETLIST_BITS; } } return arm_build_mp_affinity(idx, clustersz); } static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms, int index) { bool *enabled_array[] = { &vms->highmem_redists, &vms->highmem_ecam, &vms->highmem_mmio, }; assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST == ARRAY_SIZE(enabled_array)); assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array)); return enabled_array[index - VIRT_LOWMEMMAP_LAST]; } static void virt_set_high_memmap(VirtMachineState *vms, hwaddr base, int pa_bits) { hwaddr region_base, region_size; bool *region_enabled, fits; int i; for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) { region_enabled = virt_get_high_memmap_enabled(vms, i); region_base = ROUND_UP(base, extended_memmap[i].size); region_size = extended_memmap[i].size; vms->memmap[i].base = region_base; vms->memmap[i].size = region_size; /* * Check each device to see if it fits in the PA space, * moving highest_gpa as we go. For compatibility, move * highest_gpa for disabled fitting devices as well, if * the compact layout has been disabled. * * For each device that doesn't fit, disable it. */ fits = (region_base + region_size) <= BIT_ULL(pa_bits); *region_enabled &= fits; if (vms->highmem_compact && !*region_enabled) { continue; } base = region_base + region_size; if (fits) { vms->highest_gpa = base - 1; } } } static void virt_set_memmap(VirtMachineState *vms, int pa_bits) { MachineState *ms = MACHINE(vms); hwaddr base, device_memory_base, device_memory_size, memtop; int i; vms->memmap = extended_memmap; for (i = 0; i < ARRAY_SIZE(base_memmap); i++) { vms->memmap[i] = base_memmap[i]; } if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) { error_report("unsupported number of memory slots: %"PRIu64, ms->ram_slots); exit(EXIT_FAILURE); } /* * !highmem is exactly the same as limiting the PA space to 32bit, * irrespective of the underlying capabilities of the HW. */ if (!vms->highmem) { pa_bits = 32; } /* * We compute the base of the high IO region depending on the * amount of initial and device memory. The device memory start/size * is aligned on 1GiB. We never put the high IO region below 256GiB * so that if maxram_size is < 255GiB we keep the legacy memory map. * The device region size assumes 1GiB page max alignment per slot. */ device_memory_base = ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB); device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB; /* Base address of the high IO region */ memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB); if (memtop > BIT_ULL(pa_bits)) { error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes", pa_bits, memtop - BIT_ULL(pa_bits)); exit(EXIT_FAILURE); } if (base < device_memory_base) { error_report("maxmem/slots too huge"); exit(EXIT_FAILURE); } if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) { base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES; } /* We know for sure that at least the memory fits in the PA space */ vms->highest_gpa = memtop - 1; virt_set_high_memmap(vms, base, pa_bits); if (device_memory_size > 0) { machine_memory_devices_init(ms, device_memory_base, device_memory_size); } } static VirtGICType finalize_gic_version_do(const char *accel_name, VirtGICType gic_version, int gics_supported, unsigned int max_cpus) { /* Convert host/max/nosel to GIC version number */ switch (gic_version) { case VIRT_GIC_VERSION_HOST: if (!kvm_enabled()) { error_report("gic-version=host requires KVM"); exit(1); } /* For KVM, gic-version=host means gic-version=max */ return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX, gics_supported, max_cpus); case VIRT_GIC_VERSION_MAX: if (gics_supported & VIRT_GIC_VERSION_4_MASK) { gic_version = VIRT_GIC_VERSION_4; } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { gic_version = VIRT_GIC_VERSION_3; } else { gic_version = VIRT_GIC_VERSION_2; } break; case VIRT_GIC_VERSION_NOSEL: if ((gics_supported & VIRT_GIC_VERSION_2_MASK) && max_cpus <= GIC_NCPU) { gic_version = VIRT_GIC_VERSION_2; } else if (gics_supported & VIRT_GIC_VERSION_3_MASK) { /* * in case the host does not support v2 emulation or * the end-user requested more than 8 VCPUs we now default * to v3. In any case defaulting to v2 would be broken. */ gic_version = VIRT_GIC_VERSION_3; } else if (max_cpus > GIC_NCPU) { error_report("%s only supports GICv2 emulation but more than 8 " "vcpus are requested", accel_name); exit(1); } break; case VIRT_GIC_VERSION_2: case VIRT_GIC_VERSION_3: case VIRT_GIC_VERSION_4: break; } /* Check chosen version is effectively supported */ switch (gic_version) { case VIRT_GIC_VERSION_2: if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) { error_report("%s does not support GICv2 emulation", accel_name); exit(1); } break; case VIRT_GIC_VERSION_3: if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) { error_report("%s does not support GICv3 emulation", accel_name); exit(1); } break; case VIRT_GIC_VERSION_4: if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) { error_report("%s does not support GICv4 emulation, is virtualization=on?", accel_name); exit(1); } break; default: error_report("logic error in finalize_gic_version"); exit(1); break; } return gic_version; } /* * finalize_gic_version - Determines the final gic_version * according to the gic-version property * * Default GIC type is v2 */ static void finalize_gic_version(VirtMachineState *vms) { const char *accel_name = current_accel_name(); unsigned int max_cpus = MACHINE(vms)->smp.max_cpus; int gics_supported = 0; /* Determine which GIC versions the current environment supports */ if (kvm_enabled() && kvm_irqchip_in_kernel()) { int probe_bitmap = kvm_arm_vgic_probe(); if (!probe_bitmap) { error_report("Unable to determine GIC version supported by host"); exit(1); } if (probe_bitmap & KVM_ARM_VGIC_V2) { gics_supported |= VIRT_GIC_VERSION_2_MASK; } if (probe_bitmap & KVM_ARM_VGIC_V3) { gics_supported |= VIRT_GIC_VERSION_3_MASK; } } else if (kvm_enabled() && !kvm_irqchip_in_kernel()) { /* KVM w/o kernel irqchip can only deal with GICv2 */ gics_supported |= VIRT_GIC_VERSION_2_MASK; accel_name = "KVM with kernel-irqchip=off"; } else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) { gics_supported |= VIRT_GIC_VERSION_2_MASK; if (module_object_class_by_name("arm-gicv3")) { gics_supported |= VIRT_GIC_VERSION_3_MASK; if (vms->virt) { /* GICv4 only makes sense if CPU has EL2 */ gics_supported |= VIRT_GIC_VERSION_4_MASK; } } } else { error_report("Unsupported accelerator, can not determine GIC support"); exit(1); } /* * Then convert helpers like host/max to concrete GIC versions and ensure * the desired version is supported */ vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version, gics_supported, max_cpus); } /* * virt_cpu_post_init() must be called after the CPUs have * been realized and the GIC has been created. */ static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem) { int max_cpus = MACHINE(vms)->smp.max_cpus; bool aarch64, pmu, steal_time; CPUState *cpu; aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL); pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL); steal_time = object_property_get_bool(OBJECT(first_cpu), "kvm-steal-time", NULL); if (kvm_enabled()) { hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base; hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size; if (steal_time) { MemoryRegion *pvtime = g_new(MemoryRegion, 1); hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU; /* The memory region size must be a multiple of host page size. */ pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size); if (pvtime_size > pvtime_reg_size) { error_report("pvtime requires a %" HWADDR_PRId " byte memory region for %d CPUs," " but only %" HWADDR_PRId " has been reserved", pvtime_size, max_cpus, pvtime_reg_size); exit(1); } memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL); memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime); } CPU_FOREACH(cpu) { if (pmu) { assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU)); if (kvm_irqchip_in_kernel()) { kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ); } kvm_arm_pmu_init(ARM_CPU(cpu)); } if (steal_time) { kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base + cpu->cpu_index * PVTIME_SIZE_PER_CPU); } } } else { if (aarch64 && vms->highmem) { int requested_pa_size = 64 - clz64(vms->highest_gpa); int pamax = arm_pamax(ARM_CPU(first_cpu)); if (pamax < requested_pa_size) { error_report("VCPU supports less PA bits (%d) than " "requested by the memory map (%d)", pamax, requested_pa_size); exit(1); } } } } static void machvirt_init(MachineState *machine) { VirtMachineState *vms = VIRT_MACHINE(machine); VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine); MachineClass *mc = MACHINE_GET_CLASS(machine); const CPUArchIdList *possible_cpus; MemoryRegion *sysmem = get_system_memory(); MemoryRegion *secure_sysmem = NULL; MemoryRegion *tag_sysmem = NULL; MemoryRegion *secure_tag_sysmem = NULL; int n, virt_max_cpus; bool firmware_loaded; bool aarch64 = true; bool has_ged = !vmc->no_ged; unsigned int smp_cpus = machine->smp.cpus; unsigned int max_cpus = machine->smp.max_cpus; possible_cpus = mc->possible_cpu_arch_ids(machine); /* * In accelerated mode, the memory map is computed earlier in kvm_type() * to create a VM with the right number of IPA bits. */ if (!vms->memmap) { Object *cpuobj; ARMCPU *armcpu; int pa_bits; /* * Instantiate a temporary CPU object to find out about what * we are about to deal with. Once this is done, get rid of * the object. */ cpuobj = object_new(possible_cpus->cpus[0].type); armcpu = ARM_CPU(cpuobj); pa_bits = arm_pamax(armcpu); object_unref(cpuobj); virt_set_memmap(vms, pa_bits); } /* We can probe only here because during property set * KVM is not available yet */ finalize_gic_version(vms); if (vms->secure) { /* * The Secure view of the world is the same as the NonSecure, * but with a few extra devices. Create it as a container region * containing the system memory at low priority; any secure-only * devices go in at higher priority and take precedence. */ secure_sysmem = g_new(MemoryRegion, 1); memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", UINT64_MAX); memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); } firmware_loaded = virt_firmware_init(vms, sysmem, secure_sysmem ?: sysmem); /* If we have an EL3 boot ROM then the assumption is that it will * implement PSCI itself, so disable QEMU's internal implementation * so it doesn't get in the way. Instead of starting secondary * CPUs in PSCI powerdown state we will start them all running and * let the boot ROM sort them out. * The usual case is that we do use QEMU's PSCI implementation; * if the guest has EL2 then we will use SMC as the conduit, * and otherwise we will use HVC (for backwards compatibility and * because if we're using KVM then we must use HVC). */ if (vms->secure && firmware_loaded) { vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; } else if (vms->virt) { vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC; } else { vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC; } /* * The maximum number of CPUs depends on the GIC version, or on how * many redistributors we can fit into the memory map (which in turn * depends on whether this is a GICv3 or v4). */ if (vms->gic_version == VIRT_GIC_VERSION_2) { virt_max_cpus = GIC_NCPU; } else { virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST); if (vms->highmem_redists) { virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2); } } if (max_cpus > virt_max_cpus) { error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " "supported by machine 'mach-virt' (%d)", max_cpus, virt_max_cpus); if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) { error_printf("Try 'highmem-redists=on' for more CPUs\n"); } exit(1); } if (vms->secure && (kvm_enabled() || hvf_enabled())) { error_report("mach-virt: %s does not support providing " "Security extensions (TrustZone) to the guest CPU", current_accel_name()); exit(1); } if (vms->virt && (kvm_enabled() || hvf_enabled())) { error_report("mach-virt: %s does not support providing " "Virtualization extensions to the guest CPU", current_accel_name()); exit(1); } if (vms->mte && (kvm_enabled() || hvf_enabled())) { error_report("mach-virt: %s does not support providing " "MTE to the guest CPU", current_accel_name()); exit(1); } create_fdt(vms); assert(possible_cpus->len == max_cpus); for (n = 0; n < possible_cpus->len; n++) { Object *cpuobj; CPUState *cs; if (n >= smp_cpus) { break; } cpuobj = object_new(possible_cpus->cpus[n].type); object_property_set_int(cpuobj, "mp-affinity", possible_cpus->cpus[n].arch_id, NULL); cs = CPU(cpuobj); cs->cpu_index = n; numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), &error_fatal); aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL); if (!vms->secure) { object_property_set_bool(cpuobj, "has_el3", false, NULL); } if (!vms->virt && object_property_find(cpuobj, "has_el2")) { object_property_set_bool(cpuobj, "has_el2", false, NULL); } if (vmc->kvm_no_adjvtime && object_property_find(cpuobj, "kvm-no-adjvtime")) { object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL); } if (vmc->no_kvm_steal_time && object_property_find(cpuobj, "kvm-steal-time")) { object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL); } if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) { object_property_set_bool(cpuobj, "pmu", false, NULL); } if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) { object_property_set_bool(cpuobj, "lpa2", false, NULL); } if (object_property_find(cpuobj, "reset-cbar")) { object_property_set_int(cpuobj, "reset-cbar", vms->memmap[VIRT_CPUPERIPHS].base, &error_abort); } object_property_set_link(cpuobj, "memory", OBJECT(sysmem), &error_abort); if (vms->secure) { object_property_set_link(cpuobj, "secure-memory", OBJECT(secure_sysmem), &error_abort); } if (vms->mte) { /* Create the memory region only once, but link to all cpus. */ if (!tag_sysmem) { /* * The property exists only if MemTag is supported. * If it is, we must allocate the ram to back that up. */ if (!object_property_find(cpuobj, "tag-memory")) { error_report("MTE requested, but not supported " "by the guest CPU"); exit(1); } tag_sysmem = g_new(MemoryRegion, 1); memory_region_init(tag_sysmem, OBJECT(machine), "tag-memory", UINT64_MAX / 32); if (vms->secure) { secure_tag_sysmem = g_new(MemoryRegion, 1); memory_region_init(secure_tag_sysmem, OBJECT(machine), "secure-tag-memory", UINT64_MAX / 32); /* As with ram, secure-tag takes precedence over tag. */ memory_region_add_subregion_overlap(secure_tag_sysmem, 0, tag_sysmem, -1); } } object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem), &error_abort); if (vms->secure) { object_property_set_link(cpuobj, "secure-tag-memory", OBJECT(secure_tag_sysmem), &error_abort); } } qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); object_unref(cpuobj); } /* Now we've created the CPUs we can see if they have the hypvirt timer */ vms->ns_el2_virt_timer_irq = ns_el2_virt_timer_present() && !vmc->no_ns_el2_virt_timer_irq; fdt_add_timer_nodes(vms); fdt_add_cpu_nodes(vms); memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, machine->ram); virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem); create_gic(vms, sysmem); virt_cpu_post_init(vms, sysmem); fdt_add_pmu_nodes(vms); /* * The first UART always exists. If the security extensions are * enabled, the second UART also always exists. Otherwise, it only exists * if a backend is configured explicitly via '-serial '. * This avoids potentially breaking existing user setups that expect * only one NonSecure UART to be present (for instance, older EDK2 * binaries). * * The nodes end up in the DTB in reverse order of creation, so we must * create UART0 last to ensure it appears as the first node in the DTB, * for compatibility with guest software that just iterates through the * DTB to find the first UART, as older versions of EDK2 do. * DTB readers that follow the spec, as Linux does, should honour the * aliases node information and /chosen/stdout-path regardless of * the order that nodes appear in the DTB. * * For similar back-compatibility reasons, if UART1 is the secure UART * we create it second (and so it appears first in the DTB), because * that's what QEMU has always done. */ if (!vms->secure) { Chardev *serial1 = serial_hd(1); if (serial1) { vms->second_ns_uart_present = true; create_uart(vms, VIRT_UART1, sysmem, serial1, false); } } create_uart(vms, VIRT_UART0, sysmem, serial_hd(0), false); if (vms->secure) { create_uart(vms, VIRT_UART1, secure_sysmem, serial_hd(1), true); } if (vms->secure) { create_secure_ram(vms, secure_sysmem, secure_tag_sysmem); } if (tag_sysmem) { create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base, machine->ram_size, "mach-virt.tag"); } vms->highmem_ecam &= (!firmware_loaded || aarch64); create_rtc(vms); create_pcie(vms); if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) { vms->acpi_dev = create_acpi_ged(vms); } else { create_gpio_devices(vms, VIRT_GPIO, sysmem); } if (vms->secure && !vmc->no_secure_gpio) { create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem); } /* connect powerdown request */ vms->powerdown_notifier.notify = virt_powerdown_req; qemu_register_powerdown_notifier(&vms->powerdown_notifier); /* Create mmio transports, so the user can create virtio backends * (which will be automatically plugged in to the transports). If * no backend is created the transport will just sit harmlessly idle. */ create_virtio_devices(vms); vms->fw_cfg = create_fw_cfg(vms, &address_space_memory); rom_set_fw(vms->fw_cfg); create_platform_bus(vms); if (machine->nvdimms_state->is_enabled) { const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = { .space_id = AML_AS_SYSTEM_MEMORY, .address = vms->memmap[VIRT_NVDIMM_ACPI].base, .bit_width = NVDIMM_ACPI_IO_LEN << 3 }; nvdimm_init_acpi_state(machine->nvdimms_state, sysmem, arm_virt_nvdimm_acpi_dsmio, vms->fw_cfg, OBJECT(vms)); } vms->bootinfo.ram_size = machine->ram_size; vms->bootinfo.board_id = -1; vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base; vms->bootinfo.get_dtb = machvirt_dtb; vms->bootinfo.skip_dtb_autoload = true; vms->bootinfo.firmware_loaded = firmware_loaded; vms->bootinfo.psci_conduit = vms->psci_conduit; arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo); vms->machine_done.notify = virt_machine_done; qemu_add_machine_init_done_notifier(&vms->machine_done); } static bool virt_get_secure(Object *obj, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); return vms->secure; } static void virt_set_secure(Object *obj, bool value, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); vms->secure = value; } static bool virt_get_virt(Object *obj, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); return vms->virt; } static void virt_set_virt(Object *obj, bool value, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); vms->virt = value; } static bool virt_get_highmem(Object *obj, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); return vms->highmem; } static void virt_set_highmem(Object *obj, bool value, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); vms->highmem = value; } static bool virt_get_compact_highmem(Object *obj, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); return vms->highmem_compact; } static void virt_set_compact_highmem(Object *obj, bool value, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); vms->highmem_compact = value; } static bool virt_get_highmem_redists(Object *obj, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); return vms->highmem_redists; } static void virt_set_highmem_redists(Object *obj, bool value, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); vms->highmem_redists = value; } static bool virt_get_highmem_ecam(Object *obj, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); return vms->highmem_ecam; } static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); vms->highmem_ecam = value; } static bool virt_get_highmem_mmio(Object *obj, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); return vms->highmem_mmio; } static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); vms->highmem_mmio = value; } static bool virt_get_its(Object *obj, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); return vms->its; } static void virt_set_its(Object *obj, bool value, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); vms->its = value; } static bool virt_get_dtb_randomness(Object *obj, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); return vms->dtb_randomness; } static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); vms->dtb_randomness = value; } static char *virt_get_oem_id(Object *obj, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); return g_strdup(vms->oem_id); } static void virt_set_oem_id(Object *obj, const char *value, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); size_t len = strlen(value); if (len > 6) { error_setg(errp, "User specified oem-id value is bigger than 6 bytes in size"); return; } strncpy(vms->oem_id, value, 6); } static char *virt_get_oem_table_id(Object *obj, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); return g_strdup(vms->oem_table_id); } static void virt_set_oem_table_id(Object *obj, const char *value, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); size_t len = strlen(value); if (len > 8) { error_setg(errp, "User specified oem-table-id value is bigger than 8 bytes in size"); return; } strncpy(vms->oem_table_id, value, 8); } bool virt_is_acpi_enabled(VirtMachineState *vms) { if (vms->acpi == ON_OFF_AUTO_OFF) { return false; } return true; } static void virt_get_acpi(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); OnOffAuto acpi = vms->acpi; visit_type_OnOffAuto(v, name, &acpi, errp); } static void virt_set_acpi(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); visit_type_OnOffAuto(v, name, &vms->acpi, errp); } static bool virt_get_ras(Object *obj, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); return vms->ras; } static void virt_set_ras(Object *obj, bool value, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); vms->ras = value; } static bool virt_get_mte(Object *obj, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); return vms->mte; } static void virt_set_mte(Object *obj, bool value, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); vms->mte = value; } static char *virt_get_gic_version(Object *obj, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); const char *val; switch (vms->gic_version) { case VIRT_GIC_VERSION_4: val = "4"; break; case VIRT_GIC_VERSION_3: val = "3"; break; default: val = "2"; break; } return g_strdup(val); } static void virt_set_gic_version(Object *obj, const char *value, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); if (!strcmp(value, "4")) { vms->gic_version = VIRT_GIC_VERSION_4; } else if (!strcmp(value, "3")) { vms->gic_version = VIRT_GIC_VERSION_3; } else if (!strcmp(value, "2")) { vms->gic_version = VIRT_GIC_VERSION_2; } else if (!strcmp(value, "host")) { vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */ } else if (!strcmp(value, "max")) { vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */ } else { error_setg(errp, "Invalid gic-version value"); error_append_hint(errp, "Valid values are 3, 2, host, max.\n"); } } static char *virt_get_iommu(Object *obj, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); switch (vms->iommu) { case VIRT_IOMMU_NONE: return g_strdup("none"); case VIRT_IOMMU_SMMUV3: return g_strdup("smmuv3"); default: g_assert_not_reached(); } } static void virt_set_iommu(Object *obj, const char *value, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); if (!strcmp(value, "smmuv3")) { vms->iommu = VIRT_IOMMU_SMMUV3; } else if (!strcmp(value, "none")) { vms->iommu = VIRT_IOMMU_NONE; } else { error_setg(errp, "Invalid iommu value"); error_append_hint(errp, "Valid values are none, smmuv3.\n"); } } static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); return vms->default_bus_bypass_iommu; } static void virt_set_default_bus_bypass_iommu(Object *obj, bool value, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(obj); vms->default_bus_bypass_iommu = value; } static CpuInstanceProperties virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index) { MachineClass *mc = MACHINE_GET_CLASS(ms); const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); assert(cpu_index < possible_cpus->len); return possible_cpus->cpus[cpu_index].props; } static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx) { int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id; return socket_id % ms->numa_state->num_nodes; } static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms) { int n; unsigned int max_cpus = ms->smp.max_cpus; VirtMachineState *vms = VIRT_MACHINE(ms); MachineClass *mc = MACHINE_GET_CLASS(vms); if (ms->possible_cpus) { assert(ms->possible_cpus->len == max_cpus); return ms->possible_cpus; } ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + sizeof(CPUArchId) * max_cpus); ms->possible_cpus->len = max_cpus; for (n = 0; n < ms->possible_cpus->len; n++) { ms->possible_cpus->cpus[n].type = ms->cpu_type; ms->possible_cpus->cpus[n].arch_id = virt_cpu_mp_affinity(vms, n); assert(!mc->smp_props.dies_supported); ms->possible_cpus->cpus[n].props.has_socket_id = true; ms->possible_cpus->cpus[n].props.socket_id = n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads); ms->possible_cpus->cpus[n].props.has_cluster_id = true; ms->possible_cpus->cpus[n].props.cluster_id = (n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters; ms->possible_cpus->cpus[n].props.has_core_id = true; ms->possible_cpus->cpus[n].props.core_id = (n / ms->smp.threads) % ms->smp.cores; ms->possible_cpus->cpus[n].props.has_thread_id = true; ms->possible_cpus->cpus[n].props.thread_id = n % ms->smp.threads; } return ms->possible_cpus; } static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); const MachineState *ms = MACHINE(hotplug_dev); const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); if (!vms->acpi_dev) { error_setg(errp, "memory hotplug is not enabled: missing acpi-ged device"); return; } if (vms->mte) { error_setg(errp, "memory hotplug is not enabled: MTE is enabled"); return; } if (is_nvdimm && !ms->nvdimms_state->is_enabled) { error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'"); return; } pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), errp); } static void virt_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); MachineState *ms = MACHINE(hotplug_dev); bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); pc_dimm_plug(PC_DIMM(dev), MACHINE(vms)); if (is_nvdimm) { nvdimm_plug(ms->nvdimms_state); } hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &error_abort); } static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { virt_memory_pre_plug(hotplug_dev, dev, errp); } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { hwaddr db_start = 0, db_end = 0; QList *reserved_regions; char *resv_prop_str; if (vms->iommu != VIRT_IOMMU_NONE) { error_setg(errp, "virt machine does not support multiple IOMMUs"); return; } switch (vms->msi_controller) { case VIRT_MSI_CTRL_NONE: return; case VIRT_MSI_CTRL_ITS: /* GITS_TRANSLATER page */ db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000; db_end = base_memmap[VIRT_GIC_ITS].base + base_memmap[VIRT_GIC_ITS].size - 1; break; case VIRT_MSI_CTRL_GICV2M: /* MSI_SETSPI_NS page */ db_start = base_memmap[VIRT_GIC_V2M].base; db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1; break; } resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u", db_start, db_end, VIRTIO_IOMMU_RESV_MEM_T_MSI); reserved_regions = qlist_new(); qlist_append_str(reserved_regions, resv_prop_str); qdev_prop_set_array(dev, "reserved-regions", reserved_regions); g_free(resv_prop_str); } } static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); if (vms->platform_bus_dev) { MachineClass *mc = MACHINE_GET_CLASS(vms); if (device_is_dynamic_sysbus(mc, dev)) { platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev), SYS_BUS_DEVICE(dev)); } } if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { virt_memory_plug(hotplug_dev, dev, errp); } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); } if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { PCIDevice *pdev = PCI_DEVICE(dev); vms->iommu = VIRT_IOMMU_VIRTIO; vms->virtio_iommu_bdf = pci_get_bdf(pdev); create_virtio_iommu_dt_bindings(vms); } } static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); if (!vms->acpi_dev) { error_setg(errp, "memory hotplug is not enabled: missing acpi-ged device"); return; } if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { error_setg(errp, "nvdimm device hot unplug is not supported yet."); return; } hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev, errp); } static void virt_dimm_unplug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { VirtMachineState *vms = VIRT_MACHINE(hotplug_dev); Error *local_err = NULL; hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err); if (local_err) { goto out; } pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms)); qdev_unrealize(dev); out: error_propagate(errp, local_err); } static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { virt_dimm_unplug_request(hotplug_dev, dev, errp); } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); } else { error_setg(errp, "device unplug request for unsupported device" " type: %s", object_get_typename(OBJECT(dev))); } } static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { virt_dimm_unplug(hotplug_dev, dev, errp); } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) { virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp); } else { error_setg(errp, "virt: device unplug for unsupported device" " type: %s", object_get_typename(OBJECT(dev))); } } static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine, DeviceState *dev) { MachineClass *mc = MACHINE_GET_CLASS(machine); if (device_is_dynamic_sysbus(mc, dev) || object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) || object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) { return HOTPLUG_HANDLER(machine); } return NULL; } /* * for arm64 kvm_type [7-0] encodes the requested number of bits * in the IPA address space */ static int virt_kvm_type(MachineState *ms, const char *type_str) { VirtMachineState *vms = VIRT_MACHINE(ms); int max_vm_pa_size, requested_pa_size; bool fixed_ipa; max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa); /* we freeze the memory map to compute the highest gpa */ virt_set_memmap(vms, max_vm_pa_size); requested_pa_size = 64 - clz64(vms->highest_gpa); /* * KVM requires the IPA size to be at least 32 bits. */ if (requested_pa_size < 32) { requested_pa_size = 32; } if (requested_pa_size > max_vm_pa_size) { error_report("-m and ,maxmem option values " "require an IPA range (%d bits) larger than " "the one supported by the host (%d bits)", requested_pa_size, max_vm_pa_size); return -1; } /* * We return the requested PA log size, unless KVM only supports * the implicit legacy 40b IPA setting, in which case the kvm_type * must be 0. */ return fixed_ipa ? 0 : requested_pa_size; } static void virt_machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); static const char * const valid_cpu_types[] = { #ifdef CONFIG_TCG ARM_CPU_TYPE_NAME("cortex-a7"), ARM_CPU_TYPE_NAME("cortex-a15"), #ifdef TARGET_AARCH64 ARM_CPU_TYPE_NAME("cortex-a35"), ARM_CPU_TYPE_NAME("cortex-a55"), ARM_CPU_TYPE_NAME("cortex-a72"), ARM_CPU_TYPE_NAME("cortex-a76"), ARM_CPU_TYPE_NAME("cortex-a710"), ARM_CPU_TYPE_NAME("a64fx"), ARM_CPU_TYPE_NAME("neoverse-n1"), ARM_CPU_TYPE_NAME("neoverse-v1"), ARM_CPU_TYPE_NAME("neoverse-n2"), #endif /* TARGET_AARCH64 */ #endif /* CONFIG_TCG */ #ifdef TARGET_AARCH64 ARM_CPU_TYPE_NAME("cortex-a53"), ARM_CPU_TYPE_NAME("cortex-a57"), #if defined(CONFIG_KVM) || defined(CONFIG_HVF) ARM_CPU_TYPE_NAME("host"), #endif /* CONFIG_KVM || CONFIG_HVF */ #endif /* TARGET_AARCH64 */ ARM_CPU_TYPE_NAME("max"), NULL }; mc->init = machvirt_init; /* Start with max_cpus set to 512, which is the maximum supported by KVM. * The value may be reduced later when we have more information about the * configuration of the particular instance. */ mc->max_cpus = 512; machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC); machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE); machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE); machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM); #ifdef CONFIG_TPM machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS); #endif mc->block_default_type = IF_VIRTIO; mc->no_cdrom = 1; mc->pci_allow_0_address = true; /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */ mc->minimum_page_bits = 12; mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids; mc->cpu_index_to_instance_props = virt_cpu_index_to_props; #ifdef CONFIG_TCG mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15"); #else mc->default_cpu_type = ARM_CPU_TYPE_NAME("max"); #endif mc->valid_cpu_types = valid_cpu_types; mc->get_default_cpu_node_id = virt_get_default_cpu_node_id; mc->kvm_type = virt_kvm_type; assert(!mc->get_hotplug_handler); mc->get_hotplug_handler = virt_machine_get_hotplug_handler; hc->pre_plug = virt_machine_device_pre_plug_cb; hc->plug = virt_machine_device_plug_cb; hc->unplug_request = virt_machine_device_unplug_request_cb; hc->unplug = virt_machine_device_unplug_cb; mc->nvdimm_supported = true; mc->smp_props.clusters_supported = true; mc->auto_enable_numa_with_memhp = true; mc->auto_enable_numa_with_memdev = true; /* platform instead of architectural choice */ mc->cpu_cluster_has_numa_boundary = true; mc->default_ram_id = "mach-virt.ram"; mc->default_nic = "virtio-net-pci"; object_class_property_add(oc, "acpi", "OnOffAuto", virt_get_acpi, virt_set_acpi, NULL, NULL); object_class_property_set_description(oc, "acpi", "Enable ACPI"); object_class_property_add_bool(oc, "secure", virt_get_secure, virt_set_secure); object_class_property_set_description(oc, "secure", "Set on/off to enable/disable the ARM " "Security Extensions (TrustZone)"); object_class_property_add_bool(oc, "virtualization", virt_get_virt, virt_set_virt); object_class_property_set_description(oc, "virtualization", "Set on/off to enable/disable emulating a " "guest CPU which implements the ARM " "Virtualization Extensions"); object_class_property_add_bool(oc, "highmem", virt_get_highmem, virt_set_highmem); object_class_property_set_description(oc, "highmem", "Set on/off to enable/disable using " "physical address space above 32 bits"); object_class_property_add_bool(oc, "compact-highmem", virt_get_compact_highmem, virt_set_compact_highmem); object_class_property_set_description(oc, "compact-highmem", "Set on/off to enable/disable compact " "layout for high memory regions"); object_class_property_add_bool(oc, "highmem-redists", virt_get_highmem_redists, virt_set_highmem_redists); object_class_property_set_description(oc, "highmem-redists", "Set on/off to enable/disable high " "memory region for GICv3 or GICv4 " "redistributor"); object_class_property_add_bool(oc, "highmem-ecam", virt_get_highmem_ecam, virt_set_highmem_ecam); object_class_property_set_description(oc, "highmem-ecam", "Set on/off to enable/disable high " "memory region for PCI ECAM"); object_class_property_add_bool(oc, "highmem-mmio", virt_get_highmem_mmio, virt_set_highmem_mmio); object_class_property_set_description(oc, "highmem-mmio", "Set on/off to enable/disable high " "memory region for PCI MMIO"); object_class_property_add_str(oc, "gic-version", virt_get_gic_version, virt_set_gic_version); object_class_property_set_description(oc, "gic-version", "Set GIC version. " "Valid values are 2, 3, 4, host and max"); object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu); object_class_property_set_description(oc, "iommu", "Set the IOMMU type. " "Valid values are none and smmuv3"); object_class_property_add_bool(oc, "default-bus-bypass-iommu", virt_get_default_bus_bypass_iommu, virt_set_default_bus_bypass_iommu); object_class_property_set_description(oc, "default-bus-bypass-iommu", "Set on/off to enable/disable " "bypass_iommu for default root bus"); object_class_property_add_bool(oc, "ras", virt_get_ras, virt_set_ras); object_class_property_set_description(oc, "ras", "Set on/off to enable/disable reporting host memory errors " "to a KVM guest using ACPI and guest external abort exceptions"); object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte); object_class_property_set_description(oc, "mte", "Set on/off to enable/disable emulating a " "guest CPU which implements the ARM " "Memory Tagging Extension"); object_class_property_add_bool(oc, "its", virt_get_its, virt_set_its); object_class_property_set_description(oc, "its", "Set on/off to enable/disable " "ITS instantiation"); object_class_property_add_bool(oc, "dtb-randomness", virt_get_dtb_randomness, virt_set_dtb_randomness); object_class_property_set_description(oc, "dtb-randomness", "Set off to disable passing random or " "non-deterministic dtb nodes to guest"); object_class_property_add_bool(oc, "dtb-kaslr-seed", virt_get_dtb_randomness, virt_set_dtb_randomness); object_class_property_set_description(oc, "dtb-kaslr-seed", "Deprecated synonym of dtb-randomness"); object_class_property_add_str(oc, "x-oem-id", virt_get_oem_id, virt_set_oem_id); object_class_property_set_description(oc, "x-oem-id", "Override the default value of field OEMID " "in ACPI table header." "The string may be up to 6 bytes in size"); object_class_property_add_str(oc, "x-oem-table-id", virt_get_oem_table_id, virt_set_oem_table_id); object_class_property_set_description(oc, "x-oem-table-id", "Override the default value of field OEM Table ID " "in ACPI table header." "The string may be up to 8 bytes in size"); } static void virt_instance_init(Object *obj) { VirtMachineState *vms = VIRT_MACHINE(obj); VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms); /* EL3 is disabled by default on virt: this makes us consistent * between KVM and TCG for this board, and it also allows us to * boot UEFI blobs which assume no TrustZone support. */ vms->secure = false; /* EL2 is also disabled by default, for similar reasons */ vms->virt = false; /* High memory is enabled by default */ vms->highmem = true; vms->highmem_compact = !vmc->no_highmem_compact; vms->gic_version = VIRT_GIC_VERSION_NOSEL; vms->highmem_ecam = !vmc->no_highmem_ecam; vms->highmem_mmio = true; vms->highmem_redists = true; if (vmc->no_its) { vms->its = false; } else { /* Default allows ITS instantiation */ vms->its = true; if (vmc->no_tcg_its) { vms->tcg_its = false; } else { vms->tcg_its = true; } } /* Default disallows iommu instantiation */ vms->iommu = VIRT_IOMMU_NONE; /* The default root bus is attached to iommu by default */ vms->default_bus_bypass_iommu = false; /* Default disallows RAS instantiation */ vms->ras = false; /* MTE is disabled by default. */ vms->mte = false; /* Supply kaslr-seed and rng-seed by default */ vms->dtb_randomness = true; vms->irqmap = a15irqmap; virt_flash_create(vms); vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6); vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8); } static const TypeInfo virt_machine_info = { .name = TYPE_VIRT_MACHINE, .parent = TYPE_MACHINE, .abstract = true, .instance_size = sizeof(VirtMachineState), .class_size = sizeof(VirtMachineClass), .class_init = virt_machine_class_init, .instance_init = virt_instance_init, .interfaces = (InterfaceInfo[]) { { TYPE_HOTPLUG_HANDLER }, { } }, }; static void machvirt_machine_init(void) { type_register_static(&virt_machine_info); } type_init(machvirt_machine_init); static void virt_machine_9_1_options(MachineClass *mc) { } DEFINE_VIRT_MACHINE_AS_LATEST(9, 1) static void virt_machine_9_0_options(MachineClass *mc) { virt_machine_9_1_options(mc); compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len); } DEFINE_VIRT_MACHINE(9, 0) static void virt_machine_8_2_options(MachineClass *mc) { VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); virt_machine_9_0_options(mc); compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len); /* * Don't expose NS_EL2_VIRT timer IRQ in DTB on ACPI on 8.2 and * earlier machines. (Exposing it tickles a bug in older EDK2 * guest BIOS binaries.) */ vmc->no_ns_el2_virt_timer_irq = true; } DEFINE_VIRT_MACHINE(8, 2) static void virt_machine_8_1_options(MachineClass *mc) { virt_machine_8_2_options(mc); compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); } DEFINE_VIRT_MACHINE(8, 1) static void virt_machine_8_0_options(MachineClass *mc) { virt_machine_8_1_options(mc); compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); } DEFINE_VIRT_MACHINE(8, 0) static void virt_machine_7_2_options(MachineClass *mc) { virt_machine_8_0_options(mc); compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); } DEFINE_VIRT_MACHINE(7, 2) static void virt_machine_7_1_options(MachineClass *mc) { VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); virt_machine_7_2_options(mc); compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); /* Compact layout for high memory regions was introduced with 7.2 */ vmc->no_highmem_compact = true; } DEFINE_VIRT_MACHINE(7, 1) static void virt_machine_7_0_options(MachineClass *mc) { virt_machine_7_1_options(mc); compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); } DEFINE_VIRT_MACHINE(7, 0) static void virt_machine_6_2_options(MachineClass *mc) { VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); virt_machine_7_0_options(mc); compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); vmc->no_tcg_lpa2 = true; } DEFINE_VIRT_MACHINE(6, 2) static void virt_machine_6_1_options(MachineClass *mc) { VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); virt_machine_6_2_options(mc); compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); mc->smp_props.prefer_sockets = true; vmc->no_cpu_topology = true; /* qemu ITS was introduced with 6.2 */ vmc->no_tcg_its = true; } DEFINE_VIRT_MACHINE(6, 1) static void virt_machine_6_0_options(MachineClass *mc) { virt_machine_6_1_options(mc); compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); } DEFINE_VIRT_MACHINE(6, 0) static void virt_machine_5_2_options(MachineClass *mc) { VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); virt_machine_6_0_options(mc); compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); vmc->no_secure_gpio = true; } DEFINE_VIRT_MACHINE(5, 2) static void virt_machine_5_1_options(MachineClass *mc) { VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); virt_machine_5_2_options(mc); compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); vmc->no_kvm_steal_time = true; } DEFINE_VIRT_MACHINE(5, 1) static void virt_machine_5_0_options(MachineClass *mc) { VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); virt_machine_5_1_options(mc); compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); mc->numa_mem_supported = true; vmc->acpi_expose_flash = true; mc->auto_enable_numa_with_memdev = false; } DEFINE_VIRT_MACHINE(5, 0) static void virt_machine_4_2_options(MachineClass *mc) { VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); virt_machine_5_0_options(mc); compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); vmc->kvm_no_adjvtime = true; } DEFINE_VIRT_MACHINE(4, 2) static void virt_machine_4_1_options(MachineClass *mc) { VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); virt_machine_4_2_options(mc); compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); vmc->no_ged = true; mc->auto_enable_numa_with_memhp = false; } DEFINE_VIRT_MACHINE(4, 1) static void virt_machine_4_0_options(MachineClass *mc) { virt_machine_4_1_options(mc); compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); } DEFINE_VIRT_MACHINE(4, 0) static void virt_machine_3_1_options(MachineClass *mc) { virt_machine_4_0_options(mc); compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); } DEFINE_VIRT_MACHINE(3, 1) static void virt_machine_3_0_options(MachineClass *mc) { virt_machine_3_1_options(mc); compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); } DEFINE_VIRT_MACHINE(3, 0) static void virt_machine_2_12_options(MachineClass *mc) { VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); virt_machine_3_0_options(mc); compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); vmc->no_highmem_ecam = true; mc->max_cpus = 255; } DEFINE_VIRT_MACHINE(2, 12) static void virt_machine_2_11_options(MachineClass *mc) { VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); virt_machine_2_12_options(mc); compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); vmc->smbios_old_sys_ver = true; } DEFINE_VIRT_MACHINE(2, 11) static void virt_machine_2_10_options(MachineClass *mc) { virt_machine_2_11_options(mc); compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); /* before 2.11 we never faulted accesses to bad addresses */ mc->ignore_memory_transaction_failures = true; } DEFINE_VIRT_MACHINE(2, 10) static void virt_machine_2_9_options(MachineClass *mc) { virt_machine_2_10_options(mc); compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); } DEFINE_VIRT_MACHINE(2, 9) static void virt_machine_2_8_options(MachineClass *mc) { VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); virt_machine_2_9_options(mc); compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); /* For 2.8 and earlier we falsely claimed in the DT that * our timers were edge-triggered, not level-triggered. */ vmc->claim_edge_triggered_timers = true; } DEFINE_VIRT_MACHINE(2, 8) static void virt_machine_2_7_options(MachineClass *mc) { VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); virt_machine_2_8_options(mc); compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); /* ITS was introduced with 2.8 */ vmc->no_its = true; /* Stick with 1K pages for migration compatibility */ mc->minimum_page_bits = 0; } DEFINE_VIRT_MACHINE(2, 7) static void virt_machine_2_6_options(MachineClass *mc) { VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc)); virt_machine_2_7_options(mc); compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); vmc->disallow_affinity_adjustment = true; /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */ vmc->no_pmu = true; } DEFINE_VIRT_MACHINE(2, 6)