/* * gdb server stub * * This implements a subset of the remote protocol as described in: * * https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html * * Copyright (c) 2003-2005 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . * * SPDX-License-Identifier: LGPL-2.0+ */ #include "qemu/osdep.h" #include "qemu/ctype.h" #include "qemu/cutils.h" #include "qemu/module.h" #include "qemu/error-report.h" #include "trace.h" #include "exec/gdbstub.h" #include "gdbstub/commands.h" #include "gdbstub/syscalls.h" #ifdef CONFIG_USER_ONLY #include "accel/tcg/vcpu-state.h" #include "gdbstub/user.h" #else #include "hw/cpu/cluster.h" #include "hw/boards.h" #endif #include "hw/core/cpu.h" #include "sysemu/hw_accel.h" #include "sysemu/runstate.h" #include "exec/replay-core.h" #include "exec/hwaddr.h" #include "internals.h" typedef struct GDBRegisterState { int base_reg; gdb_get_reg_cb get_reg; gdb_set_reg_cb set_reg; const GDBFeature *feature; } GDBRegisterState; GDBState gdbserver_state; void gdb_init_gdbserver_state(void) { g_assert(!gdbserver_state.init); memset(&gdbserver_state, 0, sizeof(GDBState)); gdbserver_state.init = true; gdbserver_state.str_buf = g_string_new(NULL); gdbserver_state.mem_buf = g_byte_array_sized_new(MAX_PACKET_LENGTH); gdbserver_state.last_packet = g_byte_array_sized_new(MAX_PACKET_LENGTH + 4); /* * What single-step modes are supported is accelerator dependent. * By default try to use no IRQs and no timers while single * stepping so as to make single stepping like a typical ICE HW step. */ gdbserver_state.supported_sstep_flags = accel_supported_gdbstub_sstep_flags(); gdbserver_state.sstep_flags = SSTEP_ENABLE | SSTEP_NOIRQ | SSTEP_NOTIMER; gdbserver_state.sstep_flags &= gdbserver_state.supported_sstep_flags; } /* writes 2*len+1 bytes in buf */ void gdb_memtohex(GString *buf, const uint8_t *mem, int len) { int i, c; for(i = 0; i < len; i++) { c = mem[i]; g_string_append_c(buf, tohex(c >> 4)); g_string_append_c(buf, tohex(c & 0xf)); } g_string_append_c(buf, '\0'); } void gdb_hextomem(GByteArray *mem, const char *buf, int len) { int i; for(i = 0; i < len; i++) { guint8 byte = fromhex(buf[0]) << 4 | fromhex(buf[1]); g_byte_array_append(mem, &byte, 1); buf += 2; } } static void hexdump(const char *buf, int len, void (*trace_fn)(size_t ofs, char const *text)) { char line_buffer[3 * 16 + 4 + 16 + 1]; size_t i; for (i = 0; i < len || (i & 0xF); ++i) { size_t byte_ofs = i & 15; if (byte_ofs == 0) { memset(line_buffer, ' ', 3 * 16 + 4 + 16); line_buffer[3 * 16 + 4 + 16] = 0; } size_t col_group = (i >> 2) & 3; size_t hex_col = byte_ofs * 3 + col_group; size_t txt_col = 3 * 16 + 4 + byte_ofs; if (i < len) { char value = buf[i]; line_buffer[hex_col + 0] = tohex((value >> 4) & 0xF); line_buffer[hex_col + 1] = tohex((value >> 0) & 0xF); line_buffer[txt_col + 0] = (value >= ' ' && value < 127) ? value : '.'; } if (byte_ofs == 0xF) trace_fn(i & -16, line_buffer); } } /* return -1 if error, 0 if OK */ int gdb_put_packet_binary(const char *buf, int len, bool dump) { int csum, i; uint8_t footer[3]; if (dump && trace_event_get_state_backends(TRACE_GDBSTUB_IO_BINARYREPLY)) { hexdump(buf, len, trace_gdbstub_io_binaryreply); } for(;;) { g_byte_array_set_size(gdbserver_state.last_packet, 0); g_byte_array_append(gdbserver_state.last_packet, (const uint8_t *) "$", 1); g_byte_array_append(gdbserver_state.last_packet, (const uint8_t *) buf, len); csum = 0; for(i = 0; i < len; i++) { csum += buf[i]; } footer[0] = '#'; footer[1] = tohex((csum >> 4) & 0xf); footer[2] = tohex((csum) & 0xf); g_byte_array_append(gdbserver_state.last_packet, footer, 3); gdb_put_buffer(gdbserver_state.last_packet->data, gdbserver_state.last_packet->len); if (gdb_got_immediate_ack()) { break; } } return 0; } /* return -1 if error, 0 if OK */ int gdb_put_packet(const char *buf) { trace_gdbstub_io_reply(buf); return gdb_put_packet_binary(buf, strlen(buf), false); } void gdb_put_strbuf(void) { gdb_put_packet(gdbserver_state.str_buf->str); } /* Encode data using the encoding for 'x' packets. */ void gdb_memtox(GString *buf, const char *mem, int len) { char c; while (len--) { c = *(mem++); switch (c) { case '#': case '$': case '*': case '}': g_string_append_c(buf, '}'); g_string_append_c(buf, c ^ 0x20); break; default: g_string_append_c(buf, c); break; } } } static uint32_t gdb_get_cpu_pid(CPUState *cpu) { #ifdef CONFIG_USER_ONLY return getpid(); #else if (cpu->cluster_index == UNASSIGNED_CLUSTER_INDEX) { /* Return the default process' PID */ int index = gdbserver_state.process_num - 1; return gdbserver_state.processes[index].pid; } return cpu->cluster_index + 1; #endif } GDBProcess *gdb_get_process(uint32_t pid) { int i; if (!pid) { /* 0 means any process, we take the first one */ return &gdbserver_state.processes[0]; } for (i = 0; i < gdbserver_state.process_num; i++) { if (gdbserver_state.processes[i].pid == pid) { return &gdbserver_state.processes[i]; } } return NULL; } static GDBProcess *gdb_get_cpu_process(CPUState *cpu) { return gdb_get_process(gdb_get_cpu_pid(cpu)); } static CPUState *find_cpu(uint32_t thread_id) { CPUState *cpu; CPU_FOREACH(cpu) { if (gdb_get_cpu_index(cpu) == thread_id) { return cpu; } } return NULL; } CPUState *gdb_get_first_cpu_in_process(GDBProcess *process) { CPUState *cpu; CPU_FOREACH(cpu) { if (gdb_get_cpu_pid(cpu) == process->pid) { return cpu; } } return NULL; } static CPUState *gdb_next_cpu_in_process(CPUState *cpu) { uint32_t pid = gdb_get_cpu_pid(cpu); cpu = CPU_NEXT(cpu); while (cpu) { if (gdb_get_cpu_pid(cpu) == pid) { break; } cpu = CPU_NEXT(cpu); } return cpu; } /* Return the cpu following @cpu, while ignoring unattached processes. */ static CPUState *gdb_next_attached_cpu(CPUState *cpu) { cpu = CPU_NEXT(cpu); while (cpu) { if (gdb_get_cpu_process(cpu)->attached) { break; } cpu = CPU_NEXT(cpu); } return cpu; } /* Return the first attached cpu */ CPUState *gdb_first_attached_cpu(void) { CPUState *cpu = first_cpu; GDBProcess *process = gdb_get_cpu_process(cpu); if (!process->attached) { return gdb_next_attached_cpu(cpu); } return cpu; } static CPUState *gdb_get_cpu(uint32_t pid, uint32_t tid) { GDBProcess *process; CPUState *cpu; if (!pid && !tid) { /* 0 means any process/thread, we take the first attached one */ return gdb_first_attached_cpu(); } else if (pid && !tid) { /* any thread in a specific process */ process = gdb_get_process(pid); if (process == NULL) { return NULL; } if (!process->attached) { return NULL; } return gdb_get_first_cpu_in_process(process); } else { /* a specific thread */ cpu = find_cpu(tid); if (cpu == NULL) { return NULL; } process = gdb_get_cpu_process(cpu); if (pid && process->pid != pid) { return NULL; } if (!process->attached) { return NULL; } return cpu; } } static const char *get_feature_xml(const char *p, const char **newp, GDBProcess *process) { CPUState *cpu = gdb_get_first_cpu_in_process(process); CPUClass *cc = CPU_GET_CLASS(cpu); GDBRegisterState *r; size_t len; /* * qXfer:features:read:ANNEX:OFFSET,LENGTH' * ^p ^newp */ char *term = strchr(p, ':'); *newp = term + 1; len = term - p; /* Is it the main target xml? */ if (strncmp(p, "target.xml", len) == 0) { if (!process->target_xml) { g_autoptr(GPtrArray) xml = g_ptr_array_new_with_free_func(g_free); g_ptr_array_add( xml, g_strdup("" "" "")); if (cc->gdb_arch_name) { g_ptr_array_add( xml, g_markup_printf_escaped("%s", cc->gdb_arch_name(cpu))); } for (guint i = 0; i < cpu->gdb_regs->len; i++) { r = &g_array_index(cpu->gdb_regs, GDBRegisterState, i); g_ptr_array_add( xml, g_markup_printf_escaped("", r->feature->xmlname)); } g_ptr_array_add(xml, g_strdup("")); g_ptr_array_add(xml, NULL); process->target_xml = g_strjoinv(NULL, (void *)xml->pdata); } return process->target_xml; } /* Is it one of the features? */ for (guint i = 0; i < cpu->gdb_regs->len; i++) { r = &g_array_index(cpu->gdb_regs, GDBRegisterState, i); if (strncmp(p, r->feature->xmlname, len) == 0) { return r->feature->xml; } } /* failed */ return NULL; } void gdb_feature_builder_init(GDBFeatureBuilder *builder, GDBFeature *feature, const char *name, const char *xmlname, int base_reg) { char *header = g_markup_printf_escaped( "" "" "", name); builder->feature = feature; builder->xml = g_ptr_array_new(); g_ptr_array_add(builder->xml, header); builder->regs = g_ptr_array_new(); builder->base_reg = base_reg; feature->xmlname = xmlname; feature->name = name; } void gdb_feature_builder_append_tag(const GDBFeatureBuilder *builder, const char *format, ...) { va_list ap; va_start(ap, format); g_ptr_array_add(builder->xml, g_markup_vprintf_escaped(format, ap)); va_end(ap); } void gdb_feature_builder_append_reg(const GDBFeatureBuilder *builder, const char *name, int bitsize, int regnum, const char *type, const char *group) { if (builder->regs->len <= regnum) { g_ptr_array_set_size(builder->regs, regnum + 1); } builder->regs->pdata[regnum] = (gpointer *)name; if (group) { gdb_feature_builder_append_tag( builder, "", name, bitsize, builder->base_reg + regnum, type, group); } else { gdb_feature_builder_append_tag( builder, "", name, bitsize, builder->base_reg + regnum, type); } } void gdb_feature_builder_end(const GDBFeatureBuilder *builder) { g_ptr_array_add(builder->xml, (void *)""); g_ptr_array_add(builder->xml, NULL); builder->feature->xml = g_strjoinv(NULL, (void *)builder->xml->pdata); for (guint i = 0; i < builder->xml->len - 2; i++) { g_free(g_ptr_array_index(builder->xml, i)); } g_ptr_array_free(builder->xml, TRUE); builder->feature->num_regs = builder->regs->len; builder->feature->regs = (void *)g_ptr_array_free(builder->regs, FALSE); } const GDBFeature *gdb_find_static_feature(const char *xmlname) { const GDBFeature *feature; for (feature = gdb_static_features; feature->xmlname; feature++) { if (!strcmp(feature->xmlname, xmlname)) { return feature; } } g_assert_not_reached(); } GArray *gdb_get_register_list(CPUState *cpu) { GArray *results = g_array_new(true, true, sizeof(GDBRegDesc)); /* registers are only available once the CPU is initialised */ if (!cpu->gdb_regs) { return results; } for (int f = 0; f < cpu->gdb_regs->len; f++) { GDBRegisterState *r = &g_array_index(cpu->gdb_regs, GDBRegisterState, f); for (int i = 0; i < r->feature->num_regs; i++) { const char *name = r->feature->regs[i]; GDBRegDesc desc = { r->base_reg + i, name, r->feature->name }; g_array_append_val(results, desc); } } return results; } int gdb_read_register(CPUState *cpu, GByteArray *buf, int reg) { CPUClass *cc = CPU_GET_CLASS(cpu); GDBRegisterState *r; if (reg < cc->gdb_num_core_regs) { return cc->gdb_read_register(cpu, buf, reg); } for (guint i = 0; i < cpu->gdb_regs->len; i++) { r = &g_array_index(cpu->gdb_regs, GDBRegisterState, i); if (r->base_reg <= reg && reg < r->base_reg + r->feature->num_regs) { return r->get_reg(cpu, buf, reg - r->base_reg); } } return 0; } static int gdb_write_register(CPUState *cpu, uint8_t *mem_buf, int reg) { CPUClass *cc = CPU_GET_CLASS(cpu); GDBRegisterState *r; if (reg < cc->gdb_num_core_regs) { return cc->gdb_write_register(cpu, mem_buf, reg); } for (guint i = 0; i < cpu->gdb_regs->len; i++) { r = &g_array_index(cpu->gdb_regs, GDBRegisterState, i); if (r->base_reg <= reg && reg < r->base_reg + r->feature->num_regs) { return r->set_reg(cpu, mem_buf, reg - r->base_reg); } } return 0; } static void gdb_register_feature(CPUState *cpu, int base_reg, gdb_get_reg_cb get_reg, gdb_set_reg_cb set_reg, const GDBFeature *feature) { GDBRegisterState s = { .base_reg = base_reg, .get_reg = get_reg, .set_reg = set_reg, .feature = feature }; g_array_append_val(cpu->gdb_regs, s); } void gdb_init_cpu(CPUState *cpu) { CPUClass *cc = CPU_GET_CLASS(cpu); const GDBFeature *feature; cpu->gdb_regs = g_array_new(false, false, sizeof(GDBRegisterState)); if (cc->gdb_core_xml_file) { feature = gdb_find_static_feature(cc->gdb_core_xml_file); gdb_register_feature(cpu, 0, cc->gdb_read_register, cc->gdb_write_register, feature); cpu->gdb_num_regs = cpu->gdb_num_g_regs = feature->num_regs; } if (cc->gdb_num_core_regs) { cpu->gdb_num_regs = cpu->gdb_num_g_regs = cc->gdb_num_core_regs; } } void gdb_register_coprocessor(CPUState *cpu, gdb_get_reg_cb get_reg, gdb_set_reg_cb set_reg, const GDBFeature *feature, int g_pos) { GDBRegisterState *s; guint i; int base_reg = cpu->gdb_num_regs; for (i = 0; i < cpu->gdb_regs->len; i++) { /* Check for duplicates. */ s = &g_array_index(cpu->gdb_regs, GDBRegisterState, i); if (s->feature == feature) { return; } } gdb_register_feature(cpu, base_reg, get_reg, set_reg, feature); /* Add to end of list. */ cpu->gdb_num_regs += feature->num_regs; if (g_pos) { if (g_pos != base_reg) { error_report("Error: Bad gdb register numbering for '%s', " "expected %d got %d", feature->xml, g_pos, base_reg); } else { cpu->gdb_num_g_regs = cpu->gdb_num_regs; } } } static void gdb_process_breakpoint_remove_all(GDBProcess *p) { CPUState *cpu = gdb_get_first_cpu_in_process(p); while (cpu) { gdb_breakpoint_remove_all(cpu); cpu = gdb_next_cpu_in_process(cpu); } } static void gdb_set_cpu_pc(vaddr pc) { CPUState *cpu = gdbserver_state.c_cpu; cpu_synchronize_state(cpu); cpu_set_pc(cpu, pc); } void gdb_append_thread_id(CPUState *cpu, GString *buf) { if (gdbserver_state.multiprocess) { g_string_append_printf(buf, "p%02x.%02x", gdb_get_cpu_pid(cpu), gdb_get_cpu_index(cpu)); } else { g_string_append_printf(buf, "%02x", gdb_get_cpu_index(cpu)); } } static GDBThreadIdKind read_thread_id(const char *buf, const char **end_buf, uint32_t *pid, uint32_t *tid) { unsigned long p, t; int ret; if (*buf == 'p') { buf++; ret = qemu_strtoul(buf, &buf, 16, &p); if (ret) { return GDB_READ_THREAD_ERR; } /* Skip '.' */ buf++; } else { p = 0; } ret = qemu_strtoul(buf, &buf, 16, &t); if (ret) { return GDB_READ_THREAD_ERR; } *end_buf = buf; if (p == -1) { return GDB_ALL_PROCESSES; } if (pid) { *pid = p; } if (t == -1) { return GDB_ALL_THREADS; } if (tid) { *tid = t; } return GDB_ONE_THREAD; } /** * gdb_handle_vcont - Parses and handles a vCont packet. * returns -ENOTSUP if a command is unsupported, -EINVAL or -ERANGE if there is * a format error, 0 on success. */ static int gdb_handle_vcont(const char *p) { int res, signal = 0; char cur_action; unsigned long tmp; uint32_t pid, tid; GDBProcess *process; CPUState *cpu; GDBThreadIdKind kind; unsigned int max_cpus = gdb_get_max_cpus(); /* uninitialised CPUs stay 0 */ g_autofree char *newstates = g_new0(char, max_cpus); /* mark valid CPUs with 1 */ CPU_FOREACH(cpu) { newstates[cpu->cpu_index] = 1; } /* * res keeps track of what error we are returning, with -ENOTSUP meaning * that the command is unknown or unsupported, thus returning an empty * packet, while -EINVAL and -ERANGE cause an E22 packet, due to invalid, * or incorrect parameters passed. */ res = 0; /* * target_count and last_target keep track of how many CPUs we are going to * step or resume, and a pointer to the state structure of one of them, * respectively */ int target_count = 0; CPUState *last_target = NULL; while (*p) { if (*p++ != ';') { return -ENOTSUP; } cur_action = *p++; if (cur_action == 'C' || cur_action == 'S') { cur_action = qemu_tolower(cur_action); res = qemu_strtoul(p, &p, 16, &tmp); if (res) { return res; } signal = gdb_signal_to_target(tmp); } else if (cur_action != 'c' && cur_action != 's') { /* unknown/invalid/unsupported command */ return -ENOTSUP; } if (*p == '\0' || *p == ';') { /* * No thread specifier, action is on "all threads". The * specification is unclear regarding the process to act on. We * choose all processes. */ kind = GDB_ALL_PROCESSES; } else if (*p++ == ':') { kind = read_thread_id(p, &p, &pid, &tid); } else { return -ENOTSUP; } switch (kind) { case GDB_READ_THREAD_ERR: return -EINVAL; case GDB_ALL_PROCESSES: cpu = gdb_first_attached_cpu(); while (cpu) { if (newstates[cpu->cpu_index] == 1) { newstates[cpu->cpu_index] = cur_action; target_count++; last_target = cpu; } cpu = gdb_next_attached_cpu(cpu); } break; case GDB_ALL_THREADS: process = gdb_get_process(pid); if (!process->attached) { return -EINVAL; } cpu = gdb_get_first_cpu_in_process(process); while (cpu) { if (newstates[cpu->cpu_index] == 1) { newstates[cpu->cpu_index] = cur_action; target_count++; last_target = cpu; } cpu = gdb_next_cpu_in_process(cpu); } break; case GDB_ONE_THREAD: cpu = gdb_get_cpu(pid, tid); /* invalid CPU/thread specified */ if (!cpu) { return -EINVAL; } /* only use if no previous match occourred */ if (newstates[cpu->cpu_index] == 1) { newstates[cpu->cpu_index] = cur_action; target_count++; last_target = cpu; } break; } } /* * if we're about to resume a specific set of CPUs/threads, make it so that * in case execution gets interrupted, we can send GDB a stop reply with a * correct value. it doesn't really matter which CPU we tell GDB the signal * happened in (VM pauses stop all of them anyway), so long as it is one of * the ones we resumed/single stepped here. */ if (target_count > 0) { gdbserver_state.c_cpu = last_target; } gdbserver_state.signal = signal; gdb_continue_partial(newstates); return res; } static const char *cmd_next_param(const char *param, const char delimiter) { static const char all_delimiters[] = ",;:="; char curr_delimiters[2] = {0}; const char *delimiters; if (delimiter == '?') { delimiters = all_delimiters; } else if (delimiter == '0') { return strchr(param, '\0'); } else if (delimiter == '.' && *param) { return param + 1; } else { curr_delimiters[0] = delimiter; delimiters = curr_delimiters; } param += strcspn(param, delimiters); if (*param) { param++; } return param; } static int cmd_parse_params(const char *data, const char *schema, GArray *params) { const char *curr_schema, *curr_data; g_assert(schema); g_assert(params->len == 0); curr_schema = schema; curr_data = data; while (curr_schema[0] && curr_schema[1] && *curr_data) { GdbCmdVariant this_param; switch (curr_schema[0]) { case 'l': if (qemu_strtoul(curr_data, &curr_data, 16, &this_param.val_ul)) { return -EINVAL; } curr_data = cmd_next_param(curr_data, curr_schema[1]); g_array_append_val(params, this_param); break; case 'L': if (qemu_strtou64(curr_data, &curr_data, 16, (uint64_t *)&this_param.val_ull)) { return -EINVAL; } curr_data = cmd_next_param(curr_data, curr_schema[1]); g_array_append_val(params, this_param); break; case 's': this_param.data = curr_data; curr_data = cmd_next_param(curr_data, curr_schema[1]); g_array_append_val(params, this_param); break; case 'o': this_param.opcode = *(uint8_t *)curr_data; curr_data = cmd_next_param(curr_data, curr_schema[1]); g_array_append_val(params, this_param); break; case 't': this_param.thread_id.kind = read_thread_id(curr_data, &curr_data, &this_param.thread_id.pid, &this_param.thread_id.tid); curr_data = cmd_next_param(curr_data, curr_schema[1]); g_array_append_val(params, this_param); break; case '?': curr_data = cmd_next_param(curr_data, curr_schema[1]); break; default: return -EINVAL; } curr_schema += 2; } return 0; } static inline int startswith(const char *string, const char *pattern) { return !strncmp(string, pattern, strlen(pattern)); } static bool process_string_cmd(const char *data, const GdbCmdParseEntry *cmds, int num_cmds) { int i; g_autoptr(GArray) params = g_array_new(false, true, sizeof(GdbCmdVariant)); if (!cmds) { return false; } for (i = 0; i < num_cmds; i++) { const GdbCmdParseEntry *cmd = &cmds[i]; g_assert(cmd->handler && cmd->cmd); if ((cmd->cmd_startswith && !startswith(data, cmd->cmd)) || (!cmd->cmd_startswith && strcmp(cmd->cmd, data))) { continue; } if (cmd->schema) { if (cmd_parse_params(&data[strlen(cmd->cmd)], cmd->schema, params)) { return false; } } gdbserver_state.allow_stop_reply = cmd->allow_stop_reply; cmd->handler(params, NULL); return true; } return false; } static void run_cmd_parser(const char *data, const GdbCmdParseEntry *cmd) { if (!data) { return; } g_string_set_size(gdbserver_state.str_buf, 0); g_byte_array_set_size(gdbserver_state.mem_buf, 0); /* In case there was an error during the command parsing we must * send a NULL packet to indicate the command is not supported */ if (!process_string_cmd(data, cmd, 1)) { gdb_put_packet(""); } } static void handle_detach(GArray *params, void *user_ctx) { GDBProcess *process; uint32_t pid = 1; if (gdbserver_state.multiprocess) { if (!params->len) { gdb_put_packet("E22"); return; } pid = gdb_get_cmd_param(params, 0)->val_ul; } #ifdef CONFIG_USER_ONLY if (gdb_handle_detach_user(pid)) { return; } #endif process = gdb_get_process(pid); gdb_process_breakpoint_remove_all(process); process->attached = false; if (pid == gdb_get_cpu_pid(gdbserver_state.c_cpu)) { gdbserver_state.c_cpu = gdb_first_attached_cpu(); } if (pid == gdb_get_cpu_pid(gdbserver_state.g_cpu)) { gdbserver_state.g_cpu = gdb_first_attached_cpu(); } if (!gdbserver_state.c_cpu) { /* No more process attached */ gdb_disable_syscalls(); gdb_continue(); } gdb_put_packet("OK"); } static void handle_thread_alive(GArray *params, void *user_ctx) { CPUState *cpu; if (!params->len) { gdb_put_packet("E22"); return; } if (gdb_get_cmd_param(params, 0)->thread_id.kind == GDB_READ_THREAD_ERR) { gdb_put_packet("E22"); return; } cpu = gdb_get_cpu(gdb_get_cmd_param(params, 0)->thread_id.pid, gdb_get_cmd_param(params, 0)->thread_id.tid); if (!cpu) { gdb_put_packet("E22"); return; } gdb_put_packet("OK"); } static void handle_continue(GArray *params, void *user_ctx) { if (params->len) { gdb_set_cpu_pc(gdb_get_cmd_param(params, 0)->val_ull); } gdbserver_state.signal = 0; gdb_continue(); } static void handle_cont_with_sig(GArray *params, void *user_ctx) { unsigned long signal = 0; /* * Note: C sig;[addr] is currently unsupported and we simply * omit the addr parameter */ if (params->len) { signal = gdb_get_cmd_param(params, 0)->val_ul; } gdbserver_state.signal = gdb_signal_to_target(signal); if (gdbserver_state.signal == -1) { gdbserver_state.signal = 0; } gdb_continue(); } static void handle_set_thread(GArray *params, void *user_ctx) { uint32_t pid, tid; CPUState *cpu; if (params->len != 2) { gdb_put_packet("E22"); return; } if (gdb_get_cmd_param(params, 1)->thread_id.kind == GDB_READ_THREAD_ERR) { gdb_put_packet("E22"); return; } if (gdb_get_cmd_param(params, 1)->thread_id.kind != GDB_ONE_THREAD) { gdb_put_packet("OK"); return; } pid = gdb_get_cmd_param(params, 1)->thread_id.pid; tid = gdb_get_cmd_param(params, 1)->thread_id.tid; #ifdef CONFIG_USER_ONLY if (gdb_handle_set_thread_user(pid, tid)) { return; } #endif cpu = gdb_get_cpu(pid, tid); if (!cpu) { gdb_put_packet("E22"); return; } /* * Note: This command is deprecated and modern gdb's will be using the * vCont command instead. */ switch (gdb_get_cmd_param(params, 0)->opcode) { case 'c': gdbserver_state.c_cpu = cpu; gdb_put_packet("OK"); break; case 'g': gdbserver_state.g_cpu = cpu; gdb_put_packet("OK"); break; default: gdb_put_packet("E22"); break; } } static void handle_insert_bp(GArray *params, void *user_ctx) { int res; if (params->len != 3) { gdb_put_packet("E22"); return; } res = gdb_breakpoint_insert(gdbserver_state.c_cpu, gdb_get_cmd_param(params, 0)->val_ul, gdb_get_cmd_param(params, 1)->val_ull, gdb_get_cmd_param(params, 2)->val_ull); if (res >= 0) { gdb_put_packet("OK"); return; } else if (res == -ENOSYS) { gdb_put_packet(""); return; } gdb_put_packet("E22"); } static void handle_remove_bp(GArray *params, void *user_ctx) { int res; if (params->len != 3) { gdb_put_packet("E22"); return; } res = gdb_breakpoint_remove(gdbserver_state.c_cpu, gdb_get_cmd_param(params, 0)->val_ul, gdb_get_cmd_param(params, 1)->val_ull, gdb_get_cmd_param(params, 2)->val_ull); if (res >= 0) { gdb_put_packet("OK"); return; } else if (res == -ENOSYS) { gdb_put_packet(""); return; } gdb_put_packet("E22"); } /* * handle_set/get_reg * * Older gdb are really dumb, and don't use 'G/g' if 'P/p' is available. * This works, but can be very slow. Anything new enough to understand * XML also knows how to use this properly. However to use this we * need to define a local XML file as well as be talking to a * reasonably modern gdb. Responding with an empty packet will cause * the remote gdb to fallback to older methods. */ static void handle_set_reg(GArray *params, void *user_ctx) { int reg_size; if (params->len != 2) { gdb_put_packet("E22"); return; } reg_size = strlen(gdb_get_cmd_param(params, 1)->data) / 2; gdb_hextomem(gdbserver_state.mem_buf, gdb_get_cmd_param(params, 1)->data, reg_size); gdb_write_register(gdbserver_state.g_cpu, gdbserver_state.mem_buf->data, gdb_get_cmd_param(params, 0)->val_ull); gdb_put_packet("OK"); } static void handle_get_reg(GArray *params, void *user_ctx) { int reg_size; if (!params->len) { gdb_put_packet("E14"); return; } reg_size = gdb_read_register(gdbserver_state.g_cpu, gdbserver_state.mem_buf, gdb_get_cmd_param(params, 0)->val_ull); if (!reg_size) { gdb_put_packet("E14"); return; } else { g_byte_array_set_size(gdbserver_state.mem_buf, reg_size); } gdb_memtohex(gdbserver_state.str_buf, gdbserver_state.mem_buf->data, reg_size); gdb_put_strbuf(); } static void handle_write_mem(GArray *params, void *user_ctx) { if (params->len != 3) { gdb_put_packet("E22"); return; } /* gdb_hextomem() reads 2*len bytes */ if (gdb_get_cmd_param(params, 1)->val_ull > strlen(gdb_get_cmd_param(params, 2)->data) / 2) { gdb_put_packet("E22"); return; } gdb_hextomem(gdbserver_state.mem_buf, gdb_get_cmd_param(params, 2)->data, gdb_get_cmd_param(params, 1)->val_ull); if (gdb_target_memory_rw_debug(gdbserver_state.g_cpu, gdb_get_cmd_param(params, 0)->val_ull, gdbserver_state.mem_buf->data, gdbserver_state.mem_buf->len, true)) { gdb_put_packet("E14"); return; } gdb_put_packet("OK"); } static void handle_read_mem(GArray *params, void *user_ctx) { if (params->len != 2) { gdb_put_packet("E22"); return; } /* gdb_memtohex() doubles the required space */ if (gdb_get_cmd_param(params, 1)->val_ull > MAX_PACKET_LENGTH / 2) { gdb_put_packet("E22"); return; } g_byte_array_set_size(gdbserver_state.mem_buf, gdb_get_cmd_param(params, 1)->val_ull); if (gdb_target_memory_rw_debug(gdbserver_state.g_cpu, gdb_get_cmd_param(params, 0)->val_ull, gdbserver_state.mem_buf->data, gdbserver_state.mem_buf->len, false)) { gdb_put_packet("E14"); return; } gdb_memtohex(gdbserver_state.str_buf, gdbserver_state.mem_buf->data, gdbserver_state.mem_buf->len); gdb_put_strbuf(); } static void handle_write_all_regs(GArray *params, void *user_ctx) { int reg_id; size_t len; uint8_t *registers; int reg_size; if (!params->len) { return; } cpu_synchronize_state(gdbserver_state.g_cpu); len = strlen(gdb_get_cmd_param(params, 0)->data) / 2; gdb_hextomem(gdbserver_state.mem_buf, gdb_get_cmd_param(params, 0)->data, len); registers = gdbserver_state.mem_buf->data; for (reg_id = 0; reg_id < gdbserver_state.g_cpu->gdb_num_g_regs && len > 0; reg_id++) { reg_size = gdb_write_register(gdbserver_state.g_cpu, registers, reg_id); len -= reg_size; registers += reg_size; } gdb_put_packet("OK"); } static void handle_read_all_regs(GArray *params, void *user_ctx) { int reg_id; size_t len; cpu_synchronize_state(gdbserver_state.g_cpu); g_byte_array_set_size(gdbserver_state.mem_buf, 0); len = 0; for (reg_id = 0; reg_id < gdbserver_state.g_cpu->gdb_num_g_regs; reg_id++) { len += gdb_read_register(gdbserver_state.g_cpu, gdbserver_state.mem_buf, reg_id); } g_assert(len == gdbserver_state.mem_buf->len); gdb_memtohex(gdbserver_state.str_buf, gdbserver_state.mem_buf->data, len); gdb_put_strbuf(); } static void handle_step(GArray *params, void *user_ctx) { if (params->len) { gdb_set_cpu_pc(gdb_get_cmd_param(params, 0)->val_ull); } cpu_single_step(gdbserver_state.c_cpu, gdbserver_state.sstep_flags); gdb_continue(); } static void handle_backward(GArray *params, void *user_ctx) { if (!gdb_can_reverse()) { gdb_put_packet("E22"); } if (params->len == 1) { switch (gdb_get_cmd_param(params, 0)->opcode) { case 's': if (replay_reverse_step()) { gdb_continue(); } else { gdb_put_packet("E14"); } return; case 'c': if (replay_reverse_continue()) { gdb_continue(); } else { gdb_put_packet("E14"); } return; } } /* Default invalid command */ gdb_put_packet(""); } static void handle_v_cont_query(GArray *params, void *user_ctx) { gdb_put_packet("vCont;c;C;s;S"); } static void handle_v_cont(GArray *params, void *user_ctx) { int res; if (!params->len) { return; } res = gdb_handle_vcont(gdb_get_cmd_param(params, 0)->data); if ((res == -EINVAL) || (res == -ERANGE)) { gdb_put_packet("E22"); } else if (res) { gdb_put_packet(""); } } static void handle_v_attach(GArray *params, void *user_ctx) { GDBProcess *process; CPUState *cpu; g_string_assign(gdbserver_state.str_buf, "E22"); if (!params->len) { goto cleanup; } process = gdb_get_process(gdb_get_cmd_param(params, 0)->val_ul); if (!process) { goto cleanup; } cpu = gdb_get_first_cpu_in_process(process); if (!cpu) { goto cleanup; } process->attached = true; gdbserver_state.g_cpu = cpu; gdbserver_state.c_cpu = cpu; if (gdbserver_state.allow_stop_reply) { g_string_printf(gdbserver_state.str_buf, "T%02xthread:", GDB_SIGNAL_TRAP); gdb_append_thread_id(cpu, gdbserver_state.str_buf); g_string_append_c(gdbserver_state.str_buf, ';'); gdbserver_state.allow_stop_reply = false; cleanup: gdb_put_strbuf(); } } static void handle_v_kill(GArray *params, void *user_ctx) { /* Kill the target */ gdb_put_packet("OK"); error_report("QEMU: Terminated via GDBstub"); gdb_exit(0); gdb_qemu_exit(0); } static const GdbCmdParseEntry gdb_v_commands_table[] = { /* Order is important if has same prefix */ { .handler = handle_v_cont_query, .cmd = "Cont?", .cmd_startswith = 1 }, { .handler = handle_v_cont, .cmd = "Cont", .cmd_startswith = 1, .allow_stop_reply = true, .schema = "s0" }, { .handler = handle_v_attach, .cmd = "Attach;", .cmd_startswith = 1, .allow_stop_reply = true, .schema = "l0" }, { .handler = handle_v_kill, .cmd = "Kill;", .cmd_startswith = 1 }, #ifdef CONFIG_USER_ONLY /* * Host I/O Packets. See [1] for details. * [1] https://sourceware.org/gdb/onlinedocs/gdb/Host-I_002fO-Packets.html */ { .handler = gdb_handle_v_file_open, .cmd = "File:open:", .cmd_startswith = 1, .schema = "s,L,L0" }, { .handler = gdb_handle_v_file_close, .cmd = "File:close:", .cmd_startswith = 1, .schema = "l0" }, { .handler = gdb_handle_v_file_pread, .cmd = "File:pread:", .cmd_startswith = 1, .schema = "l,L,L0" }, { .handler = gdb_handle_v_file_readlink, .cmd = "File:readlink:", .cmd_startswith = 1, .schema = "s0" }, #endif }; static void handle_v_commands(GArray *params, void *user_ctx) { if (!params->len) { return; } if (!process_string_cmd(gdb_get_cmd_param(params, 0)->data, gdb_v_commands_table, ARRAY_SIZE(gdb_v_commands_table))) { gdb_put_packet(""); } } static void handle_query_qemu_sstepbits(GArray *params, void *user_ctx) { g_string_printf(gdbserver_state.str_buf, "ENABLE=%x", SSTEP_ENABLE); if (gdbserver_state.supported_sstep_flags & SSTEP_NOIRQ) { g_string_append_printf(gdbserver_state.str_buf, ",NOIRQ=%x", SSTEP_NOIRQ); } if (gdbserver_state.supported_sstep_flags & SSTEP_NOTIMER) { g_string_append_printf(gdbserver_state.str_buf, ",NOTIMER=%x", SSTEP_NOTIMER); } gdb_put_strbuf(); } static void handle_set_qemu_sstep(GArray *params, void *user_ctx) { int new_sstep_flags; if (!params->len) { return; } new_sstep_flags = gdb_get_cmd_param(params, 0)->val_ul; if (new_sstep_flags & ~gdbserver_state.supported_sstep_flags) { gdb_put_packet("E22"); return; } gdbserver_state.sstep_flags = new_sstep_flags; gdb_put_packet("OK"); } static void handle_query_qemu_sstep(GArray *params, void *user_ctx) { g_string_printf(gdbserver_state.str_buf, "0x%x", gdbserver_state.sstep_flags); gdb_put_strbuf(); } static void handle_query_curr_tid(GArray *params, void *user_ctx) { CPUState *cpu; GDBProcess *process; /* * "Current thread" remains vague in the spec, so always return * the first thread of the current process (gdb returns the * first thread). */ process = gdb_get_cpu_process(gdbserver_state.g_cpu); cpu = gdb_get_first_cpu_in_process(process); g_string_assign(gdbserver_state.str_buf, "QC"); gdb_append_thread_id(cpu, gdbserver_state.str_buf); gdb_put_strbuf(); } static void handle_query_threads(GArray *params, void *user_ctx) { if (!gdbserver_state.query_cpu) { gdb_put_packet("l"); return; } g_string_assign(gdbserver_state.str_buf, "m"); gdb_append_thread_id(gdbserver_state.query_cpu, gdbserver_state.str_buf); gdb_put_strbuf(); gdbserver_state.query_cpu = gdb_next_attached_cpu(gdbserver_state.query_cpu); } static void handle_query_first_threads(GArray *params, void *user_ctx) { gdbserver_state.query_cpu = gdb_first_attached_cpu(); handle_query_threads(params, user_ctx); } static void handle_query_thread_extra(GArray *params, void *user_ctx) { g_autoptr(GString) rs = g_string_new(NULL); CPUState *cpu; if (!params->len || gdb_get_cmd_param(params, 0)->thread_id.kind == GDB_READ_THREAD_ERR) { gdb_put_packet("E22"); return; } cpu = gdb_get_cpu(gdb_get_cmd_param(params, 0)->thread_id.pid, gdb_get_cmd_param(params, 0)->thread_id.tid); if (!cpu) { return; } cpu_synchronize_state(cpu); if (gdbserver_state.multiprocess && (gdbserver_state.process_num > 1)) { /* Print the CPU model and name in multiprocess mode */ ObjectClass *oc = object_get_class(OBJECT(cpu)); const char *cpu_model = object_class_get_name(oc); const char *cpu_name = object_get_canonical_path_component(OBJECT(cpu)); g_string_printf(rs, "%s %s [%s]", cpu_model, cpu_name, cpu->halted ? "halted " : "running"); } else { g_string_printf(rs, "CPU#%d [%s]", cpu->cpu_index, cpu->halted ? "halted " : "running"); } trace_gdbstub_op_extra_info(rs->str); gdb_memtohex(gdbserver_state.str_buf, (uint8_t *)rs->str, rs->len); gdb_put_strbuf(); } static void handle_query_supported(GArray *params, void *user_ctx) { CPUClass *cc; g_string_printf(gdbserver_state.str_buf, "PacketSize=%x", MAX_PACKET_LENGTH); cc = CPU_GET_CLASS(first_cpu); if (cc->gdb_core_xml_file) { g_string_append(gdbserver_state.str_buf, ";qXfer:features:read+"); } if (gdb_can_reverse()) { g_string_append(gdbserver_state.str_buf, ";ReverseStep+;ReverseContinue+"); } #if defined(CONFIG_USER_ONLY) #if defined(CONFIG_LINUX) if (get_task_state(gdbserver_state.c_cpu)) { g_string_append(gdbserver_state.str_buf, ";qXfer:auxv:read+"); } g_string_append(gdbserver_state.str_buf, ";QCatchSyscalls+"); g_string_append(gdbserver_state.str_buf, ";qXfer:siginfo:read+"); #endif g_string_append(gdbserver_state.str_buf, ";qXfer:exec-file:read+"); #endif if (params->len) { const char *gdb_supported = gdb_get_cmd_param(params, 0)->data; if (strstr(gdb_supported, "multiprocess+")) { gdbserver_state.multiprocess = true; } #if defined(CONFIG_USER_ONLY) gdb_handle_query_supported_user(gdb_supported); #endif } g_string_append(gdbserver_state.str_buf, ";vContSupported+;multiprocess+"); gdb_put_strbuf(); } static void handle_query_xfer_features(GArray *params, void *user_ctx) { GDBProcess *process; CPUClass *cc; unsigned long len, total_len, addr; const char *xml; const char *p; if (params->len < 3) { gdb_put_packet("E22"); return; } process = gdb_get_cpu_process(gdbserver_state.g_cpu); cc = CPU_GET_CLASS(gdbserver_state.g_cpu); if (!cc->gdb_core_xml_file) { gdb_put_packet(""); return; } p = gdb_get_cmd_param(params, 0)->data; xml = get_feature_xml(p, &p, process); if (!xml) { gdb_put_packet("E00"); return; } addr = gdb_get_cmd_param(params, 1)->val_ul; len = gdb_get_cmd_param(params, 2)->val_ul; total_len = strlen(xml); if (addr > total_len) { gdb_put_packet("E00"); return; } if (len > (MAX_PACKET_LENGTH - 5) / 2) { len = (MAX_PACKET_LENGTH - 5) / 2; } if (len < total_len - addr) { g_string_assign(gdbserver_state.str_buf, "m"); gdb_memtox(gdbserver_state.str_buf, xml + addr, len); } else { g_string_assign(gdbserver_state.str_buf, "l"); gdb_memtox(gdbserver_state.str_buf, xml + addr, total_len - addr); } gdb_put_packet_binary(gdbserver_state.str_buf->str, gdbserver_state.str_buf->len, true); } static void handle_query_qemu_supported(GArray *params, void *user_ctx) { g_string_printf(gdbserver_state.str_buf, "sstepbits;sstep"); #ifndef CONFIG_USER_ONLY g_string_append(gdbserver_state.str_buf, ";PhyMemMode"); #endif gdb_put_strbuf(); } static const GdbCmdParseEntry gdb_gen_query_set_common_table[] = { /* Order is important if has same prefix */ { .handler = handle_query_qemu_sstepbits, .cmd = "qemu.sstepbits", }, { .handler = handle_query_qemu_sstep, .cmd = "qemu.sstep", }, { .handler = handle_set_qemu_sstep, .cmd = "qemu.sstep=", .cmd_startswith = 1, .schema = "l0" }, }; static const GdbCmdParseEntry gdb_gen_query_table[] = { { .handler = handle_query_curr_tid, .cmd = "C", }, { .handler = handle_query_threads, .cmd = "sThreadInfo", }, { .handler = handle_query_first_threads, .cmd = "fThreadInfo", }, { .handler = handle_query_thread_extra, .cmd = "ThreadExtraInfo,", .cmd_startswith = 1, .schema = "t0" }, #ifdef CONFIG_USER_ONLY { .handler = gdb_handle_query_offsets, .cmd = "Offsets", }, #else { .handler = gdb_handle_query_rcmd, .cmd = "Rcmd,", .cmd_startswith = 1, .schema = "s0" }, #endif { .handler = handle_query_supported, .cmd = "Supported:", .cmd_startswith = 1, .schema = "s0" }, { .handler = handle_query_supported, .cmd = "Supported", .schema = "s0" }, { .handler = handle_query_xfer_features, .cmd = "Xfer:features:read:", .cmd_startswith = 1, .schema = "s:l,l0" }, #if defined(CONFIG_USER_ONLY) #if defined(CONFIG_LINUX) { .handler = gdb_handle_query_xfer_auxv, .cmd = "Xfer:auxv:read::", .cmd_startswith = 1, .schema = "l,l0" }, { .handler = gdb_handle_query_xfer_siginfo, .cmd = "Xfer:siginfo:read::", .cmd_startswith = 1, .schema = "l,l0" }, #endif { .handler = gdb_handle_query_xfer_exec_file, .cmd = "Xfer:exec-file:read:", .cmd_startswith = 1, .schema = "l:l,l0" }, #endif { .handler = gdb_handle_query_attached, .cmd = "Attached:", .cmd_startswith = 1 }, { .handler = gdb_handle_query_attached, .cmd = "Attached", }, { .handler = handle_query_qemu_supported, .cmd = "qemu.Supported", }, #ifndef CONFIG_USER_ONLY { .handler = gdb_handle_query_qemu_phy_mem_mode, .cmd = "qemu.PhyMemMode", }, #endif }; static const GdbCmdParseEntry gdb_gen_set_table[] = { /* Order is important if has same prefix */ { .handler = handle_set_qemu_sstep, .cmd = "qemu.sstep:", .cmd_startswith = 1, .schema = "l0" }, #ifndef CONFIG_USER_ONLY { .handler = gdb_handle_set_qemu_phy_mem_mode, .cmd = "qemu.PhyMemMode:", .cmd_startswith = 1, .schema = "l0" }, #endif #if defined(CONFIG_USER_ONLY) { .handler = gdb_handle_set_catch_syscalls, .cmd = "CatchSyscalls:", .cmd_startswith = 1, .schema = "s0", }, #endif }; static void handle_gen_query(GArray *params, void *user_ctx) { if (!params->len) { return; } if (process_string_cmd(gdb_get_cmd_param(params, 0)->data, gdb_gen_query_set_common_table, ARRAY_SIZE(gdb_gen_query_set_common_table))) { return; } if (!process_string_cmd(gdb_get_cmd_param(params, 0)->data, gdb_gen_query_table, ARRAY_SIZE(gdb_gen_query_table))) { gdb_put_packet(""); } } static void handle_gen_set(GArray *params, void *user_ctx) { if (!params->len) { return; } if (process_string_cmd(gdb_get_cmd_param(params, 0)->data, gdb_gen_query_set_common_table, ARRAY_SIZE(gdb_gen_query_set_common_table))) { return; } if (!process_string_cmd(gdb_get_cmd_param(params, 0)->data, gdb_gen_set_table, ARRAY_SIZE(gdb_gen_set_table))) { gdb_put_packet(""); } } static void handle_target_halt(GArray *params, void *user_ctx) { if (gdbserver_state.allow_stop_reply) { g_string_printf(gdbserver_state.str_buf, "T%02xthread:", GDB_SIGNAL_TRAP); gdb_append_thread_id(gdbserver_state.c_cpu, gdbserver_state.str_buf); g_string_append_c(gdbserver_state.str_buf, ';'); gdb_put_strbuf(); gdbserver_state.allow_stop_reply = false; } /* * Remove all the breakpoints when this query is issued, * because gdb is doing an initial connect and the state * should be cleaned up. */ gdb_breakpoint_remove_all(gdbserver_state.c_cpu); } static int gdb_handle_packet(const char *line_buf) { const GdbCmdParseEntry *cmd_parser = NULL; trace_gdbstub_io_command(line_buf); switch (line_buf[0]) { case '!': gdb_put_packet("OK"); break; case '?': { static const GdbCmdParseEntry target_halted_cmd_desc = { .handler = handle_target_halt, .cmd = "?", .cmd_startswith = 1, .allow_stop_reply = true, }; cmd_parser = &target_halted_cmd_desc; } break; case 'c': { static const GdbCmdParseEntry continue_cmd_desc = { .handler = handle_continue, .cmd = "c", .cmd_startswith = 1, .allow_stop_reply = true, .schema = "L0" }; cmd_parser = &continue_cmd_desc; } break; case 'C': { static const GdbCmdParseEntry cont_with_sig_cmd_desc = { .handler = handle_cont_with_sig, .cmd = "C", .cmd_startswith = 1, .allow_stop_reply = true, .schema = "l0" }; cmd_parser = &cont_with_sig_cmd_desc; } break; case 'v': { static const GdbCmdParseEntry v_cmd_desc = { .handler = handle_v_commands, .cmd = "v", .cmd_startswith = 1, .schema = "s0" }; cmd_parser = &v_cmd_desc; } break; case 'k': /* Kill the target */ error_report("QEMU: Terminated via GDBstub"); gdb_exit(0); gdb_qemu_exit(0); break; case 'D': { static const GdbCmdParseEntry detach_cmd_desc = { .handler = handle_detach, .cmd = "D", .cmd_startswith = 1, .schema = "?.l0" }; cmd_parser = &detach_cmd_desc; } break; case 's': { static const GdbCmdParseEntry step_cmd_desc = { .handler = handle_step, .cmd = "s", .cmd_startswith = 1, .allow_stop_reply = true, .schema = "L0" }; cmd_parser = &step_cmd_desc; } break; case 'b': { static const GdbCmdParseEntry backward_cmd_desc = { .handler = handle_backward, .cmd = "b", .cmd_startswith = 1, .allow_stop_reply = true, .schema = "o0" }; cmd_parser = &backward_cmd_desc; } break; case 'F': { static const GdbCmdParseEntry file_io_cmd_desc = { .handler = gdb_handle_file_io, .cmd = "F", .cmd_startswith = 1, .schema = "L,L,o0" }; cmd_parser = &file_io_cmd_desc; } break; case 'g': { static const GdbCmdParseEntry read_all_regs_cmd_desc = { .handler = handle_read_all_regs, .cmd = "g", .cmd_startswith = 1 }; cmd_parser = &read_all_regs_cmd_desc; } break; case 'G': { static const GdbCmdParseEntry write_all_regs_cmd_desc = { .handler = handle_write_all_regs, .cmd = "G", .cmd_startswith = 1, .schema = "s0" }; cmd_parser = &write_all_regs_cmd_desc; } break; case 'm': { static const GdbCmdParseEntry read_mem_cmd_desc = { .handler = handle_read_mem, .cmd = "m", .cmd_startswith = 1, .schema = "L,L0" }; cmd_parser = &read_mem_cmd_desc; } break; case 'M': { static const GdbCmdParseEntry write_mem_cmd_desc = { .handler = handle_write_mem, .cmd = "M", .cmd_startswith = 1, .schema = "L,L:s0" }; cmd_parser = &write_mem_cmd_desc; } break; case 'p': { static const GdbCmdParseEntry get_reg_cmd_desc = { .handler = handle_get_reg, .cmd = "p", .cmd_startswith = 1, .schema = "L0" }; cmd_parser = &get_reg_cmd_desc; } break; case 'P': { static const GdbCmdParseEntry set_reg_cmd_desc = { .handler = handle_set_reg, .cmd = "P", .cmd_startswith = 1, .schema = "L?s0" }; cmd_parser = &set_reg_cmd_desc; } break; case 'Z': { static const GdbCmdParseEntry insert_bp_cmd_desc = { .handler = handle_insert_bp, .cmd = "Z", .cmd_startswith = 1, .schema = "l?L?L0" }; cmd_parser = &insert_bp_cmd_desc; } break; case 'z': { static const GdbCmdParseEntry remove_bp_cmd_desc = { .handler = handle_remove_bp, .cmd = "z", .cmd_startswith = 1, .schema = "l?L?L0" }; cmd_parser = &remove_bp_cmd_desc; } break; case 'H': { static const GdbCmdParseEntry set_thread_cmd_desc = { .handler = handle_set_thread, .cmd = "H", .cmd_startswith = 1, .schema = "o.t0" }; cmd_parser = &set_thread_cmd_desc; } break; case 'T': { static const GdbCmdParseEntry thread_alive_cmd_desc = { .handler = handle_thread_alive, .cmd = "T", .cmd_startswith = 1, .schema = "t0" }; cmd_parser = &thread_alive_cmd_desc; } break; case 'q': { static const GdbCmdParseEntry gen_query_cmd_desc = { .handler = handle_gen_query, .cmd = "q", .cmd_startswith = 1, .schema = "s0" }; cmd_parser = &gen_query_cmd_desc; } break; case 'Q': { static const GdbCmdParseEntry gen_set_cmd_desc = { .handler = handle_gen_set, .cmd = "Q", .cmd_startswith = 1, .schema = "s0" }; cmd_parser = &gen_set_cmd_desc; } break; default: /* put empty packet */ gdb_put_packet(""); break; } if (cmd_parser) { run_cmd_parser(line_buf, cmd_parser); } return RS_IDLE; } void gdb_set_stop_cpu(CPUState *cpu) { GDBProcess *p = gdb_get_cpu_process(cpu); if (!p->attached) { /* * Having a stop CPU corresponding to a process that is not attached * confuses GDB. So we ignore the request. */ return; } gdbserver_state.c_cpu = cpu; gdbserver_state.g_cpu = cpu; } void gdb_read_byte(uint8_t ch) { uint8_t reply; gdbserver_state.allow_stop_reply = false; #ifndef CONFIG_USER_ONLY if (gdbserver_state.last_packet->len) { /* Waiting for a response to the last packet. If we see the start of a new command then abandon the previous response. */ if (ch == '-') { trace_gdbstub_err_got_nack(); gdb_put_buffer(gdbserver_state.last_packet->data, gdbserver_state.last_packet->len); } else if (ch == '+') { trace_gdbstub_io_got_ack(); } else { trace_gdbstub_io_got_unexpected(ch); } if (ch == '+' || ch == '$') { g_byte_array_set_size(gdbserver_state.last_packet, 0); } if (ch != '$') return; } if (runstate_is_running()) { /* * When the CPU is running, we cannot do anything except stop * it when receiving a char. This is expected on a Ctrl-C in the * gdb client. Because we are in all-stop mode, gdb sends a * 0x03 byte which is not a usual packet, so we handle it specially * here, but it does expect a stop reply. */ if (ch != 0x03) { trace_gdbstub_err_unexpected_runpkt(ch); } else { gdbserver_state.allow_stop_reply = true; } vm_stop(RUN_STATE_PAUSED); } else #endif { switch(gdbserver_state.state) { case RS_IDLE: if (ch == '$') { /* start of command packet */ gdbserver_state.line_buf_index = 0; gdbserver_state.line_sum = 0; gdbserver_state.state = RS_GETLINE; } else if (ch == '+') { /* * do nothing, gdb may preemptively send out ACKs on * initial connection */ } else { trace_gdbstub_err_garbage(ch); } break; case RS_GETLINE: if (ch == '}') { /* start escape sequence */ gdbserver_state.state = RS_GETLINE_ESC; gdbserver_state.line_sum += ch; } else if (ch == '*') { /* start run length encoding sequence */ gdbserver_state.state = RS_GETLINE_RLE; gdbserver_state.line_sum += ch; } else if (ch == '#') { /* end of command, start of checksum*/ gdbserver_state.state = RS_CHKSUM1; } else if (gdbserver_state.line_buf_index >= sizeof(gdbserver_state.line_buf) - 1) { trace_gdbstub_err_overrun(); gdbserver_state.state = RS_IDLE; } else { /* unescaped command character */ gdbserver_state.line_buf[gdbserver_state.line_buf_index++] = ch; gdbserver_state.line_sum += ch; } break; case RS_GETLINE_ESC: if (ch == '#') { /* unexpected end of command in escape sequence */ gdbserver_state.state = RS_CHKSUM1; } else if (gdbserver_state.line_buf_index >= sizeof(gdbserver_state.line_buf) - 1) { /* command buffer overrun */ trace_gdbstub_err_overrun(); gdbserver_state.state = RS_IDLE; } else { /* parse escaped character and leave escape state */ gdbserver_state.line_buf[gdbserver_state.line_buf_index++] = ch ^ 0x20; gdbserver_state.line_sum += ch; gdbserver_state.state = RS_GETLINE; } break; case RS_GETLINE_RLE: /* * Run-length encoding is explained in "Debugging with GDB / * Appendix E GDB Remote Serial Protocol / Overview". */ if (ch < ' ' || ch == '#' || ch == '$' || ch > 126) { /* invalid RLE count encoding */ trace_gdbstub_err_invalid_repeat(ch); gdbserver_state.state = RS_GETLINE; } else { /* decode repeat length */ int repeat = ch - ' ' + 3; if (gdbserver_state.line_buf_index + repeat >= sizeof(gdbserver_state.line_buf) - 1) { /* that many repeats would overrun the command buffer */ trace_gdbstub_err_overrun(); gdbserver_state.state = RS_IDLE; } else if (gdbserver_state.line_buf_index < 1) { /* got a repeat but we have nothing to repeat */ trace_gdbstub_err_invalid_rle(); gdbserver_state.state = RS_GETLINE; } else { /* repeat the last character */ memset(gdbserver_state.line_buf + gdbserver_state.line_buf_index, gdbserver_state.line_buf[gdbserver_state.line_buf_index - 1], repeat); gdbserver_state.line_buf_index += repeat; gdbserver_state.line_sum += ch; gdbserver_state.state = RS_GETLINE; } } break; case RS_CHKSUM1: /* get high hex digit of checksum */ if (!isxdigit(ch)) { trace_gdbstub_err_checksum_invalid(ch); gdbserver_state.state = RS_GETLINE; break; } gdbserver_state.line_buf[gdbserver_state.line_buf_index] = '\0'; gdbserver_state.line_csum = fromhex(ch) << 4; gdbserver_state.state = RS_CHKSUM2; break; case RS_CHKSUM2: /* get low hex digit of checksum */ if (!isxdigit(ch)) { trace_gdbstub_err_checksum_invalid(ch); gdbserver_state.state = RS_GETLINE; break; } gdbserver_state.line_csum |= fromhex(ch); if (gdbserver_state.line_csum != (gdbserver_state.line_sum & 0xff)) { trace_gdbstub_err_checksum_incorrect(gdbserver_state.line_sum, gdbserver_state.line_csum); /* send NAK reply */ reply = '-'; gdb_put_buffer(&reply, 1); gdbserver_state.state = RS_IDLE; } else { /* send ACK reply */ reply = '+'; gdb_put_buffer(&reply, 1); gdbserver_state.state = gdb_handle_packet(gdbserver_state.line_buf); } break; default: abort(); } } } /* * Create the process that will contain all the "orphan" CPUs (that are not * part of a CPU cluster). Note that if this process contains no CPUs, it won't * be attachable and thus will be invisible to the user. */ void gdb_create_default_process(GDBState *s) { GDBProcess *process; int pid; #ifdef CONFIG_USER_ONLY assert(gdbserver_state.process_num == 0); pid = getpid(); #else if (gdbserver_state.process_num) { pid = s->processes[s->process_num - 1].pid; } else { pid = 0; } /* We need an available PID slot for this process */ assert(pid < UINT32_MAX); pid++; #endif s->processes = g_renew(GDBProcess, s->processes, ++s->process_num); process = &s->processes[s->process_num - 1]; process->pid = pid; process->attached = false; process->target_xml = NULL; }