/*
* BSD syscalls
*
* Copyright (c) 2003-2008 Fabrice Bellard
* Copyright (c) 2013-2014 Stacey D. Son
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see .
*/
/*
* We need the FreeBSD "legacy" definitions. Rust needs the FreeBSD 11 system
* calls since it doesn't use libc at all, so we have to emulate that despite
* FreeBSD 11 being EOL'd.
*/
#define _WANT_FREEBSD11_STAT
#define _WANT_FREEBSD11_STATFS
#define _WANT_FREEBSD11_DIRENT
#define _WANT_KERNEL_ERRNO
#define _WANT_SEMUN
#include "qemu/osdep.h"
#include "qemu/cutils.h"
#include "qemu/path.h"
#include
#include
#include
#include
#include
#include
#include "qemu.h"
#include "signal-common.h"
#include "user/syscall-trace.h"
#include "bsd-file.h"
#include "bsd-proc.h"
/* I/O */
safe_syscall3(int, open, const char *, path, int, flags, mode_t, mode);
safe_syscall4(int, openat, int, fd, const char *, path, int, flags, mode_t,
mode);
safe_syscall3(ssize_t, read, int, fd, void *, buf, size_t, nbytes);
safe_syscall4(ssize_t, pread, int, fd, void *, buf, size_t, nbytes, off_t,
offset);
safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt);
safe_syscall4(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
off_t, offset);
safe_syscall3(ssize_t, write, int, fd, void *, buf, size_t, nbytes);
safe_syscall4(ssize_t, pwrite, int, fd, void *, buf, size_t, nbytes, off_t,
offset);
safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt);
safe_syscall4(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
off_t, offset);
void target_set_brk(abi_ulong new_brk)
{
}
/*
* errno conversion.
*/
abi_long get_errno(abi_long ret)
{
if (ret == -1) {
return -host_to_target_errno(errno);
} else {
return ret;
}
}
int host_to_target_errno(int err)
{
/*
* All the BSDs have the property that the error numbers are uniform across
* all architectures for a given BSD, though they may vary between different
* BSDs.
*/
return err;
}
bool is_error(abi_long ret)
{
return (abi_ulong)ret >= (abi_ulong)(-4096);
}
/*
* Unlocks a iovec. Unlike unlock_iovec, it assumes the tvec array itself is
* already locked from target_addr. It will be unlocked as well as all the iovec
* elements.
*/
static void helper_unlock_iovec(struct target_iovec *target_vec,
abi_ulong target_addr, struct iovec *vec,
int count, int copy)
{
for (int i = 0; i < count; i++) {
abi_ulong base = tswapal(target_vec[i].iov_base);
if (vec[i].iov_base) {
unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
}
}
unlock_user(target_vec, target_addr, 0);
}
struct iovec *lock_iovec(int type, abi_ulong target_addr,
int count, int copy)
{
struct target_iovec *target_vec;
struct iovec *vec;
abi_ulong total_len, max_len;
int i;
int err = 0;
if (count == 0) {
errno = 0;
return NULL;
}
if (count < 0 || count > IOV_MAX) {
errno = EINVAL;
return NULL;
}
vec = g_try_new0(struct iovec, count);
if (vec == NULL) {
errno = ENOMEM;
return NULL;
}
target_vec = lock_user(VERIFY_READ, target_addr,
count * sizeof(struct target_iovec), 1);
if (target_vec == NULL) {
err = EFAULT;
goto fail2;
}
max_len = 0x7fffffff & MIN(TARGET_PAGE_MASK, PAGE_MASK);
total_len = 0;
for (i = 0; i < count; i++) {
abi_ulong base = tswapal(target_vec[i].iov_base);
abi_long len = tswapal(target_vec[i].iov_len);
if (len < 0) {
err = EINVAL;
goto fail;
} else if (len == 0) {
/* Zero length pointer is ignored. */
vec[i].iov_base = 0;
} else {
vec[i].iov_base = lock_user(type, base, len, copy);
/*
* If the first buffer pointer is bad, this is a fault. But
* subsequent bad buffers will result in a partial write; this is
* realized by filling the vector with null pointers and zero
* lengths.
*/
if (!vec[i].iov_base) {
if (i == 0) {
err = EFAULT;
goto fail;
} else {
/*
* Fail all the subsequent addresses, they are already
* zero'd.
*/
goto out;
}
}
if (len > max_len - total_len) {
len = max_len - total_len;
}
}
vec[i].iov_len = len;
total_len += len;
}
out:
unlock_user(target_vec, target_addr, 0);
return vec;
fail:
helper_unlock_iovec(target_vec, target_addr, vec, i, copy);
fail2:
g_free(vec);
errno = err;
return NULL;
}
void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
int count, int copy)
{
struct target_iovec *target_vec;
target_vec = lock_user(VERIFY_READ, target_addr,
count * sizeof(struct target_iovec), 1);
if (target_vec) {
helper_unlock_iovec(target_vec, target_addr, vec, count, copy);
}
g_free(vec);
}
/*
* All errnos that freebsd_syscall() returns must be -TARGET_.
*/
static abi_long freebsd_syscall(void *cpu_env, int num, abi_long arg1,
abi_long arg2, abi_long arg3, abi_long arg4,
abi_long arg5, abi_long arg6, abi_long arg7,
abi_long arg8)
{
abi_long ret;
switch (num) {
/*
* process system calls
*/
case TARGET_FREEBSD_NR_exit: /* exit(2) */
ret = do_bsd_exit(cpu_env, arg1);
break;
/*
* File system calls.
*/
case TARGET_FREEBSD_NR_read: /* read(2) */
ret = do_bsd_read(arg1, arg2, arg3);
break;
case TARGET_FREEBSD_NR_pread: /* pread(2) */
ret = do_bsd_pread(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
break;
case TARGET_FREEBSD_NR_readv: /* readv(2) */
ret = do_bsd_readv(arg1, arg2, arg3);
break;
case TARGET_FREEBSD_NR_preadv: /* preadv(2) */
ret = do_bsd_preadv(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
case TARGET_FREEBSD_NR_write: /* write(2) */
ret = do_bsd_write(arg1, arg2, arg3);
break;
case TARGET_FREEBSD_NR_pwrite: /* pwrite(2) */
ret = do_bsd_pwrite(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
break;
case TARGET_FREEBSD_NR_writev: /* writev(2) */
ret = do_bsd_writev(arg1, arg2, arg3);
break;
case TARGET_FREEBSD_NR_pwritev: /* pwritev(2) */
ret = do_bsd_pwritev(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
break;
case TARGET_FREEBSD_NR_open: /* open(2) */
ret = do_bsd_open(arg1, arg2, arg3);
break;
case TARGET_FREEBSD_NR_openat: /* openat(2) */
ret = do_bsd_openat(arg1, arg2, arg3, arg4);
break;
case TARGET_FREEBSD_NR_close: /* close(2) */
ret = do_bsd_close(arg1);
break;
case TARGET_FREEBSD_NR_fdatasync: /* fdatasync(2) */
ret = do_bsd_fdatasync(arg1);
break;
case TARGET_FREEBSD_NR_fsync: /* fsync(2) */
ret = do_bsd_fsync(arg1);
break;
case TARGET_FREEBSD_NR_freebsd12_closefrom: /* closefrom(2) */
ret = do_bsd_closefrom(arg1);
break;
case TARGET_FREEBSD_NR_revoke: /* revoke(2) */
ret = do_bsd_revoke(arg1);
break;
case TARGET_FREEBSD_NR_access: /* access(2) */
ret = do_bsd_access(arg1, arg2);
break;
case TARGET_FREEBSD_NR_eaccess: /* eaccess(2) */
ret = do_bsd_eaccess(arg1, arg2);
break;
case TARGET_FREEBSD_NR_faccessat: /* faccessat(2) */
ret = do_bsd_faccessat(arg1, arg2, arg3, arg4);
break;
case TARGET_FREEBSD_NR_chdir: /* chdir(2) */
ret = do_bsd_chdir(arg1);
break;
case TARGET_FREEBSD_NR_fchdir: /* fchdir(2) */
ret = do_bsd_fchdir(arg1);
break;
case TARGET_FREEBSD_NR_rename: /* rename(2) */
ret = do_bsd_rename(arg1, arg2);
break;
case TARGET_FREEBSD_NR_renameat: /* renameat(2) */
ret = do_bsd_renameat(arg1, arg2, arg3, arg4);
break;
case TARGET_FREEBSD_NR_link: /* link(2) */
ret = do_bsd_link(arg1, arg2);
break;
case TARGET_FREEBSD_NR_linkat: /* linkat(2) */
ret = do_bsd_linkat(arg1, arg2, arg3, arg4, arg5);
break;
case TARGET_FREEBSD_NR_unlink: /* unlink(2) */
ret = do_bsd_unlink(arg1);
break;
case TARGET_FREEBSD_NR_unlinkat: /* unlinkat(2) */
ret = do_bsd_unlinkat(arg1, arg2, arg3);
break;
case TARGET_FREEBSD_NR_mkdir: /* mkdir(2) */
ret = do_bsd_mkdir(arg1, arg2);
break;
case TARGET_FREEBSD_NR_mkdirat: /* mkdirat(2) */
ret = do_bsd_mkdirat(arg1, arg2, arg3);
break;
case TARGET_FREEBSD_NR_rmdir: /* rmdir(2) (XXX no rmdirat()?) */
ret = do_bsd_rmdir(arg1);
break;
case TARGET_FREEBSD_NR___getcwd: /* undocumented __getcwd() */
ret = do_bsd___getcwd(arg1, arg2);
break;
case TARGET_FREEBSD_NR_dup: /* dup(2) */
ret = do_bsd_dup(arg1);
break;
case TARGET_FREEBSD_NR_dup2: /* dup2(2) */
ret = do_bsd_dup2(arg1, arg2);
break;
case TARGET_FREEBSD_NR_truncate: /* truncate(2) */
ret = do_bsd_truncate(cpu_env, arg1, arg2, arg3, arg4);
break;
case TARGET_FREEBSD_NR_ftruncate: /* ftruncate(2) */
ret = do_bsd_ftruncate(cpu_env, arg1, arg2, arg3, arg4);
break;
case TARGET_FREEBSD_NR_acct: /* acct(2) */
ret = do_bsd_acct(arg1);
break;
case TARGET_FREEBSD_NR_sync: /* sync(2) */
ret = do_bsd_sync();
break;
case TARGET_FREEBSD_NR_mount: /* mount(2) */
ret = do_bsd_mount(arg1, arg2, arg3, arg4);
break;
case TARGET_FREEBSD_NR_unmount: /* unmount(2) */
ret = do_bsd_unmount(arg1, arg2);
break;
case TARGET_FREEBSD_NR_nmount: /* nmount(2) */
ret = do_bsd_nmount(arg1, arg2, arg3);
break;
case TARGET_FREEBSD_NR_symlink: /* symlink(2) */
ret = do_bsd_symlink(arg1, arg2);
break;
case TARGET_FREEBSD_NR_symlinkat: /* symlinkat(2) */
ret = do_bsd_symlinkat(arg1, arg2, arg3);
break;
case TARGET_FREEBSD_NR_readlink: /* readlink(2) */
ret = do_bsd_readlink(cpu_env, arg1, arg2, arg3);
break;
case TARGET_FREEBSD_NR_readlinkat: /* readlinkat(2) */
ret = do_bsd_readlinkat(arg1, arg2, arg3, arg4);
break;
case TARGET_FREEBSD_NR_chmod: /* chmod(2) */
ret = do_bsd_chmod(arg1, arg2);
break;
case TARGET_FREEBSD_NR_fchmod: /* fchmod(2) */
ret = do_bsd_fchmod(arg1, arg2);
break;
case TARGET_FREEBSD_NR_lchmod: /* lchmod(2) */
ret = do_bsd_lchmod(arg1, arg2);
break;
case TARGET_FREEBSD_NR_fchmodat: /* fchmodat(2) */
ret = do_bsd_fchmodat(arg1, arg2, arg3, arg4);
break;
case TARGET_FREEBSD_NR_freebsd11_mknod: /* mknod(2) */
ret = do_bsd_freebsd11_mknod(arg1, arg2, arg3);
break;
case TARGET_FREEBSD_NR_freebsd11_mknodat: /* mknodat(2) */
ret = do_bsd_freebsd11_mknodat(arg1, arg2, arg3, arg4);
break;
case TARGET_FREEBSD_NR_mknodat: /* mknodat(2) */
ret = do_bsd_mknodat(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
break;
case TARGET_FREEBSD_NR_chown: /* chown(2) */
ret = do_bsd_chown(arg1, arg2, arg3);
break;
case TARGET_FREEBSD_NR_fchown: /* fchown(2) */
ret = do_bsd_fchown(arg1, arg2, arg3);
break;
case TARGET_FREEBSD_NR_lchown: /* lchown(2) */
ret = do_bsd_lchown(arg1, arg2, arg3);
break;
case TARGET_FREEBSD_NR_fchownat: /* fchownat(2) */
ret = do_bsd_fchownat(arg1, arg2, arg3, arg4, arg5);
break;
case TARGET_FREEBSD_NR_chflags: /* chflags(2) */
ret = do_bsd_chflags(arg1, arg2);
break;
case TARGET_FREEBSD_NR_lchflags: /* lchflags(2) */
ret = do_bsd_lchflags(arg1, arg2);
break;
case TARGET_FREEBSD_NR_fchflags: /* fchflags(2) */
ret = do_bsd_fchflags(arg1, arg2);
break;
case TARGET_FREEBSD_NR_chroot: /* chroot(2) */
ret = do_bsd_chroot(arg1);
break;
case TARGET_FREEBSD_NR_flock: /* flock(2) */
ret = do_bsd_flock(arg1, arg2);
break;
case TARGET_FREEBSD_NR_mkfifo: /* mkfifo(2) */
ret = do_bsd_mkfifo(arg1, arg2);
break;
case TARGET_FREEBSD_NR_mkfifoat: /* mkfifoat(2) */
ret = do_bsd_mkfifoat(arg1, arg2, arg3);
break;
case TARGET_FREEBSD_NR_pathconf: /* pathconf(2) */
ret = do_bsd_pathconf(arg1, arg2);
break;
case TARGET_FREEBSD_NR_lpathconf: /* lpathconf(2) */
ret = do_bsd_lpathconf(arg1, arg2);
break;
case TARGET_FREEBSD_NR_fpathconf: /* fpathconf(2) */
ret = do_bsd_fpathconf(arg1, arg2);
break;
case TARGET_FREEBSD_NR_undelete: /* undelete(2) */
ret = do_bsd_undelete(arg1);
break;
/*
* sys{ctl, arch, call}
*/
case TARGET_FREEBSD_NR___sysctl: /* sysctl(3) */
ret = do_freebsd_sysctl(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
break;
case TARGET_FREEBSD_NR___sysctlbyname: /* sysctlbyname(2) */
ret = do_freebsd_sysctlbyname(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
break;
case TARGET_FREEBSD_NR_sysarch: /* sysarch(2) */
ret = do_freebsd_sysarch(cpu_env, arg1, arg2);
break;
default:
qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
ret = -TARGET_ENOSYS;
break;
}
return ret;
}
/*
* do_freebsd_syscall() should always have a single exit point at the end so
* that actions, such as logging of syscall results, can be performed. This
* as a wrapper around freebsd_syscall() so that actually happens. Since
* that is a singleton, modern compilers will inline it anyway...
*/
abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1,
abi_long arg2, abi_long arg3, abi_long arg4,
abi_long arg5, abi_long arg6, abi_long arg7,
abi_long arg8)
{
CPUState *cpu = env_cpu(cpu_env);
abi_long ret;
trace_guest_user_syscall(cpu, num, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8);
if (do_strace) {
print_freebsd_syscall(num, arg1, arg2, arg3, arg4, arg5, arg6);
}
ret = freebsd_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6,
arg7, arg8);
if (do_strace) {
print_freebsd_syscall_ret(num, ret);
}
trace_guest_user_syscall_ret(cpu, num, ret);
return ret;
}
void syscall_init(void)
{
}